
Navigating the Blue Waters:
Online Failure Prediction in the Petascale Era

Ana Gainaru
University of Illinois at

Urbana-Champaign
againaru@illinois.edu

Mohamed Slim Bouguerra
INRIA/UIUC

mohamed-slim.bouguerra@imag.fr

Franck Cappello
Argonne National Laboratory

fci@lri.fr

Marc Snir
Argonne National Laboratory

snir@illinois.edu

William Kramer
National Center for Supercomputing Applications

wtkramer@illinois.edu

Abstract
At the scale of todays large scale systems, fault tolerance is no
longer an option, but a necessity. As the size of supercomputers
increases, so does the probability of a single component failure
within a time frame. With a system MTBF of less than one day
and predictions that future systems will experience delays of cou-
ple of hours between failures, current fault tolerance strategies face
serious limitations. Checkpointing is currently an area of signifi-
cant research, however, even when implemented in a satisfactory
manner, there is still a considerable loss of computation time due
to frequent application roll-backs. With the growing operation cost
of extreme scale supercomputers like Blue Waters, the act of pre-
dicting failures to prevent the loss of computation hours becomes
cumbersome and presents a couple of challenges not encountered
for smaller systems.

In this paper, we present a novel methodology for truly online
failure prediction for the Blue Water system. We analyze its results
and show that some failures types can be predicted with over 60%
recall and a precision of over 85%. The failures wich represent the
main bottlenecks are discussed in detail and possible solutions are
proposed by investigating different prediction methods. We show to
what extent online failure prediction is a possibility at petascale and
what are the challenges in achieving an effective fault prediction
mechanism for Blue Waters.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

General Terms resiliency, fault tolerance

Keywords failure prediction, torus spatial patterns, online predic-
tion, fault tolerance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

1. Introduction
The last years have been a fertile ground for the development
of many scientific and data-intensive applications in all fields of
science and industry. These applications provide an indispensable
mean of understanding and solving complex problems through sim-
ulation and data analysis. As large-scale systems evolve towards
post-petascale computing to accommodate applications increasing
demands for computational capabilities, many new challenges need
to be faced, among which fault tolerance is a crucial one [1, 2]. At
the scale of today’s large scale systems, fault tolerance is no longer
an option, but a necessity. With failure rates predicted in the order
of tens of minutes [26] for the exascale era and applications run-
ning for extended periods of time over a large number of nodes,
an assumption about complete reliability is highly unrealistic. Be-
cause processes from scientific applications are, in general, highly
coupled, even more pressure is put on the fault tolerance protocol
since a failure to one of the processes could eventually lead to the
crash of the entire application.

By far the most popular fault tolerance technique to deal with
application failures is the Checkpoint-Restart strategy. Unfortu-
nately, classical checkpointing, as used today, will be prohibitively
expensive for exascale systems [13]. A complement to this clas-
sical approach is failure avoidance, by which the occurrence of a
fault is predicted and proactive measures are taken. Failure avoid-
ance uses the information received by a failure predictor to facilitate
proactive fault tolerance mechanisms such as proactive job migra-
tion or proactive checkpoint. In general, failure prediction is based
on the observation that there is a Fault-Errors-Failure propagation
graph [24]. The fault generates a number of errors that could be
observable at the system level, which represent either notifications
in the log files or changes in performance metrics. The propaga-
tion chain ends with the failure which is observed at the applica-
tion level and usually is represented by an application interruption.
However, the error could propagate and generate other effects like
performance degradation.

Over the years, different methods have been developed that deal
with failure prediction in the HPC community [24], methods that
have been used extensively on different HPC systems and that
present a variety of results. In our previous work we introduced the
concept of signal analysis in the context of event analysis, which al-
lowed us to characterize the behaviour of different events and to an-
alyze them separately depending on their individual behaviour [8].
All results show that failure prediction is a theoretical viable solu-

jbullock
Typewritten Text

tion for future fault tolerance techniques. However, a large fraction
of experiments and results for failure prediction methods have been
the result of the analysis of past generation HPC machines in simu-
lated online environments. The scale of todays systems has increase
by two orders of magnitude, with forecasts for exascale showing an
even higher increase [26]. Moreover, simulated online predictions,
the method of choice for extracting prediction results, assumes tun-
ing the parameters of all prediction modules in the offline phase
in order to achieve the best possible results in the online phase.
While this methods show prediction results that could theoretically
be achieved in real scenarios, they do not reflect the reality of run-
ning in realtime and predicting failures using best local parameters.

In this paper, we introduce a methodology for truly online pre-
dictions and we show that using this model, prediction is possible
and gives good results on small systems. Moreover, we present an
analysis of the Blue Waters system by investigating the feasibility
of online failure prediction methods on a petascale machine. With
a sustained performance of 1 Petaflop on a range of real-world sci-
ence and engineering applications, the Blue Waters supercomputer
is representative for todays large scale systems and provides new
insights into the performance of current fault predictors. Specifi-
cally, the contributions of the paper are the following:

1. We introduce a novel methodology for online failure prediction
and present its results on different systems. Moreover, we show
into detail what category of failures are predicted and what are
the limitations imposed by each system.

2. We analyze the characteristics of failures from the Blue Waters
system and study their effect on the results given by the on-
line failure prediction. We make a couple of key observations
about the difference in behaviour between Blue Waters and pre-
viously smaller systems and propose specific optimizations for
this system that increase the results. A detailed analysis of the
prediction results is also given.

3. We show the impact of failures on applications and investigate
how the prediction method is influenced when looking from the
application’s perspective and not the system. We show that by
taking the application into consideration into our methodology,
the prediction becomes more useful for fault avoidance tech-
niques.

4. We propose a novel methodology for predicting the locations
on which a failure propagates by taking into consideration the
topology of the investigated system which increases the cover-
age of a predictor.

