
Scheduling the I/O of HPC applications under congestion

Ana Gainaru1∗, Guillaume Aupy2∗, Anne Benoit2, Franck Cappello3, Yves Robert2,4, and Marc Snir1,3

1. University of Illinois at Urbana Champaign, USA, againaru@illinois.edu
2. École Normale Supérieure de Lyon & INRIA, France, {Guillaume.Aupy|Anne.Benoit|Yves.Robert}@ens-lyon.fr

3. Argonne National Laboratory, USA, {cappello|snir}@mcs.anl.edu
4. University of Tennessee Knoxville, USA

Abstract—A significant percentage of the computing capacity
of large-scale platforms is wasted due to interferences incurred
by multiple applications that access a shared parallel file system
concurrently. One solution to handling I/O bursts in large-scale
HPC systems is to absorb them at an intermediate storage
layer consisting of burst buffers. However, our analysis of the
Argonne’s Mira system shows that burst buffers cannot prevent
congestion at all times. As a consequence, I/O performance is
dramatically degraded, showing in some cases a decrease in
I/O throughput of 67%. In this paper, we analyze the effects
of interference on application I/O bandwidth, and propose
several scheduling techniques to mitigate congestion. We show
through extensive experiments that our global I/O scheduler
is able to reduce the effects of congestion, even on systems
where burst buffers are used, and can increase the overall
system throughput up to 56%. We also show that it outperforms
current Mira I/O schedulers.

I. INTRODUCTION

With the advent of computationally demanding applica-
tions, parallel computers have continued to evolve towards
post-petascale computing. At the same time, storage systems
struggle to match the data generated by the computations
of all running applications. The challenge is particularly
obvious when many applications are executed concurrently.
Indeed, while many I/O optimizations are available within
each application (application-side collective I/O, software
such as MPI-IO, and other network and disk-level opti-
mizations [1], [2]), the interferences produced by multiple
applications accessing a shared parallel file system in a
concurrent manner frequently break these single-application
optimizations.

The current server-side scheduling policies used by HPC
systems at the file system level range between simple “first-
come first-served” strategies for each storage server to more
elaborated strategies. Recently, non-work-conserving disk
schedulers, like anticipatory scheduling [3] and the CFQ
scheduler [4], were designed to save the spatial locality
with concurrent servicing of interleaved requests issued by
multiple processes. This strategy keeps the disk head idle
after serving a request of a process until either the next
request from the same process arrives or the wait threshold
expires. All policies, ranging from simplest to more ad-
vanced ones, deal with low-level requests, without having

∗. These authors contributed equally to this work.

any information from the applications. As a consequence,
current I/O schedulers cannot take advantage of particular
properties or behaviors of each application and thus are not
able to address the global efficiency of the system. As system
size continues to increase, schedulers need to have a global
view of the I/O requirements of all applications in order to
make appropriate decisions.

In this paper, we focus on scheduling applications under
I/O bandwidth constraints. Congestion due to I/O interfer-
ence depends on many factors, namely each individual appli-
cation size and computation-to-I/O ratio, but also when they
start performing I/O with regard to one another. An analysis
of the Intrepid system at Argonne shows that congestion
can cause up to a 70% decrease in the I/O efficiency seen
by an application (Figure 1). We propose a global high-level
scheduler that is aware of application I/O past behaviors, and
that dynamically coordinates I/O accesses to the parallel file
system. Our contributions can be summarized as follows:
(1) We design a global scheduler that minimizes congestion
caused by I/O interference, by considering application past
behaviors and system characteristics when scheduling I/O
requests. We show that this scheduler reduces I/O delays
incurred by each application, and increases overall system
throughput. (2) We build a simulator in order to test our
scheduler in a large variety of scenarios, and to assess its
performance and limitations. We simulate the Intrepid and
Mira systems, and show that our heuristics obtain better
system throughput and application dilation compared to
what happens when congestion occurs. Notably, we report
that a simulation of our scheduler without burst buffers
achieves a better system throughput than the one observed
on Intrepid in congested moments. (3) We implement the
global scheduler on Argonne’s Vesta computer and test its
results when running the IOR benchmark. We validate our
simulation model and show that, besides a small increase
in the execution time of applications when congestion does
not occur, the results of our implementation are much better
than current Vesta schedulers. (4) A striking result obtained
on Vesta is the confirmation of the simulations: in most
scenarios, our scheduler outperforms the use of burst buffers
without having the incurred cost.

The rest of the paper is organized as follows. We in-
troduce the application model and optimization problems

Figure 1: I/O throughput decrease (percentage per applica-
tion instance, over 400 applications) on Intrepid.

b=0.1Gb/s/Node

=B

Figure 2: Model instantiation for the Intrepid platform.

in Section II. We derive online scheduling heuristics in
Section III. Through a full set of simulations in Section IV,
we thoroughly evaluate and compare these heuristics, before
reporting actual execution times on Vesta in Section V. We
give some background and related work in Section VI. We
provide concluding remarks and hints for future research
directions in Section VII.

II. FRAMEWORK

In this section, we provide a formal description of the
application and platform model, and we state scheduling
objectives. We target a parallel platform composed of N
identical unit-speed processors, each equipped with an I/O
card of bandwidth b (expressed in bytes per second). This
corresponds to the I/O network from the compute nodes
to I/O servers on a typical cluster. We further assume
a centralized I/O system with a total bandwidth B (also
expressed in bytes per second) from these I/O servers to the
disks. Figure 2 shows the model projected over Argonne’s
Intrepid architecture.

A. Application and platform model

We assume that K applications are running concurrently,
each of them being assigned to independent and dedicated
computational resources, but competing for I/O. In this
work, we assume the I/O and communication network are
separated, (i) so that network congestion caused by inter-
node communications does not interfere with I/O transfers,
and (ii) because it is the case in many systems (for example
Mira and Intrepid [5]).

