
Skyport – Container-Based Execution Environment
Management for Multi-Cloud Scientific Workflows

Wolfgang Gerlach ∗, 1, 2, Wei Tang 2, Kevin Keegan 2, 1, Travis Harrison 1, 2,
Andreas Wilke 2, Jared Bischof 1, 2, Mark D’Souza 1, 2, Scott Devoid 2, 1,

Daniel Murphy-Olson 2, 1, Narayan Desai 3, Folker Meyer 2, 1

1 University of Chicago, Chicago, Illinois, USA
2 Argonne National Laboratory, Argonne, Illinois, USA

3 Ericsson, San Jose, California, USA

ABSTRACT
Recently, Linux container technology has been gaining at-
tention as it promises to transform the way software is devel-
oped and deployed. The portability and ease of deployment
makes Linux containers an ideal technology to be used in
scientific workflow platforms. Skyport utilizes Docker Linux
containers to solve software deployment problems and re-
source utilization inefficiencies inherent to all existing scien-
tific workflow platforms. As an extension to AWE/Shock,
our data analysis platform that provides scalable workflow
execution environments for scientific data in the cloud, Sky-
port greatly reduces the complexity associated with pro-
viding the environment necessary to execute complex work-
flows.

1. INTRODUCTION
Multiple disciplines have experienced a drastic increase in
the size of data that undergoes analysis. Examples in physics
(CERN [27]) and biology (Human Microbiome Project [21])
have achieved widespread recognition. In biomedical re-
search, the recent developments in DNA sequencing tech-
nology have led to an expansion in biological sequence data
that dwarfs prior achievements. This trend is particularly
true in the field of metagenomics [20] where single samples
contain sequence data (DNA/RNA, usually in the form of
millions of short sequences of a few hundred bases) from
entire microbial environments. Samples hundreds of giga-
bytes in size are common. Storage and analysis of such data
has made it necessary to exploit grid and cloud comput-
ing resources with efficient workflow management systems,
making it possible to process data quickly while at the same
time preserving provenance.

∗ Corresponding author: wgerlach@mcs.anl.gov

DataCloud 2014 New Orleans, LA USA

Scientific workflows are usually represented as directed
acyclic graphs (DAG) in which edges represent the flow of
data, and nodes represent the tasks that operate on them [4].
Workflow tasks can require computationally expensive data
processing or invocation of external web services, typically
developed on top of one of several existing platforms. Gener-
ally, scientific workflows are complex software systems that
consist of multiple software applications assembled together
to perform several tasks that perform multiple transforma-
tions and analyses on the input data. Independent research-
ers write applications to solve specific problems (e.g., genome
assembly, gene prediction and functional annotation) that
require the selection of appropriate programming models,
languages and software libraries. Each problem can have
specific requirements that are independent of, possibly even
incompatible with, the requirements for solving other prob-
lems within the same workflow. Additionally, a strong desire
exists among scientists to use the same, well documented
tools to solve a problem. This is generally for two reasons:
the high cost to rewrite existing applications, and because of
the importance of consistently using peer-reviewed software.

Current scientific workflows often includes dozens, or more,
external dependencies (e.g., requires a specific version of
Python, or requires a specific version of an R package that
in turn is only supported in an older version of R itself).
While all of these issues are solvable, the situation is sur-
prisingly complicated. As an example, users could install an
older version of R required for a specific package. Yet, the
installation of any required R package will default to the
latest version of said package, which will generate version
conflicts and might be incompatible with the old version of
R itself. Problems of this nature have led developers to of-
fer all-in-one solutions (i.e., snapshots), which capture the
entire development environment in a single VM that acts
as the target runtime environment. The well known bioin-
formatics suite QIIME [5] or (Cloud-)BioLinux [8, 14] are
examples with external dependencies contained in a single
VM.

The basis for scientific workflow execution is one of many
workflow platforms. They all have in common that when the
workflow tasks are mapped to the computing resources, the
executable and dependent environments are required to be
preinstalled on the computing resources. This requirement
limits the flexibility of building different kinds of workflows



and slight variations of executable versions results in several
difficulties. First, it leads to increased difficulty in reproduc-
ing results. Second, it leads to increased difficulty in reusing
methods. Thus, a standardized and reproducible applica-
tion environment management is vital for running scientific
workflows.

Here we present the Skyport-extension to our AWE/Shock
ecosystem that utilizes Linux container virtualization tech-
nology to solve the software deployment problem inherent to
all existing scientific workflow platforms. Instead of relying
on virtual machines that are used in cloud infrastructures,
Skyport uses Linux containers to achieve software isolation.