The rest of the paper is organized as follows. Section 2 gives an
overview of the related work, highlighting their limitations. Section
3 presents the methodology for a real online failure predictor and
study its results when applied on a smaller system. In section 4,
the focus moves on Blue Waters and on the differences in predic-
tion results compared to smaller systems, from both the system’s
perspective and from the application level. Section 5 presents the
impact of the novel location propagation methodology and section
6 gives a general view of different types of failures and how their
characteristics influence the results. We conclude with a summary
of our work and a discussion of future research directions.

2. Related work
Failure prediction has been extensively used over the years in nu-
merous science and engineering fields [16, 18], from research in
material science [5] and engine fault tolerance [19] to studying fa-
tigue predictions for rails [3]. Failure prediction in computer sci-
ence and specifically in HPC, followed two distinct directions:
component level and system level failure prediction. The first level

includes methods that observe components (hard drives, mother
boards, DRAM, etc) with their specific parameters and domain
knowledge and that define different approaches that give best pre-
diction results for each [4, 21]. In [10], the authors investigate
the abilities of two Bayesian methods to predict disk drive failures
based on measurements of drive internal conditions. More recently,
in [12], the authors analyze DRAM failures and conclude that sim-
ple page retirement policies might be able to mask a large number
of DRAM errors in production systems.

The second level is represented by system level failure predic-
tion, in which monitoring daemons observe different system pa-
rameters (system log, scheduler logs, performance metrics, etc) and
investigate the existence of correlations between different events.
Initial research from this level was focused on applying failure pre-
diction on networks [25], server environments [22] or computer
clusters [23]. More recent methods for short-term failure predic-
tion are typically based on runtime monitoring as they take into
account the current state of the system. One example of this type of
approach is [29] in which matrices are used to record system perfor-
mance metrics at every interval. The algorithm afterwards detects
outliers by identifying the nodes whose behaviour is far away from
the majority. Failure prediction for HPC systems has been receiv-
ing increasingly attention in the last years, different methods being
proposed for a wide variety of systems.

Current research is focusing on using system logs, scheduling
logs, performance metrics or usage logs in order to extract a corre-
lation between events generated by a system. There are numerous
methods, starting with simple brute force extraction of rules be-
tween non-fatal events and failures [24] with more sophisticated
techniques. In [27], the authors are using a meta-learning predic-
tor to chose between a rule-based method and a statistical method
depending on which one gives better predictions for a correspond-
ing state of the system. Other research include SVM [6], hidden-
Markov chains [17] or Bayesian networks [20]. A slightly different
approach is given in [15] where the authors investigate parameter
correspondence between different application log messages for ex-
tracting dependencies among components.

In our previous work we introduced a novel methodology for
extracting correlations between events that uses different signal
analysis modules [8]. By treating events as signals we were able
to characterize the normal behaviour of each type of event and
how failures affects them. Our experiments follow the workflow
from previous studies by looking at historic log files divided in two
parts, one for training and extracting the correlations and one for the
actual prediction. We call this method simulated online because it
assumes tuning the parameters of all modules in the training phase
in order to achieve the best possible results in the online phase.
Currently the best obtained results show a recall of 70% with a
precision of 80% [14] for the Blue Gene/P system. Our results on
Blue Gene/L shows 50% recall with 90% precision (or 60% with
70% depending on how the parameters are tuned) for a lead time
between the prediction and failures of more than 10s [9]. While
these results are theoretically possible, in real online scenarios the
parameters cannot be tuned to offer best results for an unknown
future and so the results are much lower than the theoretical peak.
To the best of our knowledge, this paper is the first to offer a
methodology for truly online failure predictions for HPC systems.

The paper also focuses on analyzing how online prediction can
be achieved on both smaller and large-scale systems and how the
characteristics of each system influence the results. In addition, we
look at how jobs are affected by failures and how this information
influences the application level failure prediction. In [28], the au-
thors also make a difference between system and application fail-
ures by using RAS logs and job logs for filtering out the failures
that do not have any effect on the running jobs. However, they fo-

Figure 1. Failure prediction: simulate online

Figure 2. Online failure prediction

cus on an analysis on the failure distribution and do not investigate
how this information affects the results of failure predictors.

3. Online failure prediction
In general, the prediction methods follow the workflow presented
in Figure 1. The historic log files are divided in two parts . The
first part is used for training and different methods are used to learn
patterns and correlations between different events in the system.
This part usually represents 10% of the whole log and can be
anything between a couple of weeks [27] to months [14]. These
patterns are then used in the second part of the analysis, by applying
them on the second part of the log in order to predict failures. Based
on the actual failures from this part, recall and precision values can
be computed for the given method.

A prediction where the predicted failure occurred in the given
time interval and on the given location is called a true positive.
An incorrect prediction happens when the predicted failure does
not occur in the given time frame, in which case it is called a
false positive. Failures that occur without being predicted are false
negatives. These three values define the two metrics that we use
to measure the performance of a predictor: precision and recall.
Precision defines the quality of all the predictions and it is equal
to the ratio of true positives to false positives. Recall represents the
coverage of a predictor and defines the ratio of failures predicted to
the total failures in the system.

Every step in the training method contains parameters used to
decide when a pattern is reliable enough to be used in the second
phase. These parameters have a high influence on the final results of
a predictor. For example, figure 3 shows how prediction and recall
are influenced by different values of the parameters used by one
of our prediction system. Depending on the results obtained on the
second part of the log, the parameters can be tuned and the analysis
on the first part of the log can be redone in order to increase the
accuracy of the final results.

Choosing and tuning the parameters is usually a manual process
and can be done using domain knowledge about the system or
based on previous experience with other systems. Repeating the
prediction for the same testing piece of log until obtaining the
best possible results shows the best possible results that can be
achieved with a predictor. While this is a good way of analyzing
the limitations of a predictor it is not a valid methodology when
deploying a predictor to work online on a real system.

