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Abstract—Cloud infrastructures have seen increasing popu-
larity for addressing the growing computational needs of to-
day’s scientific and engineering applications. However, resource
management challenges exist in the elastic cloud environment,
such as resource provisioning and task allocation, especially
when data movement between multiple domains plays an
important role. In this work, we study the impact of data-aware
resource management and scheduling on scientific workflows
in multicloud environments. We develop a workflow simulator
based on a network simulation framework for fine-grained
simulation for workflow computation and data movement.
Using the workload traces from a production metagenomic
data analysis service, we evaluate different resource scheduling
mechanisms, including proposed data-aware scheduling policies
under various resource and bandwidth configurations. The
results of this work are expected to answer questions about
how to provision computing resources for certain workloads
efficiently and how to place tasks across multidomain clouds
in order to reduce data movement costs for overall improved
system performance.

Keywords-data-aware scheduling, resource management, sci-
entific workflow, cloud computing

I. INTRODUCTION

Because of the increasing computational and data require-
ments, applications in science and engineering are demand-
ing scalable computing resources. This situation has boosted
the adoption of elastic cloud infrastructures. The flexible and
diverse nature of the clouds, however, brings challenges for
effective resource management, such as resource provision-
ing and allocation, especially when data movement between
multiple domains plays an important role.

Two major questions must be answered in order to en-
able effective resource management in cloud environments.
One concerns resource provisioning: How many computing
resources need to be allocated to serve certain workloads
(heavy or light, data-intensive or compute-intensive)? For a
certain workload, using insufficient resources results in poor
productivity; using excessive resources leads to unnecessary
monetary costs. The second question concerns resource
allocation: What resources are best used to complete these
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tasks? Using insufficient resources results in poor applica-
tion performance or even failures, while overprovisioning
resources for a task results in suboptimal resource utilization.
Also, being oblivious to I/O data may result in substantial
unnecessary data movement cost. Neither of these two ques-
tions has a straightforward answer because of the diversity
of both application characteristics and system status.

In this work, we address the challenges in resource
provisioning and resource allocation for multicloud scientific
workflows that require task placement and data movement
between distributed multidomain computing sites. To evalu-
ate different resource plans and scheduling mechanism under
various workload and system configuration, we develop a
data-aware workflow simulator based on CODES simulation
framework [2][7] to provide fine-grained simulation for
workflow computation and data movement.

Further, we propose a couple of distributed data-aware
workflow scheduling mechansims and evaluate them using
cloud workload traces from a production metagenomics data
analysis service: the MG-RAST metagenomic data analy-
sis service[3][15][22]. We study the system performance
variations measured by a number of metrics under diverse
workload characteristics and resource configurations. The
experimental results show how the performance metrics are
influenced by resource management mechanisms. They also
indicate that data-aware scheduling can provide consider-
able performance improvement for multidomain workflow
applications. The observations of this work can guide effi-
cient resource provisioning and allocation based on variable
workload characteristics and system status.

II. RELATED WORK

Cloud resources are being adopted to serve today’s appli-
cations as the compute and data demands grow. For example,
Lezzi et al. [13] proposed a programming framework that
allows coordinated execution of applications in the EGI Fed-
erated Cloud. Mohamed et al. [16] implemented a genome
analysis pipeline on the Microsoft Azure cloud. Different



from these studies that focus on porting applications into
the cloud, we focus here on cloud resource management.

Various researchers have addressed the resource manage-
ment challenges with multicloud infrastructures. Keahey et
al. [11] developed a multicloud autoscaling service for
automatic resource provisioning based on user-customizable
policies. Duplyakin et al. [9] proposed mechanisms for rebal-
ancing multicloud resource deployment for improved work-
load execution performance. Zhou and He [24] proposed a
transformation-based cost optimization for workflows in the
cloud. Our work differs from such studies by highlighting
the impact of data movement between multicloud sites,
an issue that has becomeincreasingly significant in cloud
computing.

Some existing work has optimized data movement in
domains such as grid or data centers. For example, Kosar and
Balman [12] proposed data-aware batch scheduling in grid
computing to coordinate data transfer between distributed
sites. Maheshwari et al. [14] used performance models to
predict task execution and data transfer times between differ-
ent sites to enhance workflow scheduling. Zou et al. [25][26]
used adaptive data compression to accelerate data movement
between simulation and data analysis machines in data
centers. Our current work addresses the data movement
problem in multicloud environments.

Event-driven simulation is a commonly used approach
to aid in the design and evaluation of resource manage-
ment mechanisms. For batch job scheduling, some pro-
duction batch schedulers have a simulation mode, such
as SLURM [23] and Cobalt [19]. For cloud computing,
Calheiros et al. [5] developed CloudSim, a simulation toolkit
that supports both system and behavior modeling of cloud
system components such as data centers, virtual machines,
and resource provisioning policies. Chen and Deelman [8]
proposed WorkflowSim, an extended version of CloudSim
that supports workflow management and scheduling.