1.1 Existing Workflow Platforms
In recent years, various systems have been developed to help
scientists design and execute workflows in a variety of dis-
ciplines. These systems attempt to automate utilization
of distributed computing resources in a scalable manner,
making it possible for non-computational specialists to uti-
lize the latest developments in distributed computing to en-
hance their ability to process and store massive quantities
of data. Examples include many tools that can be applied
in a general way. Kepler supports job submission to Grid
resources built by the Globus Toolkit [10]. While not di-
rectly supported by Kepler, the bioKepler [3] module sup-
ports multiple distributed data-parallel execution engines in-
cluding Hadoop [24, 25]. Taverna is focused on GUI-based
workflow creation with strong emphasis on use of external
web services. While only providing limited support for run-
ning workflows on a grid, other software suites such as MO-
TEUR [11] and Tavaxy [1] make it possible to execute Tav-
erna workflows on a grid. In Pegasus [6], workflows are ex-
plicitly represented as directed acyclic graphs. Distributed
computing can be realized by submission of the workflows
to a HTCondor pool [19]

Other workflow systems exhibit field specialization. Galaxy
is one such system built specifically for multi-omic biological
data. Galaxy has a simple graphical interface that allows
users without command line experience to run workflows.
The CloudMan [2] software package can be used to install
Galaxy on a cloud infrastructure. Globus Genomics [16]
is another solution for biological workflows; it provides an
integrated solution following the software as a service model
specifically designed for next-generation sequencing data.

In 2012, we introduced the AWE/Shock data analysis plat-
form [18]. Our main design goal for this platform was scal-
ability to efficiently exploit cloud computing resources for
our metagenomics production pipeline MG-RAST. A core
element to achieve this scalability is Shock, an object-based
data management system that makes it possible to overcome
performance limitations of shared filesystems such as Net-
work File System (NFS) [12]. Independence from a shared
file system also provides the ability to deploy compute work-
ers in multiple clouds. We provide a brief overview of AWE/
Shock in Section 1.5.

1.2 Software installation is challenging on all

platforms
Computational workflow management systems require the
inclusion of software tools and/or packages installed on a
grid or custom virtual machines (VM) in a cloud-based en-
vironment. On a grid, installation of new software (e.g.,
a new version of software required for a single step in an
existing workflow) is frequently labor intensive, commonly
requiring intervention by a system administrator. Custom
VMs are usually created by automated installation of tools
onto a base image or are initiated from images that are pre-
configured with a set of tools that have already been in-
stalled with their dependencies. The latter model is com-
monly used for bioinformatic tools such as Galaxy server,
(Cloud-)BioLinux [8, 14], and QIIME [5].

In the case of grid or cloud-based solutions, modifications to
individual tools/components are difficult. This is especially
true in cases where end-users do not possess the skills re-
quired to build or configure computational resources. Instal-
lation of new, or merely updates to existing, software tools
of any system can be a challenge. In addition, a common
requirement in scientific applications is the ability to repro-
duce computational provenance: to install a specific version
of a tool (including all originally used versions of all depen-
dencies) such that computationally derived results can be
exactly reproduced. While this is not a (direct) problem for
system administrators, it typically becomes one when end-
user scientists are unable to reproduce the computational
environment necessary to produce or reproduce experimen-
tal results. The installation and configuration of software
applications on all platforms is complicated by several is-
sues. Some software and configuration must be managed by
a privileged user. Kernel version, driver software and core
operating system configuration cannot be isolated for sepa-
rate applications on a single system. Most Linux distribu-
tions include a package-management tool to install and con-
figure software packages, but programming languages (e.g.,
Perl, Python, R) also have specific library management tools
with their own dependency management, which creates over-
lapping areas of influence. Finally, different applications can
require contradictory versions of the same package. Conse-
quently, achieving sufficient isolation of each application’s
runtime environment can be difficult.

Because of the dependency problem and application specific
system wide configurations, nearly all cloud infrastructures
utilize virtual machine technology on client machines to im-
plement software isolation and resource control. In the fol-
lowing, we will give a short overview of such virtualization
methods, including container based virtualization.