The solution we propose is presented in figure 2 which is cur-
rently implemented in the ELSA toolkit. The historic log file is still
divided into two parts, one for training and one for testing, however
this time the training is using the whole methodology as before as

Figure 3. Precision and recall (in percentage) for different values
for one of ELSA’s parameters, the correlation threshold

decribed in figure 1. The only difference is that the training part
is done automatically, either by implementing rules as to how pa-
rameters modify the precision and recall ratio or by a brute force
strategy. After the best results have been reached for the simulate
online part, the process stops and the parameters are used online on
the incoming stream of events. The methodology can be tested on
a historic log, by dividing the log into 3 parts, one for training, one
for simulate online and the rest for online predictions. The best pa-
rameters are chosen based only on the training and simulate online
parts either manual or automatic, then online predictions are made
on the third part of the log only once and the results of this one time
execution defines the recall and prediction values.

In time the learned patterns used for prediction become less and
less accurate because of new updates in the system and so both
precision and recall decrease over time. Figure 2 deals with this
problem by triggering a new session of training and simulate online
in parallel with the online prediction each time the precision or/and
recall decrease below a threshold.

In our previous work we introduce ELSA (Event Log Signal
Analyzor) [9], a failure prediction tool based on signal analysis
concepts. ELSA is working on a two-phase algorithm, first offline
by combining signal analysis with data mining algorithms to ex-
tract correlations between events and secondly online by using the
correlations to predict future events. Signal analysis allows ELSA
to characterize the behavior of events affecting the system, high-
lighting the differences between failures. Data mining is an effi-
cient method for extracting patterns in high-dimensionality sets so
ELSA is using them to provide accurate correlations between de-
fined behaviours. ELSA was successfully applied on several HPC
systems, being able to predict over 40% of the failures with a very
high accuracy.

A condensed figure of ELSA’s workflow is presented in figure 4.
The tool works in two distinct phases: offline and online. In the
offline phase the input is represented by the training part of the
log and the output is formed by the correlation chains between
events. The algorithm executed by ELSA is the following: extract
all possible event types from the log, identify anomaly moments
for each of the events and then correlate the anomaly moments of
non-fatal events between each other and with failures. The rules or
chains of correlations between events are then used in the online
phase in order to trigger predictions. The online module classifies

Figure 4. ELSA workflow

Figure 5. Precision and recall for simulate online and online

the incoming event, detects if the event indicates an anomaly and
then based on the event’s type, it searches the correlation chain and
triggers predictions if necessary.

We implemented the online prediction methodology described
above and integrate it into the ELSA toolkit. We tested our method,
first onto the same Blue Gene/L log used in our previous studies and
then on the Blue Waters system. For the training phase, we chose
to tunne the parameters in an automatic way with a hybrid version
of domain knowledge and brute force. There are three categories of
parameters in ELSA’s testing phase, one in the classification phase,
two in the outlier identification phase and two in the correlation
extraction phase. The last two parameters have a direct relation with
both precision and recall (for example as shown in figure 3 as the
correlation threshold parameter increases, the recall decreases and
precision increases). However, for the second type of parameters
there is no straightforward relation. This is the motive of choosing
to implement the hybrid method of brute force (for the second
phase) and guided search (for the first and third phase) for finding
the parameters that give either best precision, or best recall in the
simulate online part of the log.

The first experiment was done on the Blue Gene/L log which
was downloaded from [?]. In our previous studies we focused on
offering the best precision possible because we desired to have
as few wrong predictions as possible. There are fault avoidance

techniques for which the overhead of a misprediction is higher
than the benefit of covering a large set of failures in wich case
highest precision is the best solution. One example is the charm++
framework in which migration is very cheap compared to the time
wasted restarting an application because of an unpredicted failure.

In one of our previous studies, we investigated the impact of
combining our prediction method with a multi-level checkpoint-
ing strategy and we observed that a decrease in recall has a higher
impact on the benefit of this hybrid faut tolernace method than pre-
cision ??. For this reason, in this paper we remade our previous ex-
periments on Blue Gene/L focusing on both best precision and best
recall. Figure 5 shows the precision and recall for different scenar-
ios. The left part of the figure shows the results when focusing on
obtainig the best precision possible and the right side focuses on
best recall.

The Blue Gene/L log used contains events generated between
June 2005 and January 2006. We divided the logs in three phases,
3 months for training, 3 months for simulate online and 2 months
for online.

The first bar in each column (the blue bar) shows the results for
the manual simulate online method. We tuned the parameters and
re-executed the training phase until we obtained the best results
in the online part of the log. The second bar from the left (the red
bar) in each column represents the results when using the automatic
script for finding the best parameters. For computing the first two
bars, the first part of the log is used for extracting patterns and
the last part is used for computing the recall and precision value.
The other two experiments compute these values also using the
last part of the log but using the first two parts for training as
described in figure 2. This way all four experiments compute the
recall and precision by predicting failures only on the online part
of the logs and by using only data from the training phase. The
online methodology uses the simulate online part of the log only
to tune the parameters and so optimizing the correlations found in
the training part. This means that if a correlation cannot be found
in the training part and its present in the simulate online part our
predictor will not see it. Because of this the comparison is fair.

The results using the automatic script are very similar to the
ones obtained by manual tuning. For the best recall values, the au-
tomatic method gives a better recall, however, paying the price of
having a lower precision. The variations happens because the au-
tomatic algorithm goes through a larger set of parameter combina-
tions and, particular case it managed to go a step further than what
we did in the manual analysis. However, overall the results are very
similar.

The third bar (green bar) presents recall and precision values
for the online methodology when no updates are being made and
the last bar when there is one update. When no update is made,
the recall and precision values both are much smaller than in the
simulate online case. However, after one update the values become
very similar.

The results on Blue Gene/L shows that the online methodology
gets similar results by choosing automatically the parameters that
otherwise should be manually tuned and updated every couple of
months. However, when we applied the same strategy on the Blue
Waters systems we observed a couple of limitations. We will focus
on analyzing these limitations and proposing solutions in the next
section.

4. Blue Waters
4.1 System characteristics
By providing a sustained performance of 1 Petaflop on a range of
real-world science and engineering applications, the Blue Waters
supercomputer is currently one of the most powerful supercomput-

ers. Because the size and complexity of the system our analysis
modules needed to be adapted in order to generate useful informa-
tion. The NCSA (National Center for Supercomputing Application)
has launched for production the Blue Water system on March 28,
2013.