Each application App(k) is released on the platform at
time rk, executes on β(k) dedicated processors, and consists

App(1) w(1,1) w(1,2) w(1,3)

App(2) w(2,1) w(2,2) w(2,3)
App(3) w(3,1) w(3,2) w(3,3)

bw

Time0
0

B

Figure 3: Scheduling three applications.

of n(k)tot instances that repeat over time until the last instance
is executed. An instance is composed of some chunk of
computations followed by some I/O transfer. More precisely,
the i-th instance I(k)i of App(k) consists of w(k,i) units of
computation (at unit-speed), followed by the transfer of a
volume vol(k,i)io of bytes to or from the I/O system. We
consider that these actions do not overlap. Finally, let dk
be the time when the last instance of App(k) is completed.

Because computational resources are dedicated, we can
always assume w.l.o.g. that the next computation chunk
starts right after completion of the current I/O transfers,
and is executed at full (unit) speed. On the contrary, all
applications compete for I/O, and congestion will likely
occur. The simplest case is that of an application App(k)

using the I/O system in dedicated mode during a time-
interval of duration D. For instance I(k)i , App(k) needs to
transfer vol(k,i)io bytes. Let γ be the I/O bandwidth used by
each processor of App(k) during this instance. We derive
the condition β(k)γD = vol(k,i)io to express that the entire
I/O data volume is transferred. We must also enforce the
following constraints: (i) γ ≤ b (output capacity of each
processor); and (ii) β(k)γ ≤ B (total capacity of I/O system).
Therefore, the minimum time to perform the I/O transfers
for the current instance of App(k) is

time(k,i)io =
vol(k,i)io

min(β(k)b,B)
.

However, in general, many applications will use the I/O
system simultaneously, and the bandwidth capacity B will
be shared among all these applications. The I/O of some
applications may take place during several non-consecutive
time-intervals, and use different bandwidths. In Figure 3, we
show an example of three applications competing for I/O
bandwidth. The top part of Figure 3 shows the applications
doing computations without any constraint. However at the
end of their computations, all applications need to transfer
some volume of I/O and thus they have to share the I/O
total bandwidth B (bottom part of the figure). When these
three applications want to execute I/O at the same time,
congestion occurs and the scheduler needs to choose which
bandwidth fraction to assign to each application. The model
is very flexible, and only assumes that at any instant, all
processors assigned to a given application are assigned the
same bandwidth. This assumption is transparent for the I/O
system and simplifies the problem statement without being
restrictive.

The richness of the model comes from its flexibility

for scheduling all the I/O transfers. It corresponds to a
practical framework where the central scheduler would
assign different I/O bandwidths per time-interval to each
application. Depending on how many applications are trying
to perform I/O, the scheduler might also decide to prevent
some applications from accessing the disk during some time-
intervals. This way, the scheduler controls the wait time for
all applications, and ensures that none of them is subject to
excessive starvation.

B. Objectives
We first define ρ̃(k)(t), the application efficiency achieved

for each application App(k) at time t, as

ρ̃(k)(t) =

∑
i≤n(k)(t) w

(k,i)

t− rk
,

where n(k)(t) ≤ n
(k)
tot is the number of instances of

application App(k) that have been executed at time t,
since the release of App(k) at time rk. Because we ex-
ecute w(k,i) units of computation followed by vol(k,i)io
units of I/O operations on instance I(k)i of App(k), we
have t − rk ≥

∑
i≤n(k)(t)

(
w(k,i) + time(k,i)io

)
. With-

out congestion, the schedule would achieve t − rk =∑
i≤n(k)(t)

(
w(k,i) + time(k,i)io

)
, and the optimal application

efficiency, where all I/O resources are available in dedicated
mode for App(k), is

ρ(k)(t) =

∑
i≤n(k)(t) w

(k,i)∑
i≤n(k)(t)

(
w(k,i) + time(k,i)io

) .
Due to I/O congestion, ρ̃(k)(t) never exceeds ρ(k)(t). We are
ready to present the two optimization objectives, together
with a rationale for each of them:
• SYSEFFICIENCY: Here the goal is to maximize the perfor-
mance of the platform, i.e., the amount of CPU operations
per time unit. This objective writes:

maximize
1

N

K∑
k=1

β(k)ρ̃(k)(dk).

Recall that N =
∑K
k=1 β

(k) is the total number of
processors, and that dk is the time-step where App(k)

terminates its execution. An upper limit of the system
efficiency is 1

N

∑K
k=1 β

(k)ρ(k)(dk). The rationale is to
squeeze the most flops out of the platform’s aggregated
computational power. This objective is CPU-oriented, as the
schedule will give priority to compute-intensive applications
with large w(k,i) and small vol(k,i)io values.
• DILATION: Here the goal is to minimize the largest
slowdown imposed to each application. This objective
writes:

minimize max
k=1..K

ρ(k)(dk)

ρ̃(k)(dk)
.

The rationale is to provide fairness across applications, and
it corresponds to the stretch in classical scheduling: each
application incurs a slowdown factor due to I/O congestion,

and we want the largest slowdown factor to be minimal.
This objective is user-oriented, as it gives each application
a guarantee on its relative progress rate.

Note that both problems are hard, even in an (easier)
offline setting:

Theorem 1. The problem where all instances of an applica-
tion are known in advance and are identical is NP-complete
for either objective.

The proof for this result, along with additional theoretical
results on the offline problem, is available in the companion
report [6].