We present here a distributed workflow simulator that
differs from existing batch or cloud simulators because it
can provide fine-grained data movement simulation; that is,
bandwidth contentions between concurrent transfers over the
network can be emulated based on an underlying network
simulation framework.

III. SYSTEM OVERVIEW

The system model of this work is based on the AWE
[1][20] workload management system, which executes dis-
tributed workflow in the server/clients model. The server
receives job submissions and maintains a task queue. The
clients on distributed computing resources gets tasks from
the server and processes them locally. AWE uses the Shock
data management system [4] for data storage and subsetting.
More details about the computing platform can be found in
our previous work [20]. Figure 1 illustrates an example of
the Shock and AWE setup with two cloud sites connected.

AWE clients

amazon

web services

Figure 1. Shock/AWE diagram in a multicloud environment

In the AWE system, a job represents a workflow run for a
specific set of input data. A task represents the computation
for a particular stage in the workflow. A task can be split
into one or multiple subtasks (we call each a “workunit”),
each processing a subset of the input data of the same
task. The workunit is the schedulable unit maintained in the
queue. How to prioritize and allocate the queued workunits
to different compute clients are the responsibility of the
scheduler.

IV. SCHEDULING METHODS

In this section, we first introduce the basic scheduling
method in AWE, followed by enhanced data-aware methods.

A. Basic Scheduling Method

By default AWE uses a first-come, first-served (FCFES)
policy to main the workunits. That is, the workunits are
sorted by the time stamp of job submission, and hence
all workunits belonging to the same job will have the
same priority. AWE handles clients’ checkout requests in
a round-robin fashion in order to maintain load balancing.
Specifically, the workunit checkout requests are handled
immediately if eligible workunits are in the queue; other-
wise, the requests are queued until eligible workunits are
available. In this work, we assume the computing resources
are homogeneous except for the network bandwidths to the
data server.

B. Data-Aware Scheduling

When workflows are run in multicloud environments, data
movement between different sites incur overhead. Since at
different task stages the application have different require-
ments for data movement, the scheduler should be aware
of these data requirements before allocating tasks among
multiple sites. Thus we propose data-aware scheduling as
an enhancement to the AWE scheduler. The basic idea is
to make the scheduler aware of data characteristics and the
distances of the computing resources and to allocate tasks
effectively in order to reduce data movement overhead.



We quantify the data characteristic by the computational
expensiveness that is correlated to compute to I/O ratio.
Specifically, we consider task A is more “computationally
expensive” than task B if for the same amount of input size,
the compute time of task A is longer than that of task B,
given the same compute and network configuration. We de-
fine the computational expensiveness as E. = Trun/Sinput
where T, is the compute time and Sy, is the size of
the input data; the unit is sec/MB.

Based on historical job traces, we can determine the aver-
age I, for different task type, and the scheduler can use that
metric to determine whether a task is more computationally
expensive (with higher E.) or, in other words, which task
is more data intensive (with lower FE.). Our data-aware
scheduling methods are based on the task’s E, value and the
distance between the computing resource to the data server.
We present in this work two simple policies, namely “best-
fit” and “greedy.”

1) Best-fit: This is simplest and most straightforward way
that allocates only the most computationally intensive task
(with highest E.) to the remote site, where the bandwidth
to the data server is relatively low. Our previous work [18]
revealed that the most compute-intensive task in MG-RAST
is protein similarity search using BLAT [10]: every workunit
with 50 MB of input data needs around 3 to 5 hours to
process on an 8-core virtual machine, which is much more
expensive than other task types. For the evaluation in this
work, we implement best-fit to allocate only BLAT task to
the remote site.

2) Greedy: Using the best-fit policy can guarantee that
the remote site involves the least data movement overhead.
The tradeoff is that the computing resources at the remote
site can run only one type of task and may be idle sometimes
even if another type of task is in the queue—a situation
that clearly is harmful to the whole system utilization. As a
compromise, we propose a “greedy” policy. Specifically, we
first sort the task types in order of compute expensiveness
E.. Each time when a remote checkout happens, the client
will first check whether there is a task belonging to the type
with highest E.. If not, the clients will check the task type
with the second highest E., and so on. Eventually, a client
will get a task instead of being idle.

V. AWESIM: A DISTRIBUTED WORKFLOW SIMULATOR

Simulation is an integral part of our workflow sched-
uler. To model the performance of distributed workflow in
multicloud environments, we developed a simulator named
AweSim! based on the CODES simulation framework [2][7].
The simulator can take workflow jobs as input and emulate
workflow task parsing, task scheduling, and data movement.