The Blue Waters system is a Cray XE/XK hybrid machine
composed of AMD 6276 ”Interlagos” processors and NVIDIA
GK110 ”Kepler” accelerators all connected by the Cray Gemini
torus interconnect. Divided into 237 Cray XE6 and 32 Cray XK7
cabinets, Blue Waters contains over 25 thousand computing nodes,
reaching a peak performance of 11.6 Petaflops and offering a total
system memory of over 1.4 PetaBytes. The online storage gives
26.4 PB of total usable storage with an aggregate I/O bandwidth
of over 1 TB/s. In August 2013, Blue Waters was upgraded with
12 additional Cray XK racks, each with 96 nodes. This boosts the
systems peak performance to over 13 petaflops. Our analysis was
manly done on the system before the extra nodes have been added
since the system is still stabilizing after the upgrade. However, a
couple of experiments were made after the racks were added in
order to see the impact of using logs generated by an unstable
system on the training modules.

There are numerous applications that are running on Blue Wa-
ters. Examples include earthquake engineering for which simula-
tions want to capture seismic waves in 1Hz range which is 256
times more computationally demanding than current simulations;
cosmology applications that desire to model the first billion years
after the Big Bang; epidemiology applications that model local and
global disease outbreaks; tornado simulations where forecasters
can identify conditions that make a tornado likely, they can pin-
point when and where they start, their path, and strength.

All modules in our analysis use events generated by the sys-
tem in their process. For the Blue Water systems, several events are
gathered into different logs summing up to more than 15GB of data
per day (on peak days the number exceeds 120GB). By the time of
this paper, we did not have access to environmental data so all our
modules use only log events. There are 5 major sources used: sys-
logs that contain usual RAS information, HPSS (High Performance
Storage System) which is the near-line storage designed for moving
large files and large amounts of data, Sonexion storage system used
for storing the Luster filesystem, Moab job scheduler and ESMS,
the data system manager. Table 1 presents these sources and their
characteristics compared to some smaller systems.

The number of events generated by the Blue Waters system is
two order of magnitude larger than Blue Gene/L. Combined with
the complexity of the analysis modules it is no longer feasible to
run the training phase of the online methodology to get updates pe-
riodically. Moreover, the increase number of types of events, create
complex patterns that need longer training phases to be discovered.
Figure 6 shows the results of applying the same prediction algo-
rithm used for Blue Gene/L on the Blue Waters system. Overall,
both the recall and precision values are significantly lower than for
the Blue Gene/L system. In the next section we will analyze the
reason for this decrease in both recall and precision values.

Information about failures is kept into a distinct failure log
where system administrators write down the approximate times-
tamp for each failure and the possible cause. We analyzed 5 months
of activity before the new cabinets were added and a couple more
after the system was expanded. The second phase of the analysis is
done before the system had a chance of becoming stable and so we
were able to compare the results for the two different phases of the
machine. The first 5 months were divided into three parts: 2 months
for training, 2 for the simulate online part and 1 month for online
testing. For the second analyzed period we used only one month for
training, 3 weeks for simulate online and 1 week for online testing.

Table 1. Frequency of Special Characters
Source Events/Day Total Event Types
Syslog 8GB (50mil events) 3,852
HPSS 1MB (900,000 events) 358

Sonexion 3.5GB (10mil events) 3,112
Moab 500 MB (15mil events) 725
ESMS 3GB (12mil events) 2,452
System Events/Day Total Event Types

BlueGene/L 5.76MB (25,000 events) 186
BlueGene/P 8.12MB (120,000 events) 252

Mercury 152.4MB (1.5mil events) 563

Figure 6. Precision and recall for the Blue Waters

Our first analysis on the failures gave us a general view of the
entire system. We observed that software errors are 65.7% of all
problems and hardware 34.3%. For software failures, the most rep-
resentative were related to the Luster filesystem. For hardware,
AMD Opteron problems and DIMM failures have the majority.
Moreover, 13.5% types of the failures affect more than one node,
which translates in more than 25% of total failures from the ana-
lyzed time frame.

4.2 Prediction from the system’s perspective
Because of the high number of events in the system and the stress
they put on the analysis modules, we were forced to change the
offline training methodology to make it more light. We transformed
the correlation extraction process in a hierarchical one, starting
with correlations between only failures and recursivley adding new
events in the analysis. This way we are extracting patterns only
for events that might lead to failures and ignore the rest. Also, in
the inital step we no longer divide the failures separatley into their

Figure 7. Number of common correlation patterns between the
training, simulate online and online phases

corresponding types (and so extracting patterns independently for
each type). We make a breakdown on failure types only during the
online phase when we are recording the true positives.

Figure 6 shows the precision and recall obtained for the Blue
Waters system for both manual tunning of the parameters and the
online methodology. The experiments were made twice by focusing
first on obtaining the best possible precision and the second for
best recall. The results are much lower than for the Blue Gene/L
ones. However, when looking just at the results for Blue Waters,
the manual and automatic methods both give similar results which
shows that the online methodology is a valid strategy on larger
systems as well. For the second analysis period the recall value is
much lower even than before. A closer analysis of the patterns used
showed that more than 60% of the failures from the online phase
were not encountered in either the training nor the simulate online
phase. It seems that the constant changes that happen in a system
after a recent upgrade make it very difficult for the prediction
modules to learn patterns and adapt. For the rest of the paper we
focused out attention on the first 5 months of analysis.

In the next paragraphs we will open the hood and look at how
this results are obtained. We used ELSA’s trainig phase on all log
parts: the training, the simulate online and the online testing parts
and then compared the patterns extracted for each. Figure 7A shows
the quantity of patterns found in both training and simulate online
(the bottom part of each bar) and the number of patterns that are
encountered in one phase but not in the other (the top part of
each bar). Figure 7B shows the same metrics but for the training
and online phases and figure 7C looks at the pattern count when
combining the first two phases together compared to the online
phase. All results in this figure are obtained in the experiments
focused on obtaining the best recall.