III. SCHEDULES

The scheduler monitors the stream of I/O calls and
decides on the fly (as I/O calls appear in the system)
which applications are allowed to perform I/O. We define
an event as the start or the end of an I/O transfer by some
application. At each event, the scheduler looks at the current
state of the system, which is represented by the application
efficiency and the amount of I/O already performed by each
application. Then, based on a given strategy, it chooses a
subset of applications and allows them to start or continue
their I/O. This scheduler does not require any knowledge of
the applications running in the system. Applications pay a
supplementary cost due to the need to call the scheduler
each time they need to perform their I/O. We show in
Section V that this overhead is well paid off by the benefits
of minimizing congestion.

Depending on the strategy used by the online scheduler
to select applications at each event, the results might benefit
either objective described in Section II-B. For each strategy,
favoring application App(k) means that App(k) is executed
as fast as possible, with bandwidth min

(
bβ(k), bwavail

)
,

where bwavail is the available bandwidth at the moment the
decision is taken. Here are the strategies that we experiment
with:
• The ROUNDROBIN scheduler favors available applications
in a round-robin fashion similar to what the I/O scheduler is
doing in HPC systems [7]. This heuristic is useful for com-
parison. The general idea of scheduling applications is “first-
come first-served” (FCFS) with an additional constraint to
ensure fairness. More precisely, each time an application
needs to transfer some I/O, if there is no congestion, then
this application is favored. Otherwise, the application that
finished the I/O transfer of its last instance the longest time
ago is favored.
• The MINDILATION scheduler favors applications with low
values of ρ̃(k)(t)

ρ(k)(t)
.

• The MAXSYSEFF scheduler favors applications with high
values of β(k) ρ

(k)(t)
ρ̃(k)(t)

.

• The MINMAX-γ scheduler favors applications with high

values of β(k) ρ
(k)(t)
ρ̃(k)(t)

, unless there exists an application with

a value ρ̃(k)(t)
ρ(k)(t)

below a certain threshold, γ, in which case it

favors the application with the lower ρ̃(k)(t)
ρ(k)(t)

. This threshold
should be defined by the system administrator and depends
on the DILATION targeted for the platform.

Note that since 0 ≤ ρ̃(k)(t)
ρ(k)(t)

≤ 1, the MINMAX-γ heuristic
is exactly MINDILATION if γ = 1, and MAXSYSEFF if
γ = 0. For all these heuristics, we have also implemented
a PRIORITY variant. In this version, the scheduler always
chooses applications that already started performing their I/O
before favoring any other application. The rationale behind
this is that there may be an additional cost incurred by
restarting the I/O of an application after an interruption,
due to breaking disk locality. Breaking disk locality by
alternating multiple applications accessing the device, affects
performance and decreases the overall efficiency of the
system [7]. Solid-state drives do not present the problem
described above since they do not contain any moving
mechanical components. This means that future clusters that
use only SSD can use the original heuristics without paying
the extra cost of not being able to choose the best possible
applications that avoid congestion.

IV. SIMULATIONS

In this section, we report extensive simulations to assess
the performance of the heuristics presented in Section III. In
the first set of simulations, we thoroughly study the impact
of each heuristic on different scenarios and use multiple
applications with similar properties to real applications that
ran on the Intrepid system. In the second set, we compare the
heuristics to the I/O scheduler of Intrepid and Mira, on traces
of applications that run on these platforms when congestion
occurs.

A. Applications

Intrepid is a BlueGene/P supercomputer used by the
Argonne National Laboratory between 2008 and 2014 and
was ranked number 3 on the June 2008 Top 500 list. Con-
sisting of 48 racks, 786,432 processors, and 768 terabytes of
memory, Mira is a 10-petaflops IBM BlueGene/Q system,
20 times faster than Intrepid and currently ranked number
5 on the June 2014 Top 500 list. A wide range of science
and engineering applications have run on BlueGene systems,
including those used by the computational science com-
munity for cutting-edge research in chemistry, combustion,
astrophysics, genetics, materials science, and turbulence.
The typical behavior of scientific simulations is defined by
alternating computation phases and I/O phases. The I/O
phases are in general used either for writing out intermediary
results for visualization purposes and/or for checkpointing.
Intrepid uses separate networks for communication and I/O,
which makes it the perfect system to study the effects of
congestion on application and system efficiency.

We use Darshan [8], an application level I/O characteri-
zation tool developed at Argonne, to capture the behavior of
applications running on Intrepid. Applications can be divided
into the following categories [9]:

• small applications (run on less than 1,284 nodes);
• large applications (run on 1,285 to 4,583 nodes);
• very large applications (run on more than 4,584 nodes).

We use this information for generating the simulation sce-
narios. More details are available in [6].

In this section, we mainly focus on scheduling periodic
applications under I/O bandwidth constraints. Periodic ap-
plications follow a pattern which is repeated over time:
for all instances of I(k)i , we have w(k,i) = w(k) and
vol(k,i)io = vol(k)io . There are many examples of periodic
applications in the HPC community. A simple example
would be an application that does not perform any I/O
calls, but implements a periodic checkpoint for reliability
constraints [10]. Carns et al. [8] use the Darshan I/O
characterization tool to capture an accurate picture of I/O
patterns in Petascale workloads. In particular, they show that
both the S3D application [11] (an application to simulate
turbulent combustion using direct numerical simulation of a
compressible Navier-Stokes flow) and the HOMME applica-
tion [12] (an application to model atmosphere physics using
spectral element techniques), periodically write out restart
files through MPI-IO. Many other applications are periodic.
For instance, we were able to verify that the following
applications that run on Intrepid, are in fact periodic: the
gyrokinetic toroidal code (GTC) [13], Enzo [14], HACC
application [15] and CM1 [16]. In Section IV-C we discuss
the impact of application periodicity and show that results
are quite similar for non-periodic applications.