1.3 Linux container virtualization
Hardware virtualization can be implemented using hy-
pervisors such as the Kernel Virtual Machine (KVM) [13],
Xen [28], Hyper-V [29], or VMware ESX/ESXi [23]. A hy-
pervisor runs virtual machines as guests; this provides a high
degree of isolation and resource control. Each virtual ma-
chine is run as an independent computer system, with its
own resources and a complete operating system. Multiple
virtual machines can run on one host, each with an inde-
pendent guest OS that can be different from the host’s. The



resource control (i.e., CPU and RAM limit) that is possi-
ble with VMs makes them suitable to use in an infrastruc-
ture as a service model used by OpenStack [30] and com-
mercial providers such as Amazon Elastic Compute Cloud
(EC2) [31].

A different level of virtualization that can be used either al-
ternatively or in addition to hardware virtualization is oper-
ating system-level virtualization. In this type of virtu-
alization, the kernel of the operating system provides mech-
anisms to isolate processes in system or application con-
tainers. Containers are independent from each other, but
share the same underlying operating system (i.e., the ker-
nel and device drivers). Example implementations include
LXC (LinuX Containers) [32], OpenVZ [33] and Solaris Con-
tainers [15]. An early version of such virtualization was in-
troduced 1982 with the chroot operation that restricts the
filesystem view on most Unix systems. A more sophisti-
cated implementation based on chroot was introduced with
FreeBSD jails in 1998. After 2002, various features were
added to the Linux kernel that provided user namespaces
for global system resources such as Network (interfaces and
firewalling rules), hostname, filesystem mount points, inter-
process communication (IPC), and ID number spaces for
users and groups to make them appear to processes within
the namespace (e.g., a container) as unshared global system
resources. In 2007, cgroups (control groups) was merged
into the Linux kernel. Cgroups can limit, measure, priori-
tize, control, and isolate resource usage (e.g., CPU, memory,
disk I/O) of process groups. Using these kernel features as
well as chroot, namespaces, cgroups and some additional
kernel features, LXC (LinuX Containers)[32], a userspace
interface, was introduced in 2008. This interface makes it
possible to create and manage containers via an API and
command line tools.

1.4 Docker
Another management tool for Linux containers is Docker [34].
Released as an open source project in 2013, Docker has
rapidly achieved widespread use. It was originally designed
to access Linux kernel namespace features via LXC, but
has switched to use its own “libcontainer” library that di-
rectly accesses the kernel. In addition to creating contain-
ers, Docker provides mechanisms to deploy applications into
the containers with a “Dockerfile”. Docker supports a vari-
ety of storage backends, most support copy-on-write seman-
tics such as DeviceMapper (a block-level copy-on-write sys-
tem) and aufs (an union filesystem) [35]. Layered filesystems
make it possible for multiple containers to run on the same
underlying base image. When a container is started from an
image, it uses the filesystem of that image. Modifications to
the filesystem by a process in the container are written to
a filesystem specific to that container, which makes it pos-
sible to run multiple containers independently on top of a
single image. This copy-on-write mechanism (in contrast to
a complete copy of the root file system for each container)
makes the deployment of containers very fast, and reduces
disk and RAM occupancy. The Dockerfile deployment pro-
cess makes use of this by creating a new image from an ex-
isting base image (i.e., a filesystem layer), adding additional
layers that describe differences between the base image and
the fully deployed application. Docker’s popularity is due,
at least in part, to an included system that handles revi-

sion control; this system makes it very easy to share docker
images via public (such as the default Docker Hub reposi-
tories) or private repositories. Typically, public repositories
are hosted for free, while the private repositories are not.
Docker creates an abstraction for machine-specific settings
such as networking, storage, logging, and Linux distribution.
This makes Docker containers portable to any Linux-based
operating system that runs Docker and is built for the same
architecture (usually x86-64). Docker currently supports all
major Linux distributions, making it an extremely versatile
tool.

Linux containers are gaining more and more popularity be-
cause they are more lightweight than VMs. They are light-
weight because container images do not require the inclusion
of an entire kernel and thus are much smaller than VMs.
Starting a container consists of forking a process and insert-
ing it into a new cgroup. VMs, on the other hand, require
execution of a full boot process at startup. Because contain-
ers are so lightweight compared to VMs, container virtual-
ization can now be used for scenarios where the use of VMs
would have been too expensive.

Compared to running processes directly on the host (bare
metal), Docker containers (using aufs [35], a union filesys-
tem) exhibit marginal overhead with respect to performance.
In contrast, virtualization with the KVM hypervisor imposes
a much higher overhead. In cases where virtual machines
can be replaced with linux containers, containers can im-
prove the overall system performance [7].