The patterns from the training phase that appear also in the sim-
ulate online phase are the only ones that are optimized to give best
results on the simulate online phase. The rest of the patterns even
though might be used in the testing phase, are left in their default
state. We believe this is the reason for the small difference between
the manual and automatic results. Another interesting find is the
fact that only 55.8% of patterns found by the training method on
the online phase appear in the training phase. Longer training phase
in the prediction methodology would help increase this percentage,
as shown in figure 7C where 76% of patterns from the online phase
are covered by including the simulate online in the training phase.
Of course the actual recall values depend on how frequent each pat-
tern is used, but larger coverage should give better recall values in
all cases.

In our second experiments we used the entire log for all three
stages: we training the method on the entire log, run a simulate

Figure 8. Blue Waters usage

online phase and automatically tune the parameters in the training
phase until we get the best results, then run the online phase on
the same log. In the ideal case we would expect to get 100% recall
and precision, assuming all failures have precursors in the log and
they appear frequent enough to pass the correlation thresholds.
The results show a recall of 67.2% with a precision of 78% when
looking at best recall. The values are lower than expected either
because some failure patterns were not freqent enough to become
correlation chains for our model, in the analyzed months, or simply
because not all failures have precursors. This experiment gives us
a higher bound for our predictor in the sense that we cannot expect
to obtain better results that 67.2% with any methodology.

Another experiment shows that the location prediction used
before for extracting patterns is not accurate enough for a system of
Blue Waters’ size and complexity. Over 90% of our predictions for
multi-node failures do not succeed in discovering all the nodes in
the fail set. A mode detailed inspection reveals that the benefit of a
good location propagation could increase the recall with more than
10%. We decided to implement a couple of novel methodologies for
extracting propagation patterns for correlation chains and failures
and test their results. The next section of the paper presents the
details of this study.

There are many untracked or untrackable variables that can
play an important role in the correlation of performance analysis.
For example, network monitoring is crucial to understanding the
health of a supercomputer, but is barely on the radar of hardware
manufacturers. The last section of the paper deals with analyzing
the recall for different type of failures which will make the lack of
precursors more visible.

4.3 Prediction from the application’s perspective
Figure 8 shows the usage of the system for the analyzed period. In
general, we would expect higher failure rates with heavier work-
load. However, our first results does not show any correlation be-
tween jobs exited with an error code and average load of the sys-
tem. Moreover, a failure in the system most of the time does not
seem to impacted massive numbers of jobs. At a closer analysis,
we observed that only around 44% of failures lead to at least one
application crash. The same analysis shows that 62% of the failure
types predicted by ELSA refer to failures that lead to application
crashes. This corresponds to an increase in the recall of over 5%
when we filter out from the analysis all failures that have no effect
on any of the running applications.

When analyzing the prediction results from the application’s
perspective, in addition to the recall and precision, the online
methodology is highly sensitive to the lead time offered by each
prediction. The lead time represents the time interval between when
the prediction is triggered and when the failure actually occurs.
Normally, during faulty moments, there is a spike in the number of
notifications in the logs to over 20,000 messages per second. Af-
ter a high number of optimizations, our analysis modules manage
to cope with 500 messages per second. During these peak times
the analysis slowly falls behind having lags of over 30 minutes
for some of the more aggressive failures. As long as the precursor
events appear before this peak of messages the prediction module
will not be influenced by the failure’s behavior. However, over 80%
percentage of a failure’s precursors appear in the system after the
notifications have started to peak. If we define true positives so
that they considered the lead time, the recall now only considers
failures for which the prediction is done before its occurrence. This
decreases the total recall value with 8%.

Another change in the methodology of extracting results is that
location prediction get a slightly new meaning when application
crashes need to be predicted instead of pure failure messages. If
the prediction method predicts a failure correctly in time, but the
predicted location is wrong and so the failure actually occurs on
a different node, with our previous method this will give a false
negative and a false positive in the final results. However, if an
application was running on both nodes, the predicted one and the
one that will fail, if the application takes into consideration the
prediction and takes preventive actions, the failure could cause
minimal damage. Depending on the fault avoidance strategy, a
predictor that only looks at applications as a whole and not as a
set of running nodes could increase the recall significantly.

By taking the lead time and the new definition of location
prediction into consideration we recomputed the results for best
possible recall and obtained 35% recall and 75% precision.

5. Location prediction
One of the main problems brought by the complexity of Blue Wa-
ters is the fact that the patterns between precursor events and fail-
ures are now more complicated and often precursors from one node
location indicate a failure on a completely different node. More-
over, some problems, like the majority of Luster failures, although
they have precursors on the same set of nodes, they influence ap-
plications running on other sets of compute nodes.

In this section we will analyze the relation between the location
of precursors and their corresponding failures. We will also look at
how the same failure propagates on multiple nodes and how this
influence the applications running on the machine. In this paper we
will focus on two parts of this architecture since they cover the large
majority of events: the compute nodes and Sonexion nodes.

On Blue Waters the locations for compute nodes have the fol-
lowing format: c0-0c0s0n0 which represents the cabinet id, cage
id, slot id and node id; and for the Sonexion nodes snx11003n0 we
consider cabinet id and node id. Our first attempt in finding pat-
terns between different locations used only the location id without
any information as to what is the network of the system. We in-
vestigated for each of the correlation chains that contain events ap-
pearing on multiple location if the are propagating beyond the same
node/slot etc. If, for example a precursor and its error are always on
the same slot but not necessary on the same node, the prediction en-
gine could use this information and predict that the whole slot will
fail.

The new methodology is called a hierarchical prediction of
locations and it basically over-predicts the number of nodes that
fail in order to increase the true positive base. We implemented

Figure 9. Location propagation results

Figure 10. Precision and recall for different location predictors

this methodology in ELSA and after running it on Blue Waters we
obtained the results from figure 9.