B. Assessment of the heuristics

By inspecting the mix of applications that ran on Intrepid,
we observed that two scenarios cover over 95% of the cases:
a few large or very-large applications running alone on the
whole system, or a mix of small and large applications
dividing the machine un-uniformly. We compare the results
of the different heuristics over different sets of applications
(I/O intensive, computationally intensive, or a mix between
the two) following these two scenarios. Figure 4 presents
the corresponding results. Simulations were run 200 times
on different applications mixes that simulate real scientific
applications running on Intrepid, and only the mean values
are reported.

We first observe that the PRIORITY variants are, most
of the time, less efficient than the original versions, es-
pecially when the number of applications running on the
system increases. Adding the PRIORITY constraint lessens
the flexibility in choosing the set of applications that would
maximize the system efficiency. However, the difference
in system efficiency and application dilation is small in
all studied scenarios. This shows that the heuristics have

ROUNDROBIN
PRIORITY-ROUNDROBIN

MINDILATION
PRIORITY-MINDILATION

MAXSYSEFF
PRIORITY-MAXSYSEFF

MINMAX-0.5
PRIORITY-MINMAX-0.5

SYSEFFICIENCY

DILATION

20

40

60

2
4
6
8

(a) 10 large applications, ratio of 20%

SYSEFFICIENCY

DILATION

20

40

60

2
4
6
8
10
12
14
16

(b) 50 small and 5 large applications, ratio of 20%

SYSEFFICIENCY DILATION

20

40

2
4
6
8

(c) 50 small and 5 large applications, ratio of 35%

Figure 4: Objectives for different mixes of applications and
I/O computation ratios.

good results even under the PRIORITY constraint, so that
systems that use disks (which at this point represent the
large majority of supercomputers) can still benefit from our
scheduler.

Another (expected) observation is that MINDILATION has
better results than MAXSYSEFF for the DILATION objective,
but worse results for the SYSEFFICIENCY objective. In
particular, with 10 large applications and an average I/O ratio
over computation of 20% (Figure 4a), the SYSEFFICIENCY
of MAXSYSEFF can be up to 50% larger than that of
MINDILATION, with a DILATION also up to 50% larger
(recall that we want a large SYSEFFICIENCY and a small
DILATION). The MINMAX-γ heuristic (run for γ = 0.5)
is a good trade-off and achieves an intermediate result
for both objectives. These results are confirmed, although
less visible, in the second scenario (Figure 4b), with many
small applications and a few large ones. In Figure 4c,
the average I/O ratio over computation is 35%, there are
50 small applications and 5 large ones. In that case, the
SYSEFFICIENCY of MAXSYSEFF can be up to 25% that of
MINDILATION, for a loss in DILATION of 33%. Again, in
that case, the MINMAX-γ heuristic is a good trade-off.

C. Impact of periodicity

As mentioned, based upon the literature and our own
verifications on Intrepid, we have assumed so far that appli-

MINDILATION MAXSYSEFF MINMAX-0.5

0 5 10 15 20 25 30
1

1.5

2

2.5

Sensibility(%)

D
IL

AT
IO

N

0 5 10 15 20 25 30
20

40

60

Sensibility(%)

S
Y

S
E

FF
IC

IE
N

C
Y

Figure 5: Impact of the sensibility of the computations over
SYSEFFICIENCY and DILATION of all heuristics.

cations are periodic. We now discuss the impact of having
non-periodic applications in the system. We define the sen-
sibility of an application as Sens(k)w = maxi w

(k,i)−mini w
(k,i)

mink w(k,i)

and Sens(k)io =
maxi vol(k,i)

io −mini vol(k,i)
io

mink vol(k,i)
io

. For example, for a

given application App(k), if the amount of work between two
instances varies from 65 to 102 time units, then Sens(k)w =
1− 65

102 ≈ 36%.
In Figure 5, we study the impact of the sensibility of w(k)

for the three heuristics without the PRIORITY constraint. To
compute each point on the x% sensibility axis, we have
generated applications where the value of the computation
has a continuous uniform distribution between wmin and
wmin(1 + x%). We see that this parameter has almost no
impact on the results obtained with periodic applications.
This can be explained as follows: the heuristics have no
global information about the applications that are being
processed, they simply make scheduling decisions according
to the information available at each event. We point out that
the conclusion is similar when studying the sensibility of
the I/O volume.

D. Intrepid and Mira simulations

In this section, we focus on comparing the PRIORITY
variant of the MAXSYSEFF and MINDILATION heuristics,
with the Intrepid and Mira schedulers as congestion occurs
(Figures 6 and 7). Due to lack of space, we only report
average results for their non-PRIORITY variants and for the
MINMAX-γ heuristic (see Tables I and II). The full results
are available in the companion report [6]. While the non-
PRIORITY variant of all heuristics always outperforms the
results of Intrepid and Mira (as can be seen in Tables I
and II), in the following we only present results of the

DILATION SYSEFFICIENCY
(minimize) (maximize)

MAXSYSEFF 2.46 85.35
PRIORITY variant 3.13 82.98

MINMAX-0.25 2.33 83.08
PRIORITY variant 2.93 80.31

MINMAX-0.5 1.99 77.2
PRIORITY variant 2.43 72.96

MINMAX-0.75 1.69 71.66
PRIORITY variant 2.03 66.94

MINDILATION 1.63 70.45
PRIORITY variant 1.96 65.64

INTREPID 2.55 71.12
UPPER-LIMIT - 91.59

Table I: The averages are done over 56 different congested
moments on intrepid.

PRIORITY variant of the heuristics because Intrepid and
Mira need disk locality.

Note that Intrepid and Mira use burst buffers to improve
the behavior of applications with large bursts of I/O. Burst-
buffers are an architectural enhancement that allow to sup-
plement the I/O bandwidth. It is important to see that in
these simulations we compare our heuristics without burst
buffers with that of systems using burst buffers.