1.5 The AWE/Shock platform
The motivating use case for the development of the AWE/
Shock [18] data analysis platform was MG-RAST [26, 17],
a bioinformatics pipeline that processes metagenomic data
produced by next-generation DNA sequencing platforms. To
handle the large and ever expanding size of sequencing data
sets (data sets 1GB in size are commonplace, much larger are
expected in the near future), our ecosystem was designed for
scalable high-performance data processing. Using this tech-
nology in production, MG-RAST has successfully processed
over 23 tera base pairs from more than 2000 users in the last
year. As a core technology in KBase [36] (DOE Systems Bi-
ology Knowledgebase), a multi-institutional project aimed
at advancing predictive biology in microbes, microbial com-
munities and plants, our AWE/Shock ecosystem is used in
production for various bioinformatics workflows.

The AWE/Shock data analysis system is open source and
has been written in Go using the REST [9] architectural
style. See Figure 1 for a schematic overview of the AWE/
Shock architecture. All components support Simple Auth
and OAuth. We provide a brief overview of the main com-
ponents of Shock, the AWE server, and AWE worker.

1.5.1 Shock

The Shock data management system is designed as an ob-
ject storage system. It is conceptually similar to the cloud
storage system Amazon S3 (Simple Storage Service) [37].
The use of shared file systems to distribute data for pro-
cessing between machines traditionally has been a common
strategy in many compute clusters but is less suited for big
data applications. Shared network file systems (typically



Figure 1: AWE/Shock architecture with distributed AWE workers. (1) Upload/download of user data. (2)
Upload of AWE workflow document. (3) Work unit check out and check in. (4) Transfer of task input and
output files between AWE worker and Shock server.

NFS) aim at providing the same POSIX semantics as a lo-
cal file system, constraining the ability to harness various
performance-oriented optimizations [22]. For example, the
commonly used NFS is known to have limited scalability,
which limits high-performance processing of mass data to
clusters with a few dozen nodes [12]. While other (parallel)
file systems are available (e.g., Lustre [38]) that scale well
to larger numbers of clients, they are complex and difficult
to maintain. However, since supporting POSIX semantics is
usually not needed for web based applications and an object
storage system such as Shock has the advantage of offer-
ing a direct integration of metadata storage (which includes
metadata indexing for fast retrieval) as well as IO-efficient
subsetting functionality, Shock better fits our architectural
requirements.

Data in Shock is represented as an object with a unique iden-
tifier (the Shock node ID) and metadata describing compu-
tational and scientific provenance information. The Shock
API can be used to store, query, and retrieve data and meta-
data. The query functionality enables the ability to search
for objects with user-defined metadata entries. To efficiently
support data-parallelism, data in Shock can be indexed in
various ways, which makes it possible to retrieve user-defined
data chunks for data processing. For example, the record-
based index functionality enables Shock to support paral-
lelism for formats relevant for biological sequence data such
as FASTA, FASTQ and BAM.

Because all data connections to Shock are based on HTTP
requests, connections from clients (i.e., AWE workers) to
the Shock server are usually non-problematic and can be es-
tablished between different administrative domains, allow-
ing AWE to operate in multi-cloud mode (also known as
“hybrid-cloud”). There are several ways remote AWE work-
ers can be used to outsource resources to handle temporar-

ily increased workloads, utilize more economical cloud re-
sources, or make use of resources that fill specific hardware
requirements (e.g., high RAM).

1.5.2 AWE server

The AWE server is a resource manager and job scheduler.
The server takes a workflow description document as input
(via Restful API) and creates smaller work units that can be
checked out by AWE workers. The workflows are modeled
as directed acyclic graphs to describe the data dependencies
between individual tasks within the workflows. Each task
represents either one work unit or, if data parallelism can
be exploited, multiple work units. In the latter case, the
AWE server creates work units for the task such that each
work unit is assigned to one chunk of the data. Based on
the workflow dependency graph, the AWE server automat-
ically schedules individual work units that are checked out
by AWE workers.

1.5.3 AWE worker

AWE workers check work units out from the server. A
worker’s configuration determines the work units it can check
out. The configuration specifies which worker groups the
AWE worker belongs to and includes the list of commands
the worker can use to process data. When a work unit
has been checked out, the AWE worker downloads all in-
put files and required databases from Shock. Input files
(including chunk files) are stored in a work directory on the
backend/local file system on which the AWE worker is run-
ning. Databases that are commonly used are cached to avoid
repetitive downloads. Once the work unit has been pro-
cessed, result files are uploaded to Shock. Chunked results
from data-parallel tasks are uploaded to Shock and merged
back into a single data object. After all output files have
been uploaded to Shock, the AWE worker deletes the work
directory and tries to check out the next work unit.