We observed that 95% of the correlation chains contain events
that appear in the same cabinet, 32% appear in the same cage (from
the same cabinet), 45% in the same slot and 72% on the same node.
A slot has 4 nodes, a cage has 8 slots (32 nodes) and a cabinet has 3
cages (96 nodes). In total there are 276 cabinets. The prediction
module is using the hierarchical location method by predicting
different location classes (node level, slot level, etc.) depending on
the chains used to trigger the future failure event. A true positive
in this scenario represents a prediction for which, firstly, the failure
occurred and also the set of locations affected by the failures is a
subset of the predicted locations.

Figure 10A shows the precision and recall values when using
the hierarchical strategy compared to our initial results. The results
show an increase in recall from 28% with a precision of 72% to
36% with 79%. When looking for the best possible precision the
increase in both recall and precision corresponds to the percent-
age of unpredicted failures because of the wrong location choice.
This indicates that the majority of the correlations for which pre-
cursors are not on the same location as the failures they predict, are
captured correct. Hierarchy prediction overcomes this problem by
widening the set of locations used for prediction when patterns are
not strong enough.

The main advantage of this method is that now ELSA captures
a larger set of the failures with a higher precision. However, when
predicting a cabinet failure, not necessary all 96 nodes from the
cabinet will actually fail. We made an analysis on the online test-
ing phase and we observed that out of all true positives: 26% of
predictions where slot prediction and 72.2% of the times only one
node was affected and only two nodes in the rest of the cases; 8.7%
of cases were cage predictions with an average of 3 node failures;
and 20% were cabinet failures with an average of 4 node failures in
81% of the cases and full cabinet failures in the rest.

For incorrect predictions, 20% were slot prediction, 3.4% were
cage predictions and 6.6% were cabinet predictions. If the usage of
the system is 100%, the hierarchical location prediction adds waste
with both true positives and false negatives by forcing applications
that are running on nodes that will not fail to take preventive
actions.

Before analyzing into detail the waste, we focus on optimizing
our location prediction so that the waste is decreased. Our main
problem is that the method is predicting at multiple node level
for a failure that occurs on only a small number of nodes. This
happens only because our pattern extraction algorithm could not
find patterns at smaller levels (node compared to slot, slot instead
of cage and so on) by just examining the location id. In order to find
better patterns, we will take the analysis a step further by looking
at the network topology and how location ids map on the network.

5.1 Network topology
In Blue Waters compute nodes are connected by a 23x24x24 3D
torus network and the Sonexion nodes in a fat tree connecting to
the compute nodes through Infiniband.

We mapped the location ids of each compute node on the torus
network and looked at patterns at this level (rather than patterns in
the location ids). When there are no patterns the algorithm will still
use the hierarchical prediction method described above. In general,
mapping location ids on the torus on Cray systems follows the
algorithm described in figure 11. In the figure every cube in the
torus represents a Gemini hub. Consecutive nodes in the same slot
are connected to the same Gemini hub so in the figure every cube
represents two consecutive nodes (nodes 0 and 1 and node 2 and
3 from every slot). Two neighbour Gemini hubs on the OY axes
create a slot, multiple consecutive slots on the OZ axes form a
cage (in the figure two slots create a cage) and multiple consecutive
cages on the OZ axes create a cabinet (in the figure two cages create
a cabinet). The cabinets are divided in two dimensions, first on the
YOZ plane and then on the OX. For the Blue Waters system, there
are 2 Gemini hubs in each slot, 8 slots form a cage and 3 cages
create a cabinet. Each cabinet is as wide as the OZ portion of the
torus, so the entire Gemini hub set is divided into 23 cabinets on
the OX axes and 12 cabinets on the OY like in figure 12.

The algorithm used for extracting patterns in the torus looks at
both relations between precursors in a chain and the predicted fail-
ure but also at location propagation patterns for the same failure.
For this paper we implemented a simple neighbour regression al-
gorithm that looks only for mathematical relation between nodes on
each of the three axes. Basically after eliminating outlier nodes, the
algorithm extracts a cube of minimal dimension that captures all the
active nodes (nodes where failures are occurred). For the future we
plan to investigate more complex spatial data mining techniques.

Figure 10B presents the results of using the extracted patterns
with the new method for prediction on the online testing part of
the log. The new method has similar recall and precision values as
with the hierarchical method from the previous section. The main
advantage of this method is that it reduces the number of times we
over-estimate the number of nodes that might fail. The method uses
prediction at cabinet/cage/slot level less frequent. The analysis on

Figure 11. Failure prediction: simulate online

Figure 12. Failure prediction: simulate online

the online testing phase shows that out of all true positives: 21%
of predictions where slot prediction with only one or two nodes
failing, 2.3% were cage predictions with the same average of 3
node failures; and 12.5% were cabinet failures with an average of
4 node failures. For incorrect predictions the numbers decreased as
well having only 18% slot predictions, 2% cage predictions and 2%
cabinet predictions.

Assuming a 100% system utilization the percentage of nodes
that do not have to take useless preventive actions because of our
hierarchical prediction decreases with the new method by 15%.

6. Overall results
Until now failures did not have a type and were all analyzed to-
gether into two metrics: precision and recall. Since the results are
lower than what smaller systems present, we brokedown the pre-
dicted failures into their type. Table 2 presents the most frequent
failures, and the ones with the best and worst recall from the ana-

lyzed timeframe. The examples cover cases when the failures are
never seen by our prediction module, when there are limitations
in the extracted correlation chains or location propagation patterns,
and also cases when the prediction works well. We will discuss
each case in the following paragraphs.

In general, we observed that hardware failures can cause soft-
ware failures, software failures can cause other software failures
and that software fault tolerance overall is poor. There are cases
when one hardware failure can in practice bring down or cripple
the performance of the entire machine. After discussions with sys-
tem administrators at NCSA we observed that many of the major
outages in Blue Waters have been caused by environmental issues
and could have been avoided. As the system progresses we expect
to see more stability in the correlation patterns extracted by ELSA
and so we expect to see higher values for the recall and precision.