We have Darshan logs for every congested moment,
describing the applications that were running at a given
time. We use this information to create the simulation
scenario used by our heuristics. The main limitation of the
Darshan logs is that they only give information about the
total execution time and the total amount of I/O performed
by the applications, but do not say anything about their
actual behavior. Because most of the applications that run
on Intrepid are periodic, we choose to enforce application
periodicity by considering that these applications have a
fixed number of iterations, each of a constant execution
time and I/O volume. This fix number is chosen so that
to simulate the characteristics we have seen for applications
running on Intrepid. Recall that Section IV-C has shown that
the sensibility does not impact the results, so this hypothesis
is not binding. Another limitation with Darshan logs is that
they only record around 50% of all the applications running
in the system. In most cases when congestion occurs, we did
not have access to the information related to the other jobs
running in the system. However, we did have information
about the coverage of Darshan, so we replicated known
applications in order to simulate similar conditions to the
usage of the system at the moment of congestion.

On Figures 6 and 7, we observe the expected different be-
havior between MINDILATION and MAXSYSEFF, Intrepid’s
scheduler and the upper limit given by the characteristics
of the applications running at that time. In general, the
testcases where applications are IO intensive (lower upper
limit) present lower MINDILATION and higher DILATION
values for all heuristics and for the Intrepid scheduler. The
congested moments (when the difference between the upper
limit and the results with the Intrepid scheduler is high)
increase the gap between our heuristics and the Intrepid

MAXSYSEFF MINDILATION INTREPID UPPER-LIMIT

5 10 15 20 25
1

2

4

8

16

D
IL

A
T

IO
N

5 10 15 20 25
40

60

80

100

S
Y

S
E

FF
IC

IE
N

C
Y

Figure 6: Comparison of the PRIORITY heuristics over the
current DILATION and SYSEFFICIENCY of Intrepid.

DILATION SYSEFFICIENCY
(minimize) (maximize)

MAXSYSEFF 1.82 73.96
PRIORITY variant 2.41 70.26

MINMAX-0.25 1.71 71.58
PRIORITY variant 2.29 68.13

MINMAX-0.5 1.51 67.27
PRIORITY variant 1.94 64.88

MINMAX-0.75 1.31 62.24
PRIORITY variant 1.58 59.44

MINDILATION 1.27 61.62
PRIORITY variant 1.53 58.49

MIRA 2.01 64.26
UPPER-LIMIT - 85.04

Table II: The averages are done over 11 different congested
moments on Mira.

scheduler. We further investigated the few moments when
this is not the case (e.g., the 15th testcase) and we observed
that these test cases present a very small number of large
applications. In such a connect, some contention remains
unavoidable.

Overall, the main result here is that without burst-buffers,
our heuristics have comparable results with those of Intrepid
or Mira with burst buffers. This is impressive, since burst
buffers act as additional bandwidth to disks: when con-
gestion occurs, as long as the burst buffers are not full,
the applications can resume their execution right after they
transferred their I/O volume to the burst buffer, instead of
waiting for the I/O network to be available.

On Intrepid, MINDILATION improves on average DILA-
TION by a 25% factor for a 8% loss in SYSEFFICIENCY
while MAXSYSEFF improves SYSEFFICIENCY by 17% for a
20% loss in DILATION. MINMAX-0.5 improves both objec-
tives, by 9.5% for DILATION and 2% for SYSEFFICIENCY.

MAXSYSEFF MINDILATION MIRA UPPER-LIMIT

2 4 6 8 10
1

2

4

8

D
IL

A
T

IO
N

2 4 6 8 10
40

60

80

100

S
Y

S
E

FF
IC

IE
N

C
Y

Figure 7: Comparison of the PRIORITY heuristics over the
current DILATION and SYSEFFICIENCY of Mira.

Our heuristics show improvement compare to the scheduler
used by Mira as well: MINDILATION improves on average
DILATION by a 24% factor for a 9% loss in SYSEFFICIENCY
while MAXSYSEFF improves SYSEFFICIENCY by 9.3%
for a 20% loss in DILATION. As before, MINMAX-0.5
improves both objectives, by 5.5% for DILATION and 1%
for SYSEFFICIENCY.

Because Darshan is not covering all applications running
in the system, and also because our model does not include
any overhead induced by synchronizing the applications
each time they perform I/O, we further validated the results
by implementing our heuristics and running them on a real
machine. We show in Section V that the results obtained
in simulation accurately describe what would be obtained if
Intrepid or Mira were using our heuristics.

V. EXPERIMENTS

The study of cross-application interference requires re-
serving a full machine in order not to be impacted by other
applications running in the system at the same time. We
have chosen the Vesta machine at Argonne for this purpose.
Vesta [17] is a developmental platform for Mira. Its archi-
tecture is the same as Mira’s except that it has two compute
racks (Mira has 48). In total, Vesta has 2,048 nodes (32,768
compute cores). Applications running on this machine are
completely isolated from each other. This means that even
if there are other applications running on the system, their
communications will not impact our experiments. Our focus
in this section is directed towards write/write interference
between multiple applications.

A. Setup and measurements

The experiments require a way to control the exact
moment when all applications perform I/O. Therefore, we
modified the IOR benchmark [18] by splitting its set of
processes into groups running independently on different
nodes, where each group represents a different application.
One separate thread acts as the scheduler and receives
I/O requests for all groups in IOR. This way, our imple-
mentation of the IOR benchmark allows us to control the
access patterns of each application. In addition, because
IOR applications are communication-free, we modified them
to include some inter-processor communications at each
step, in order to make them more similar to typical HPC
applications. The added communication is an MPI Reduce
that adds the number of bytes written in the last iteration
by each process and simulates the synchronization between
different phases of a HPC application.