The goal of the CODES project is to use parallel, fine-
grained simulation to explore the design of large-scale stor-
age or network architectures and distributed data-intensive

Uhttps://github.com/wtangiit/awesim

science facilities. CODES is built on the Rensselaer Op-
timistic Simulation System (ROSS) [6], a discrete event
simulation framework that allows simulations to be run in
parallel. CODES can simulate disk I/O and network model
in fine granularity. For example, the network congestions
between multiple transfers are emulated by breaking the data
load into small packets and queued up at the ends of the links
that are configured with maximum bandwidths.

To simulate an application, one needs to implement the
application model on top of ROSS and CODES. ROSS
manages the simulation clock and events, and CODES im-
plements I/O and network transfer models. The application
model implements the use case components (implemented
as “logical processes” or LPs) and their interactions. In this
work, the application model is the workflow management in
the multidomain clouds environment. Specifically, the LPs
includes a job server (AWE server), a data server (Shock),
and multiple computing clients (AWE clients) grouped by
multiple sites. The bandwidth between each site and the
data server can be configured as different values close to
the real configurations. Figure 2 shows the LPs and network
configurations of AweSim used in the experiments.

Data server

Local Site

Figure 2.

Remote Site
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VI. EXPERIMENTS

In this section, we present our simulation-based study of
data-aware resource scheduling for multicloud workflows.
We first introduce the simulation setup and some perfor-
mance metrics, followed by the results and observations.

A. Simulation Setup

The job trace is collected from the production MG-RAST
service [3][15] running in the Magellan cloud [17], which
contains all the jobs completed in April 2014. Specifically,
the trace includes 3,193 complete jobs, 31,930 tasks, and
64,026 workunits. More detailed information about MG-
RAST tasks’ compute and I/O characteristics can be found
in our previous work [18].

The output of the simulation is another event series
including the time stamps of all major activities, such as
compute start and completion and data transfer start and



completion. Based on the output trace, we can measure the
system performance with a number of metrics, described in
following subsection.

B. Evaluation Metrics

We evaluated system performance in terms of the follow-
ing metrics representing both user and system interests.

e Job response time, or job turnaround time, is measured
by the time period between job submission and comple-
tion, including the queuing time and processing time.

o System utilization rate in a certain period of time
is measured by the proportion of utilized computing
cycles to the total number of cycles.

o Data analysis throughput is measured by the processed
data size in a unit time, which reflects the system
productivity of processing data.

e Data movement overhead for a job in this work is
measured by the proportion of time spent on data
movement between the computing resource and data
server compared with the total job processing time.

C. Simulation for One Site

We first conduct a set of simulations for one site only, in
order to validate the behavior of the simulator and explore
the impact of resource provisioning plans under various sys-
tem loads. In the experiments, we configured one computing
site with various numbers of clients (ranging from 50 to
200 by steps of 25) to represent different capacity plans (in
practice, we use a varying number of clients, ranging from
50 to 150, based on availability). Besides the original work-
load, we varied the workload and identified four additional
different workloads with 25% more, 50% more, doubled,
and tripled density compared with the original one [21]. We
configured the queuing policy as FCFS. Figure 3 shows the
experimental results.

Average job response time (Figure 3(a)) and average
system utilization (Figure 3(b)) show the trends: the former
decreases as the number of computing clients increases, and
increases as the workload system load gets heavier; the latter
acts in the opposite manner. The difference is that the job
response time is more sensitive to system load when the
number of clients is low, whereas the utilization is more
sensitive to system load when the number of clients is high.

Data analysis throughput (Figure 3(c)), measured in giga-
bytes input data per day, increases as the number of clients
increases at the beginning, but it goes flat after some point
even when more clients are added. This point is different
for different system loads. Generally, the heavier the system
load is, the more the throughput can be improved by adding
more clients. In other words, the system throughput can be
increased by adding more computing resources but also will
be limited by the workloads.

Data movement overhead (Figure 3(d)) increases only
as the number of clients increases and has no significant
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Figure 3. Performance evaluation for different resource provisioning plans
under various workloads. The legends represent different workload densities
compared with the original one. x-axis: number of computing clients.

correlation with the system load. The reason is that the data
transfer is highly influenced by the contention of the network
between computing clients and the data server: more clients
mean more concurrent data transfers to the data server.

D. Simulation for Two Sites

We next explore the performance of running workflow
over multiple sites where data movement is required in
between. Specifically, we simulate a real case for MG-RAST
where a dedicated pool of computing clients is available
at a “local site” and additional clients can join from a
“remote site.” The local site is closer to the data server as its
bandwidth to the data server is high. In contrast, the remote
site has lower bandwidth to the data server. Based on real
system observation for MG-RAST setting, we configured
the download and upload bandwidths of the local site as
500 MB/s and 100 MB/s, respectively; those of the remote
site are 10 times slower, respectively.