2. SKYPORT
As discussed above, Linux containers provide an execution
environment suitable for executing workflow tasks. By in-
tegrating Docker into our existing AWE/Shock system, our
platform can automatically provision the runtime required
to execute workflow steps.

The target use case for the Skyport extension to our platform
is a scientific workflow as a service environment for the cloud
that enables rapid creation of new workflow steps with a sim-
ple mechanism to reproduce the complete environment nec-
essary to exactly reproduce the step in any other workflow.
This solves a problem common to multiple scientific disci-
plines that rely upon computational workflows to store and
process data (e.g., physics, biology/bioinformatics). Such
workflows generally include multiple data processing tasks,
each applying processes to one or more input files to produce
one or more outputs. Our ecosystem is designed for multiple
simultaneous users that execute multiple workflows consist-
ing of reusable tasks.

Exploiting automatic deployment of Docker containers, our
platform can generate a highly dynamic environment that
could not easily be realized using virtual machines alone.
Meta-data is generated by the system and stored together
with data products in Shock. Together with Docker images,
our ecosystem provides all relevant provenance information
necessary to exactly reproduce workflows and their results.
Our approach is a general one that can be applied to work-
flows used in multiple scientific disciplines.

To better exploit the advantages of Docker containers, we
adapted Docker such that AWE workers are responsible for
orchestrating the Docker application containers necessary to
perform a workflow task on any given worker. In contrast to
traditional installations that would require the AWE worker
to be installed together with its software application depen-
dencies, each application is isolated in a container that is
independent with respect to the AWE worker.

An import aspect of the Docker integration in our ecosys-
tem consists of storing the Docker images in Shock. Shock
readily provides authentication and permission control (e.g.,
allows for public and private views) for all objects, making
it possible to utilize Shock as a software repository. In ad-
dition, the lack of external dependencies (such as Docker
Hub [39], or other hosted solutions) simplifies the architec-
ture of our ecosystem, reduces potential I/O-bottlenecks,
and also simplifies the deployment process because a user
can use the same user credentials and upload mechanisms
for Docker images and input data.

After creating Docker images (using Dockerfile or a container
snapshot), images are uploaded to Shock. The Docker im-
age identifier (id) and an image name (name) are stored
together with the binary Docker images as metadata. The
metadata attribute type=dockerimage unambiguously iden-
tifies the Shock object as a Docker image, simplifying Docker
image management.

When the AWE worker checks out a new work unit, it auto-
matically downloads input files and the Docker application
image. Once the image is downloaded, the AWE worker

loads the image into the Docker engine, creates and starts
the container. Figure 2 depicts an activity diagram for the
AWE worker with more details on individual steps.

In our model, an AWE worker runs in its own Docker con-
tainer, but this is not a requirement. If the AWE worker
runs in a container, the Docker UNIX socket that provides
access to the Docker Remote API [40] has to be mounted
to give the AWE worker the ability to manage Docker im-
ages and containers within the Docker engine. Because the
work directory on the host is mounted into the work unit
container, write-heavy loads will be performed directly on a
volume of the host. Figure 3 shows how the AWE worker
provides a software deployment mechanism using Docker.

All applications are isolated using Docker containers that the
AWE worker automatically downloads and deploys. Theo-
retically, this means that each AWE worker can process work
units from every possible task. Hardware requirements for
processing individual work units (e.g., RAM requirements)
can limit this ability. In our previous model without Docker,
specific AWE workers ran on specialized VMs that could
only execute a select set of tasks. This led to inefficient re-
source utilization; VMs would idle if they could not serve
their workload. While theoretically it is possible to auto-
matically provision VMs with respect to their workload de-
mands, this solution can incur substantial overhead, and to
the best of our knowledge, has not been implemented yet in
the context of scientific workflows.

Deployment of Docker images to add novel workflow tasks
does not require access to the cloud computing platform it-
self or the AWE workers, but does require upload of Docker
images to Shock. Administrative control over software de-
ployment can be achieved by Shock authentication and, op-
tionally, by a central “app”-register that specifies the Docker
images that can be checked out by a given AWE worker.
The app-register can also specify the commands that are
executable within each container.

With our Skyport-extension, Docker image applications,
along with their supporting software and environment, can
be modularly added to any workflow with great simplicity.
In this way, our ecosystem replaces time consuming installa-
tion and configuration procedures with modular units. This
modularity enables the creation of sophisticated workflows
without specialized knowledge (e.g., of applications, their
supporting software, and environments).