We made experiments on the modified IOR benchmark
and compared the results with the performance of the
original IOR benchmark, with and without using the option
of bypassing I/O buffers. One group of one single process is
representing the scheduler and it is responsible for receiving
online requests from the rest of the application processes
each time they perform an I/O, and confirmations each time
the I/O accesses are finished. Since Vesta is using hard
disks and is influenced by the locality of disk access, we
implement the PRIORITY variants of the heuristics.

In this section, we report results only for MAXSYSEFF
and MINDILATION. These heuristics correspond to extreme
cases when a single objective is under consideration. We
can always use the MINMAX-γ heuristic to obtain inter-
mediate results that tradeoff between system efficiency and
application dilation. A system administrator could tune the
threshold set for MINMAX-γ and obtain a variety of results
within the range of values achieved by the two extreme
heuristics presented here. We implement the heuristics as
an additional layer on top of the Vesta I/O scheduler, so
that we can use the burst buffers available on Vesta during
our comparison tests.

In the modified implementation of the IOR benchmark,
each application process sends a request to the scheduler
thread each time it needs to write some I/O volume. Fig-
ure 8 presents the overhead of adding the scheduling thread
when no congestion occurs for different scenarios. This
overhead was computed by comparing the execution time
of one application running the original IOR benchmark,
with the execution time of our modified version of the IOR
benchmark that includes the scheduler. In order to fairly
compare the execution time of adding the scheduler without
accounting for its benefit in terms of scheduling decisions, in
our comparisons, the scheduler always allows all requests to
I/O. Depending on the frequency and amount of I/O for each
application, the overhead in execution time varies between

no BURSTBUFFERS BURSTBUFFERS

25
6

51
2

32
/51

2

25
6/2

56

25
6/5

12

25
6/2

56
/25

6

25
6/2

56
/51

2

51
2/2

56
/32

51
2/2

56
/25

6/3
2

25
6/2

56
/25

6/2
56

51
2/5

12
/51

2/5
12

0

2

4

6

%

Figure 8: Execution time overhead of our implementation of
the IOR benchmark.

1% to 5.3%. In general, for a larger number of applications,
the execution time overhead remains under 3%. We account
for this idle time as well as the I/O throughput and ap-
plication delays when computing the system efficiency and
application dilation in Section V-B.

B. Results

Figure 9 shows the SYSEFFICIENCY and DILATION as
seen by all applications running in the system for different
scenarios. The horizontal axes present these scenarios in
the form x/y/z, where x, y, and z represent the number of
nodes used by each application in the system. For example
512/32 means there are two applications running, one on 512
nodes and the other on 32. We made experiments without
having any heuristic (results for IOR and IOR BB) and with
the modified IOR benchmark using either MAXSYSEFF or
MINDILATION. For each case, we ran the application mix
either bypassing or using the burst buffers (BB in the name).

We have studied the impact of our heuristic’s overhead
on the system efficiency and dilation by simulating two
test cases with only one application running in the system
(256 and 512 nodes respectively). The results show that the
overhead is translated into a very small decrease in system
efficiency (and increase in the max dilation) compared to
running the IOR benchmark without any modification.

The results when running multiple applications are very
similar to what was seen simulating Mira and confirm
what we have observed with the simulations: our heuristics
perform very well, better than Vesta’s I/O scheduler when
congestion occurs. Furthermore, the main result of this
experimental setup is that with more than 3 applications,
when congestion occurs, our heuristics without burst buffers
perform similarly to, and sometimes better than, Vesta’s
current I/O scheduler with burst buffers.

In general, the MAXSYSEFF heuristic has larger dilation
values than those obtained by letting congestion occur. With
the MINDILATION heuristic, system efficiency values follow
the same curves as with the MAXSYSEFF heuristic but hav-
ing, on average, values 5.65% lower. The maximum dilation,

MAXSYSEFF MINDILATION IOR

BBMAXSYSEFF BBMINDILATION BBIOR

25
6

51
2

32
/51

2

25
6/2

56

25
6/5

12

25
6/2

56
/25

6

25
6/2

56
/51

2

51
2/2

56
/32

51
2/2

56
/25

6/3
2

25
6/2

56
/25

6/2
56

51
2/5

12
/51

2/5
12

30

40

50

60

S
Y

S
E

FF
IC

IE
N

C
Y

25
6

51
2

32
/51

2

25
6/2

56

25
6/5

12

25
6/2

56
/25

6

25
6/2

56
/51

2

51
2/2

56
/32

51
2/2

56
/25

6/3
2

25
6/2

56
/25

6/2
56

51
2/5

12
/51

2/5
12

2

4

6

D
IL

A
T

IO
N

Figure 9: System efficiency and dilation for different sce-
narios on Vesta.

however, decreases in all cases showing values smaller than
the congested counterpart in all studied scenarios. In general,
the MINDILATION heuristic has a more significant decrease
for the dilation values than it had in the performance
values in scenarios with more uneven applications (512/32
or 512/256/256/32). We study these scenarios further in the
next paragraphs.

Figure 9 shows the dilation values for each of the four
applications running in one of the analyzed scenarios. The
small applications are in general more impacted by con-
gestion than the big ones when using the MAXSYSEFF
heuristic, having an increase in their dilation value of 36%
compared to the congested dilation. The big applications see
a decrease in their dilation of over 48%, which is responsible
for the good system performance values. When running
the same application mix with MINDILATION, the results
show an almost uniform decrease in all application dilations
compared to the ones obtained running the benchmark
without any heuristic, having on average a decrease of 8.4%,
and a maximum decrease of 14.5% for the small application.