Table 2 present the precision and recall of a few failure types
when considering all failures occurrences or only the ones that
crash applications. The results show that the recall and precision
depend greatly on the failure type. For example, the Luster Meta-
data failures have very few precursors and since most of them occur
at the same time with the actual failure our method disregards the
majority. Metadata servers for the Luster filesystem store names-
pace metadata, such as filenames, directories, access permissions,
and file layout. When applications detect an MDT failure, they con-
nect to the the backup MDT and continue their execution. Just in
some cases, applications having trouble connecting to the back-up
MDT fail so in general it is expected to have a higher value for pre-
cision and recall when looking from the application’s point of view.
This is not the case, however, because of location prediction.

The failures concerning the Luster Object Storage Targets be-
have in a very similar matter with the difference that there is a
slightly larger set of precursors. During an OST failure, when appli-
cations attempts to do I/O to a failed Lustre target, these are blocked
waiting for OST recovery or failover. An application does not de-
tect anything unusual, except that the I/O may take longer to com-
plete. Rarely, when an OST is marked as inactive, the file operations
that involve the failed OST will return an IO error and the applica-
tion might be finished. The results when computing the recall just
for the failures that crash an application are similar as to the MDT
failures. Interestingly, the number of applications crashed because
of OST are higher than because of the metadata server failovers
even though their raw number is lower. We plan to study this into
more detail in the future.

Luster MDTs and OSTs are stored on the Sonexion storage sys-
tem and so they use different location ids than the compute nodes.
The Sonexion nodes are using a fat tree network and comunicate
with the compute node through Infiniband. When extracting the lo-
cation patterns we only used ids for the Sonexion nodes and so
far the correlations chains that have Luster information use only
Sonexion nodes. This means that both precursors and failures use
these nodes. This is enough to predict some of the OST failures.
However, since applications are running on compute nodes, the pre-
diction does not have enough information to manage to predict the
exact applications that might suffer from a Luster failover. Infor-
mation about what files are used by an application is necessary in
order to manage to predict application crashes. This explains why
ELSA was unable to predict any of the application failures caused
by Luster failovers. We encountered similar problems with Moab
failures as well.

DIMM failures are one of the most frequent hardware failures
in the Blue Waters system. There are a couple of accurate chains
extracted for this type of failure that give large lead times and that
were used in the online testing phase. Moreover, when a pair of
DIMMs is disabled due to faults, in some cases other DIMMS are
disabled in order to maintain a valid configuration. Even if the first

failure is not predicted, subquential DIMM failures are captured.
Our results on memory failures, in general, are similar to the ones
observed on the Blue Gene/L system in our previous studies [9].

Compute Blade failures represent less than 3% of total failures.
However, the patterns extracted for them have a high confidence
and lead times of more than one hour. Our previous experience with
Blue Gene/L shows similarities, with node card failures being the
type with the best results. The recall and precision values for Blue
Waters are smaller. However, looking at the patters needed to be
used for prediction we believe the numbers would increase with a
larger training phase. Another example are Gemini failures which
are successfully predicted and for which the location prediction
works flawless.

Since Sonexion and Moab failures represent the majority of
problems on the Blue Waters system, we believe that increasing
the results for this type would benefit the overall prediction. For
this we filtered out all failures related to Luster and the scheduler
and redid the analysis focusing on best recall. The results show a
recall of 48% with a precision of 63%. The coverage in this case is
close to the 62% maximum targeted recall which suggests that the
main problem of our predictor are Luster and Moab failovers. We
will work in the future in finding better precursors for these types.

Overall, the conclusion of our detailed analysis is that we need
better precursors in order to increase our results on the Blue Wa-
ters, either from the system level or at the application level. For
example, monitoring the I/O patterns of an application could help
with location prediction for Luster errors which at this point repre-
sents the majority of the software failures. The best result obtained
shows a recall of 62% with a 85% precision and has good location
forecast for both predicting all failures and predicting failures that
cause application crashes. This category of failures would greatly
benefit from a larger training phase by achieving results very simi-
lar to the ones obtained on smaller systems.

7. Conclusion
Failure prediction has made substantial progress in the last 5 years
and current studies have shown that failure avoidance techniques
could give high benefits when combined with classical fault toler-
ance protocols. Understanding the properties of a prediction mod-
ule and exploiting them for enhancing fault tolerance approaches
and scheduling decisions is crucial for providing scalable solutions
to deal with failures on future HPC systems. In this paper, we pro-
posed a methodology for online failure predictions and tested it
on previous generation large scale system and on the Blue Waters
system. We described the problems and limitations faced in apply-
ing failure prediction on a petascale system and proposed a couple
of solutions that will help evolve our predictor into a viable so-
lution for failure avoidance approaches. The results obtained are
greatly dependent on the type of failures analyzed with some re-
sults showing that our method can predict over 60% of occurrences
of a certain type and other not being able to forecast more than
10%. Moreover, the analysis becomes even more complex when
looking from the application’s point of view increasing the recall
in some cases or making the prediction almost impossible without
context information in others. For the future, we plan to focus on
analyzing the difference between all types of events and improve
the results of our predictor by inspecting different precursor detec-
tors, especially for Luster and Moab failures, to include in ELSA.
Also, we will study to a wider extent, the impact of combining our
predictor with various fault tolerance protocols over the execution
time of applications.

Table 2. Frequency of Special Characters
Failure type Percentage Recall Application Crashes Application Crash Recall

Luster MDT Failure 39.6% 7% 5% 0%
Luster OST Failure 16.3% 15% 13% 0%

DIMM Failure 15.7% 38% 11% 58%
Compute Blade 2.9% 62% 21% 64%

PBS Out-of memory 3.6% 44% 0% 0%

Acknowledgments
This research is part of the Blue Waters sustained-petascale com-
puting project, which is supported by the National Science Foun-
dation (award number OCI 07-25070) and the state of Illinois. Blue
Waters is a joint effort of the University of Illinois at Urbana-
Champaign and its National Center for Supercomputing Applica-
tions. This research was done in the context of the INRIA-Illinois
Joint Laboratory for Petascale Computing. The work was also sup-
ported by the U.S. Department of Energy, Office of Science, under
Contract No. DE-AC02-06CH11357.