2.1 Test Example, MG-RAST Setup
To run the MG-RAST analysis pipeline, a worker machine
must have all MG-RAST data processing scripts, custom
wrapper scripts for third-party tools, and the required third-
party tools installed. The AWE worker has to be deployed
and configured on the worker machine so it can connect to
an AWE server and check out MG-RAST tasks. The AWE
worker machine can only execute MG-RAST tasks. If the
MG-RAST machine is idle, its resources cannot be used to
execute tasks from non MG-RAST workflows, potentially
leading to an underutilization of system resources.

In order to exploit the advantages of our Skyport-enabled
ecosystem, we created Docker containers for the MG-RAST



Check out work 

unit

Create work 

directory

Download input 

files from Shock

Download 

databases

Databases are 

cached?

App image 

cached?

Download app 

image from 

Shock

Create app 

container
Execute task/app

Mount work 

and database 

directory

Shutdown 

container

yes

yes

no

no

Upload output 

files to Shock

Check in work 

unit

Delete work 

directory

Workunit 

available?

yes

no

Start

Figure 2: Activity diagram for the AWE worker

Kernel/OS

AWE worker

Application container

API

W
o
rk

 d
ir

e
c
to

ry

D
a
ta

b
a
s
e
 d

ir
e
c
to

ryDocker

Figure 3: Architecture of the AWE worker using
Docker. The AWE worker controls the application
container via the Docker API. The database direc-
tory is mounted read-only in the application con-
tainer.

workflow. For each task that executes third-party tools (8
of 20) we created a separate Docker image, using the MG-
RAST image as its base. This made it possible to isolate
third-party tools from each other. In one exception(quality
control, mgrast/qc:latest), multiple third-party tools were
included in a single image, isolating them from all other
third-party tools, but not from each other. Table 1 lists all
images, including the ubuntu:14.04 and mgrast/base base
images. The table shows that those images that extend our
MG-RAST base image add only a few megabytes and thus
do not introduce much overhead in terms of disk usage on
the AWE worker machines.

The time to deploy images by the AWE worker is mainly
dominated by loading into the Docker engine. For exam-
ple, loading the MG-RAST base image mgrast/base:latest

repository:tag base image total diff

ubuntu:14.04 – 213.0 213.0
mgrast/base:latest ubuntu:14.04 586.9 373.9
mgrast/superblat:latest mgrast/base:latest 591.2 4.3
mgrast/rna search:latest mgrast/base:latest 589.3 2.4
mgrast/qc:latest mgrast/base:latest 739.6 152.7
mgrast/genecall:latest mgrast/base:latest 643.6 56.7
mgrast/cluster:latest mgrast/base:latest 587.8 0.9
mgrast/bowtie:latest mgrast/base:latest 625.8 38.9
mgrast/blat:latest mgrast/base:latest 596.7 9.8

Table 1: Size of Docker images for the MG-RAST
workflow. “total” specifies the size in megabytes of
each image including it’s base images as reported by
the Docker engine. “diff” is the images size exclud-
ing base images.

takes about 20 seconds. This one-time cost per AWE worker
is negligible compared to the combined runtime of a task on
a machine using that image over days or weeks. This re-
port is based on preliminary study. Our first tests with
small datasets indicate performance similar to our produc-
tion pipeline on AWE/Shock without Skyport. While these
results are very promising, we are currently performing more
extensive tests to evaluate the system.

In our experiment, we did not isolate third-party tools that
were used within the same task as this would have required
more significant changes to the MG-RAST code base. The
purpose of the isolation was to show the conceptual feasi-
bility of the Skyport approach. It also demonstrated that
for existing production systems such as MG-RAST, the de-
cision to isolate parts of the system can be based on very



pragmatic considerations (e.g. isolating third party tools by
task) and does not necessarily require a complete re-design
of existing software architectures.

3. DISCUSSION
Theoretically, an ecosystem such as ours could have been re-
alized with established hardware virtualization technologies
(e.g., with specialized VMs). However, the lightweight na-
ture of Linux container virtualization compared to VMs con-
stitutes a general paradigm shift for software development
and deployment. We have shown how the Skyport-extension
to our workflow platform utilizes the container technology
to solve the software deployment problem inherent to all ex-
isting scientific workflow platforms. The systematic use of
isolated execution environments for workflow tasks offers a
convenient and simple mechanism to reproduce scientific re-
sults. The AWE workflow document, associated Docker im-
ages, and the original input files (e.g., stored in Shock) are
all that is necessary to reproduce the results of any workflow.