VI. RELATED WORK

Application performance variability can significantly de-
tract from both the overall performance achieved by parallel
workloads and the suitability of a given architecture for a
workload. In distributed computing, the problem of having

I/O NETWORK

• I/O re-routing [19], [20], [21], [22]
• Application-side I/O scheduling [1], [2]

HIGH-LEVEL
I/O-SCHEDULING

I/O
NODE

I/O
NODE

I/O
NODE

LOW-LEVEL
I/O-SCHEDULING

DISKS

WHERE WE
OPERATE

WHERE WE
OPERATE

performance variability due to sharing resources is well-
known and studied. There are numerous papers that analyze
this problem for clouds [23], [24], [25]. [24] presents a study
of interference specifically for I/O workloads in the cloud
in order to understand the performance factors that impact
the efficiency and effectiveness of resource multiplexing
and scheduling among VMs. In [25], the authors investi-
gate the sensitivity of measured performance in relation to
consolidated server specification of virtual machine resource
availability, and burstiness of n-tier application workload.
Their results show that an increasingly bursty workload
also increases the performance loss among the consolidated
servers, however, without being able to offer a solution.

For the HPC community, while many works suggest that
I/O congestion is one of the main problems for future scale
platforms [26], [27], few paper focus on finding solutions
at the platform level. Some papers consider application-
side I/O scheduling [1], [2]. In particular, recently, several
works focused on using machine learning for auto-tuning
and performance studies [19], [20]. However, these solutions
do not have a global view of the I/O requirements of the
system, and they need to be supported by a platform level I/O
management for better results. Cross-application contention
has been recently studied in several articles [28], [29], [30].
The study in [28] evaluates the performance degradation
in each application program when VMs are executing two
application programs concurrently in a physical computing
server. The experimental results indicate that the interference
among VMs executing two HPC application programs with
high memory usage and high network I/O in the physical
computing server, significantly degrades application per-
formance. An earlier study in 2005 [29] cites application
interference as one of the main problems facing the HPC
community. While it proposes ways of gaining performance
by reducing variability, minimizing application interference
is still left open. [21] is a more general study that analyzes
the behavior of the center-wide shared Lustre parallel file
system on the Jaguar supercomputer and its performance
variability. One of the performance degradations seen on
Jaguar was caused by concurrent applications sharing the
filesystem. All of these studies highlight the impact of
having application interference on HPC systems without,

however, offering a solution.
[7] studies the access to disks by multiple applications

running in the system by focusing on cases when I/O
requests from multiple applications might break the spatial
locality of individual programs; this can seriously degrade
I/O performance when the data servers concurrently serve
synchronous requests from multiple I/O-intensive programs.
The authors propose a scheme called IOrchestrator, to im-
prove I/O performance of multi-node storage systems by
orchestrating I/O services among programs when such inter-
data-server coordination is dynamically determined to be
cost effective. Their tool has a global overview of appli-
cations in the system and decides which request to perform
and in which order, but they simply choose an FCFS or-
dering. Our implementation focuses on avoiding application
interference and provides a variety of heuristics that take
into account application history and system properties.

The research closest to our study is [22]. The authors
investigate the interference of two applications and analyze
the benefits of interrupting or delaying either one in order to
avoid congestion. Our study is much more general. It looks
at different application mixes and offers a range of options
that give good results for two distinct objectives. These
results can be used by a system administrator to configure
the best solution for their particular machine.

VII. CONCLUSION AND FUTURE WORK

I/O interference of multiple applications running con-
currently in the system is one of the main sources of
performance variability in HPC systems. We have studied
the effects of congestion on application performance and on
total system efficiency, and we propose several solutions that
minimize performance degradation. Our global scheduler has
a global view of the system and of the past behavior of
all applications running at a given time, and dynamically
schedules I/O accesses so as to minimize the maximum
application dilation and/or to increase the system-wide effi-
ciency.

We show through extensive experiments that our scheduler
performs better than current solutions for HPC systems. Our
two main heuristics, MAXSYSEFF and MINDILATION, are
very complementary. In particular MAXSYSEFF should be
favored when the system administrator wishes to optimize
the performance of the machine at all cost, while MINDILA-
TION should be used when the system administrator wishes
to be fair for the users of the machine. The third heuristic,
MINMAX-γ, is a good trade-off over these two objectives.

HPC applications in general are periodic and their behav-
ior is in most cases well known in advance. A scheduler
that takes this information into account might give even
better results than the one proposed in this paper. We have
initiated the study of such schedulers (periodic schedulers)
in [6]. We expect periodic schedulers to be an interesting
complement to the online schedulers presented in this paper.

Future work will be devoted to assessing the additional
gain that periodic schedulers may bring in comparison to
online schedulers, and their robustness with respect to the
periodicity hypothesis.

Finally one of the assumption of this work was a separate
I/O and messaging network (which is the case for machines
such as Mira and Intrepid). This had the advantage to
assess more accurately the effects of I/O congestion on
application and system efficiency. However, systems with
shared networks for I/O and communications (such as Blue
Waters) would also benefit from our scheduler. In such
systems: (i) with congestion caused by communications,
execution will slow down with or without our scheduler,
but the scheduler is online and will take this congestion into
account when measuring application efficiency; (ii) without
congestion, the benefit from using the scheduler will be the
same as when using a dedicated I/O system.

Acknowledgments: This research was done in the context of
the INRIA-Illinois Joint Laboratory for Petascale Computing. The
work was supported by the U.S. Department of Energy, Office of
Science, under Contract No. DE-AC02-06CH11357, and the ANR
Rescue project. Y. Robert is with Institut Universitaire de France.