References
[1] Inter-Agency Workshop on HPC Resilience at Extreme Scale.

http:// institute.lanl.gov/ resilience/ docs/
Inter-AgencyResilienceReport.pdf, 2012. [Accessed on
July 2013].

[2] U.S. Department of Energy Fault Management Work-
shop. http:// shadow.dyndns.info /publications
/geist12department.pdf, 2012. [Accessed on July 2013].

[3] S. B. A.F. Patra and U. Kumar. Failure Prediction of Rail Considering
Rolling Contact Fatigue. International Journal of Reliability, Quality
and Safety Engineering, 3, 2010.

[4] S. U. C. P. B. M. Z. Agarwal, M. and S. Mitra. Circuit Failure
Prediction and Its Application to Transistor Aging. The 25th IEEE
VLSI Test Symposium, pages 277 – 286, May 2007.

[5] A. G. Evans and S. M. Wiederhorn. Crack propagation and failure
prediction in silicon nitride at elevated temperatures. Journal of
Materials Science, 9:270 – 278, February 1974.

[6] E. W. Fulp, G. A. Fink, and J. N. Haack. Predicting computer system
failures using support vector machines. In WASL, 2008.

[7] A. Gainaru, F. Cappello, S. Trausan-Matu, and B. Kramer. Event
log mining tool for large scale hpc systems. In Proceed-
ings of the 17th international conference on Parallel process-
ing - Volume Part I, Euro-Par’11, pages 52–64, Berlin, Heidel-
berg, 2011. Springer-Verlag. ISBN 978-3-642-23399-9. URL
http://dl.acm.org/citation.cfm?id=2033345.2033352.

[8] A. Gainaru, F. Cappello, and W. Kramer. Taming of the shrew:
Modeling the normal and faulty behavior of large-scale hpc systems.
In Proceedings of IEEE IPDPS 2012. IEEE press, 2012.

[9] A. Gainaru, F. Cappello, M. Snir, and W. Kramer. Fault prediction
under the microscope: A closer look into hpc systems. In Proceedings
of 2012 International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE press, 2012.

[10] G. Hamerly and C. Elkan. Bayesian approaches to failure prediction
for disk drives. 2001.

[11] E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer, and F. Cap-
pello. Modeling and tolerating heterogeneous failures in large parallel
systems. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, page 45.
ACM, 2011.

[12] A. A. Hwang, I. A. Stefanovici, and B. Schroeder. Cosmic rays
don’t strike twice: understanding the nature of dram errors and
the implications for system design. SIGARCH Comput. Archit.
News, 40(1):111–122, Mar. 2012. ISSN 0163-5964. . URL
http://doi.acm.org/10.1145/2189750.2150989.

[13] W. M. Jones, J. T. Daly, and N. DeBardeleben. Application moni-
toring and checkpointing in HPC: looking towards exascale systems.
Proceedings of the 50th Annual Southeast Regional Conference, pages
262–267, 2012.

[14] Z. L. S. C. L. Yu, Z. Zheng. Practical Online Failure Prediction for
Blue Gene/P: Period-based vs Event-driven. IEEE Conference on
Dependable Systems and Networks Workshops, pages 259–264, 2011.

[15] J. Lou. Mining dependency in distributed systems through unstruc-
tured logs analysis. ACM The Special Interest Group on Operating
Systems (SIGOPS), 44, 2010.

[16] N. T. T. T. K. Y. K. H. Mitsunaga, Y. and Y. Ishida. Failure prediction
for long length optical fiber based on proof testing. Journal of Applied
Physics, 53, July 1982.

[17] T. Muthumani, N. and A. Selvadass. Optimizing Hidden Markov
Model for Failure Prediction - Comparison of Gaines optimization
and Minimum message length Estimator. International Journal on
Computer Science and Engineering, 3, 2011.

[18] N. E. E. H. N. Bolander, H. Qiu and T. Rosenfeld. Physics-based
Remaining Useful Life Predictions for Aircraft Engine Bearing Prog-
nosis. Conference of the Prognostics and Health Management Society,
2009.

[19] NASA. Rocket engine failure prediction using an average signal power
technique. http://engineer.jpl.nasa.gov/practices.html (accessed on
August 2013), 1994.

[20] Z. Z. Qiang Guan and S. Fu. Ensemble of bayesian predictors for
autonomic failure management in cloud computing. 20th International
Conference on Computer Communications and Networks, pages 1–6,
2011.

[21] J. L. H. S. M. R. Vilalta, C. V. Apte and S. M. Weiss. Predictive
algorithms in the management of computer systems. IBM Systems
Journal, 41:461–474, 2002.

[22] R. Sahoo, M. Squillante, A. Sivasubramaniam, and Y. Zhang. Failure
data analysis of a large-scale heterogeneous server environment. In In-
ternational Conference on Dependable Systems and Networks, pages
772–781, 2004.

[23] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, and
S. Ma. Critical event prediction for proactive management in large-
scale computer clusters. In In KDD, pages 426–435. ACM Press,
2003.

[24] F. Salfner, M. Lenk, and M. Malek. A survey of online failure
prediction methods. Computing Surveys, 42:1–42, 2010. .

[25] S. V. Sasisekharan, R. and S. Weiss. Data mining and forecasting
in large-scale telecommunication networks. IEEE Expert, 11:37–43,
1996.

[26] M. Snir, W. Gropp, and P. Kogge. Exascale Research: Preparing for
the Post-Moore Era. Computer Science Whitepapers.

[27] Z. Z. R. T. S. C. Z. Lan, J. Gu. Dynamic meta-learning for failure
prediction in large-scale systems: A case study. Journal of Parallel
and Distributed Computing, 6:630–643, 2010.

[28] Z. Zheng and L. e. a. Yu. Co-analysis of ras log and job log on
blue gene/p. Proceedings of the 2011 IEEE International Parallel and
Distributed Processing Symposium, pages 840–851, 2011.

[29] Z. Zheng, Y. Li, and Z. Lan. Anomaly Localization in Large-Scale
Clusters. IEEE International Conference on Cluster Computing, pages
322–330, 2007.

jbullock
Typewritten Text
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

jbullock
Typewritten Text