The automated deployment of applications by the AWE
worker has multiple advantages. In addition to providing
an overall deployment process that is much simpler than
current alternatives, the fast and dynamic deployment of
containers can improve overall resource utilization. Fluctu-
ating demand for certain types of tasks that each may re-
quire independent execution environments may lead to idle
cycles. This is because a mismatch may occur between the
tasks a worker is capable of performing and the tasks that
are waiting in the queue.

In our current design, an AWE worker can run only one
containerized process at a time. Using Linux kernel cgroups
to limit memory and CPU consumption of containers would
allow AWE workers to run multiple containers on the same
host. This would make it possible to exploit performance
gains by avoiding the use of VMs. In addition, one could
run the Docker containers on top of a much more lightweight
operating system such as CoreOS [41] or Boot2Docker [42].
While cgroups technology would increase flexibility regard-
ing resource management, it would also require more re-
source aware scheduling of the AWE server to dynamically
adapt resource limits and reduce the amount of idle re-
sources.

With the dynamic provisioning of applications in our ecosys-
tem using the Skyport-extension, all compute resources with
AWE workers installed can execute any workflow task. Us-
ing Docker containers also provides additional flexibility to
automatically scale the AWE workforce up and down using
existing Docker orchestration tools such as Marathon [43],
Kubernetes [44], CoreOs fleet [45] or Flynn [46].

The Skyport-extension of the AWE/Shock data analysis plat-
form makes our ecosystem the first scientific workflow man-
agement system that uses Docker Linux containers for au-
tomated deployment of software applications together with
their own isolated execution environments. Skyport’s use
of Linux containers greatly reduces the resources and exper-
tise required to build scientific workflows, making it possible
for non-computer science experts to integrate their own and
third-party applications into new or existing workflows in
the AWE/Shock data analysis ecosystem.

4. ACKNOWLEDGMENTS
This work was supported in part by the NIH award
U01HG006537 “OSDF: Support infrastructure for NextGen
sequence storage, analysis, and management”, and U.S. De-
partment of Energy, Office of Science, Advanced Scientific
Computing Research DE-AC02-06CH11357 as part of Re-
source Aware Intelligent Network Services (RAINS) and as
part the Office of Science, Office of Biological and Environ-
mental Research Systems Biology Knowledgebase (KBase).

5. REFERENCES
[1] M. Abouelhoda, S. A. Issa, and M. Ghanem. Tavaxy:

integrating taverna and galaxy workflows with cloud
computing support. BMC Bioinformatics, 13:77, 2012.

[2] E. Afgan, D. Baker, N. Coraor, B. Chapman,
A. Nekrutenko, and J. Taylor. Galaxy cloudman:
delivering cloud compute clusters. BMC
bioinformatics, 11(Suppl 12):S4, 2010.

[3] I. Altintas, J. Wang, D. Crawl, and W. Li. Challenges
and approaches for distributed workflow-driven
analysis of large-scale biological data. In Proceedings
of the Workshop on Data analytics in the Cloud at
EDBT/ICDT 2012 Conference, DanaC2012, 2012.

[4] M. Bux and U. Leser. Parallelization in scientific
workflow management systems. arXiv preprint
arXiv:1303.7195, 2013.

[5] J. G. Caporaso, J. Kuczynski, J. Stombaugh,
K. Bittinger, F. D. Bushman, E. K. Costello,
N. Fierer, A. G. Pena, J. K. Goodrich, J. I. Gordon,
et al. QIIME allows analysis of high-throughput
community sequencing data. Nature Methods,
7(5):335–336, 2010.

[6] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil,
C. Kesselman, G. Mehta, K. Vahi, G. B. Berriman,
J. Good, et al. Pegasus: A framework for mapping
complex scientific workflows onto distributed systems.
Scientific Programming, 13(3):219–237, 2005.

[7] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio.
An updated performance comparison of virtual
machines and linux containers. technology, 28:32, 2014.

[8] D. Field, B. Tiwari, T. Booth, S. Houten, D. Swan,
N. Bertrand, and M. Thurston. Open software for
biologists: from famine to feast. Nature biotechnology,
24(7):801–804, 2006.

[9] R. T. Fielding. Architectural styles and the design of
network-based software architectures. PhD thesis,
University of California, Irvine, 2000.

[10] I. Foster. Globus toolkit version 4: Software for
service-oriented systems. In Network and parallel
computing, pages 2–13. Springer, 2005.

[11] T. Glatard, J. Montagnat, D. Lingrand, and
X. Pennec. Flexible and efficient workflow deployment
of data-intensive applications on grids with moteur.
International Journal of High Performance Computing
Applications, 22(3):347–360, 2008.