REFERENCES

[1] X. Zhang, K. Davis, and S. Jiang, “Opportunistic data-driven
execution of parallel programs for efficient I/O services,” in
Proceedings of IPDPS12. IEEE, 2012, pp. 330–341.

[2] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kor-
denbrock, K. Schwan, and M. Wolf, “Managing variability
in the IO performance of petascale storage systems,” in
Proceedings of SC10. IEEE Computer Society, 2010.

[3] S. Iyer and P. Druschel, “Anticipatory scheduling: A disk
scheduling framework to overcome deceptive idleness in
synchronous I/O,” in ACM Symposium on Operating Systems
Principles (SOSP’01), 2001.

[4] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. Ganger,
“Argon: Performance insulation for shared storage servers,”
in 5th USENIX Conference on File and Storage Technologies
(FAST’07), 2007.

[5] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and
W. Allcock, “I/O performance challenges at leadership scale,”
in Proceedings of SC09. ACM, 2009, p. 40.

[6] G. Aupy, A. Gainaru, A. Benoit, F. Cappello, Y. Robert, and
M. Snir, “Scheduling HPC applications under I/O conges-
tion,” INRIA, France, Research Report 8519, Oct. 2014.

[7] X. Zhang, K. Davis, and S. Jiang, “IOrchestrator: improving
the performance of multi-node I/O systems via inter-server
coordination,” in Proceedings of SC12, 2010.

[8] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Ri-
ley, “24/7 characterization of petascale I/O workloads,” in
Proceedings of CLUSTER09. IEEE, 2009, pp. 1–10.

[9] W. Kramer, “Blue waters and the future of scale computing
and analysis,” in AICS International Symposium, 2013.

[10] J. T. Daly, “A higher order estimate of the optimum check-
point interval for restart dumps,” FGCS, vol. 22, no. 3, 2004.

[11] R. Sankaran, E. R. Hawkes, J. H. Chen, T. Lu, and C. K. Law,
“Direct numerical simulations of turbulent lean premixed
combustion,” in Journal of Physics: conference series, vol. 46,
no. 1. IOP Publishing, 2006, p. 38.

[12] R. Nair and H. Tufo, “Petascale atmospheric general cir-
culation models,” in Journal of Physics: Conference Series,
vol. 78, no. 1. IOP Publishing, 2007, p. 012078.

[13] S. Ethier, M. Adams, J. Carter, and L. Oliker, “Petascale
parallelization of the gyrokinetic toroidal code,” VECPAR:
High Performance Computing for Computational Science,
2012.

[14] G. L. Bryan et al., “Enzo: An adaptive mesh refinement code
for astrophysics,” arXiv:1307.2265, 2013.

[15] S. Habib et al., “The universe at extreme scale: multi-petaflop
sky simulation on the BG/Q,” in Proceedings of SC12. IEEE
Computer Society, 2012, p. 4.

[16] G. H. Bryan and J. M. Fritsch, “A benchmark simulation
for moist nonhydrostatic numerical models.” Monthly Weather
Review, vol. 130, no. 12, 2002.

[17] “Cetus and Vesta: Test and Development systems.” https://
www.alcf.anl.gov/cetus-and-vesta.

[18] H. Shan and J. Shalf, “Using IOR to analyze the I/O per-
formance for HPC platforms,” Cray User Group Conference,
2007.

[19] B. Behzad, L. H. V. Thanh, J. Huchette, S. Byna, R. A. Prab-
hat, Q. Koziol, and M. Snir, “Taming parallel I/O complexity
with auto-tuning,” in Proceedings of SC13, 2013.

[20] S. Kumar et al., “Characterization and modeling of pidx
parallel I/O for performance optimization,” in Proceedings
of SC13. ACM, 2013.

[21] B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral,
and N. Podhorszki, “Characterizing output bottlenecks in a
supercomputer,” Proceedings of SC12, pp. 1–11, 2012.

[22] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim,
“Calciom: Mitigating I/O interference in HPC systems
through cross-application coordination,” in Proceedings of
IPDPS14, 2014.

[23] H. Chiang, R.C.and Huang, “Tracon: Interference-aware
scheduling for data-intensive applicationsin virtualized envi-
ronments,” IEEE TPDS, vol. 25, pp. 1349–1358, 2014.

[24] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, C. Pu, and
Y. Cao, “Who is your neighbor: Net I/O performance inter-
ference in virtualized clouds,” IEEE Transactions on Services
Computing, vol. 6, pp. 314–329, 2013.

[25] Y. Kanemasa, Q. Wang, J. Li, M. Matsubara, and C. Pu,
“Revisiting performance interference among consolidated n-
tier applications: Sharing is better than isolation,” IEEE
International Conference on Services Computing (SCC), pp.
136–143, 2013.

[26] R. Biswas, M. Aftosmis, C. Kiris, and B.-W. Shen, “Petascale
computing: Impact on future NASA missions,” Petascale
Computing: Architectures and Algorithms, pp. 29–46, 2007.

[27] J. Lofstead and R. Ross, “Insights for exascale IO APIs from
building a petascale IO API,” in Proceedings of SC13. ACM,
2013, p. 87.

[28] Y. Hashimoto and K. Aida, “Evaluation of performance
degradation in HPC applications with VM consolidation,”
IEEE International Conference on Networking and Comput-
ing (ICNC), pp. 273–277, 2012.

[29] D. Skinner and W. Kramer, “Understanding the causes of
performance variability in HPC workloads,” IEEE Workload
Characterization Symposium, pp. 137–149, 2005.

[30] A. Uselton, M. Howison, N. Wright, D. Skinner, N. Keen,
J. Shalf, K. Karavanic, and L. Oliker, “Parallel I/O perfor-
mance: From events to ensembles,” Proceedings of IPDPS10,
pp. 1–11, 2010.

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