In the simulation, we studied four cases (with number
of clients at local/remote site): all local clients as baseline
(150/0), more clients at the local site (100/50), equal number
of clients at both sites (75/75), and more clients at the remote
site (50/100). We fix the total number of clients to 150,
which is in the range of that we use for MG-RAST.

Figure 4 shows the experimental results. For the first
three metrics (resp, wutil, thpt), a higher proportion of
remote clients results in a moderate or slight degradation
of performance; and, in particular, the system utilization
and throughput are less sensitive to the ratio of the remote
clients. On the other hand, the data movement overhead is
significantly sensitive to the remote client ratio. As shown
in Figure 4(d), the overhead is increased exponentially—
doubled every time the remote client ratio increases.

The reason for the performance variations is that more
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Figure 4. Performance evaluation for running job over two sites (one
local and one remote). Number of clients in local/remote sites: 150/0 (all
local, baseline), 100/50 (more local), 75/75 (equal), 50/100 (more remote).
x-axis: system loads.

data movement has been incurred over the lower-bandwidth
network between multiple sites. The first three metrics are
impacted only moderately because they are affected only
indirectly by the ‘data movement since the computing capac-
ities remain unchanged (the same total number of computing
clients is configured). On the other hand, the data overhead
is directly impacted by the multisite deployment with a
lower bandwidth in between. Thus, we need data-aware task
allocation to reduce the data movement overhead.

E. Simulation for Data-Aware Scheduling

In this section, we evaluate data-aware task allocation. We
examine the “best-fit” and “greedy” policies for the two-
site cases. We compare the relative performance variations
as shown in Figure 5. Specifically, we normalized the base
performance values (base scheduler) to 1, and calculated the
relative values for the performance values of test cases with
data-aware scheduling (on Y-axis).

As shown in the figure, generally, both data-aware
scheduling policies can brought moderate to slight changes
to the first three metrics (response time, utilization, and
throughput) and more noticeable variations to the data over-
head. In other words, data-aware scheduling can significantly
improve data movement overhead with slight impact to other
system performance metrics.

Further, best-fit performs better than greedy when the
remote clients are not dominant (the first two cases); it has
less impact to response time and much more improvement
on data movement overhead. On the other hand, the greedy
policy does better when remote clients are dominated (the
third case) in terms of mitigating the negative impact brought
by best-fit on response time and utilization, although the
improvement on overhead has been reduced as a tradeoff.

We further look in to data movement overhead and
utilization distinguished by different client sites (local or

Equal clients (75/75)

Boestfit Sgreedy

More local clients (100/50)

Bbestfit greedy

More remote clients (50/100)

Bbest-fit Bereedy

Figure 5. Performance variation brought by data-aware scheduling. x-
axis: system load; y-axis: the ratio (relative values) of the performance
values with data-aware scheduling (best-fit and greedy) to those without
data-awareness. X-axis: examined metrics. resp and ovhd are less the better
(< 1 means improvement); util and thpt are the more the better (< 1 means
degradation).

remote), in order to get more insights on how allocating
tasks to remote site will impact system performance and how
data-aware scheduling policies will mitigate the impacts.
Table I shows the data movement overhead for different
client groups, distinguishing local and remote sites. That
is, for three multisite cases, we count the average overhead
among the clients within a same site. As shown in the table,
with base scheduling policy, the data overhead of the remote
sites is much higher than that of the local sites. This indicates
that the significantly increased average data overhead for
the two-site case seen in Figure 4(d) is due mostly to the
overhead incurred by moving data from/to remote sites.

Table I
DATA OVERHEAD BY CLIENT GROUPS (AVERAGE SYSTEM LOAD)

100/50 75175 50/100
policy | local remote | local remote | local remote
base 0.9% 6.6% 08% 11.0% | 0.7% 17.0%

best-fit | 1.1% 0.5% 1.1% 0.7% 1.0% 1.0%
greedy | 0.7% 5.3% 0.7% 8.7% 0.7%  13.6%

VII. CONCLUSION AND FUTURE WORK

As scientific workflows increasingly adopt multisite elas-
tic cloud infrastructures, resource management and schedul-
ing become a challenge as data movement costs between
multiple sites become nontrivial. Hence, it is important
to model and understand the compute and data move-
ment dynamics under various workloads, system status, and
scheduling mechanisms.

To this end, we developed a data-aware distributed work-
flow simulator (AweSim) based on a fine-grained network
simulation framework (CODES). Further, with real job
traces from a production data analysis service (MG-RAST)



in the cloud, we explored the performance variation under
different workloads and resource plans. We also proposed a
couple of data-aware scheduling policies and evaluated them
with positive results.
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