[12] T. Kim and S. H. Noh. pnfs for everyone: An
empirical study of a low-cost, highly scalable
networked storage. IJCSNS, 14(3):52, 2014.

[13] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. kvm: the linux virtual machine monitor. In
Proceedings of the Linux Symposium, volume 1, pages
225–230, 2007.



[14] K. Krampis, T. Booth, B. Chapman, B. Tiwari,
M. Bicak, D. Field, and K. E. Nelson. Cloud biolinux:
pre-configured and on-demand bioinformatics
computing for the genomics community. BMC
bioinformatics, 13(1):42, 2012.

[15] M. Lageman. Solaris containers–what they are and
how to use them. Sun BluePrints OnLine, pages
819–2679, 2005.

[16] R. K. Madduri, P. Dave, D. Sulakhe, L. Lacinski,
B. Liu, and I. T. Foster. Experiences in building a
next-generation sequencing analysis service using
galaxy, globus online and amazon web service. In
Proceedings of the Conference on Extreme Science and
Engineering Discovery Environment: Gateway to
Discovery, page 34. ACM, 2013.

[17] F. Meyer, D. Paarmann, M. D’Souza, R. Olson, E. M.
Glass, M. Kubal, T. Paczian, A. Rodriguez,
R. Stevens, A. Wilke, J. Wilkening, and R. A.
Edwards. The metagenomics RAST server - a public
resource for the automatic phylogenetic and functional
analysis of metagenomes. BMC Bioinformatics, 9:386,
2008.

[18] W. Tang, J. Wilkening, N. Desai, W. Gerlach,
A. Wilke, and F. Meyer. A scalable data analysis
platform for metagenomics. In 2013 IEEE
International Conference on Big Data, pages 21–26.
IEEE, 2013.

[19] D. Thain, T. Tannenbaum, and M. Livny. Distributed
computing in practice: The condor experience.
Concurrency and Computation: Practice and
Experience, 17(2-4):323–356, 2005.

[20] T. Thomas, J. Gilbert, and F. Meyer. Metagenomics -
a guide from sampling to data analysis. Microb Inform
Exp, 2(1):3, 2012.

[21] P. J. Turnbaugh, R. E. Ley, M. Hamady, C. M.
Fraser-Liggett, R. Knight, and J. I. Gordon. The
human microbiome project. Nature,
449(7164):804–810, Oct 2007.

[22] E. Vairavanathan, S. Al-Kiswany, L. B. Costa,
Z. Zhang, D. S. Katz, M. Wilde, and M. Ripeanu. A
workflow-aware storage system: An opportunity study.
In Proceedings of the 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing (ccgrid 2012), pages 326–334. IEEE
Computer Society, 2012.

[23] VMWare Staff. Virtualization Overview. White Paper.

[24] J. Wang, D. Crawl, and I. Altintas. Kepler+ hadoop:
a general architecture facilitating data-intensive
applications in scientific workflow systems. In
Proceedings of the 4th Workshop on Workflows in
Support of Large-Scale Science, page 12. ACM, 2009.

[25] J. Wang, D. Crawl, and I. Altintas. A framework for
distributed data-parallel execution in the kepler
scientific workflow system. Procedia Computer
Science, 9:1620–1629, Jan 2012.

[26] A. Wilke, E. M. Glass, D. Bartels, J. Bischof,
D. Braithwaite, M. D’Souza, W. Gerlach, T. Harrison,
K. Keegan, H. Matthews, et al. A metagenomics
portal for a democratized sequencing world. Methods
Enzymol, 531:487–523, 2013.

[27] http://home.web.cern.ch/

[28] http://www.xenproject.org

[29] http://www.microsoft.com/hyper-v

[30] http://www.openstack.org

[31] http://aws.amazon.com/ec2/

[32] http://linuxcontainers.org

[33] http://openvz.org

[34] http://docker.com

[35] advanced multi layered unification filesystem
http://aufs.sourceforge.net

[36] http://kbase.us

[37] http://aws.amazon.com/s3/

[38] http://lustre.opensfs.org/

[39] https://hub.docker.com/

[40] https://docs.docker.com/reference/api/docker_

remote_api_v1.13/

[41] http://coreos.com

[42] http://boot2docker.io

[43] https://github.com/mesosphere/marathon

[44] https:

//github.com/GoogleCloudPlatform/kubernetes

[45] https://github.com/coreos/fleet

[46] https://flynn.io


