
Reducing Communication in Parallel Breadth-First
Search on Distributed Memory Systems

Huiwei Lu∗†, Guangming Tan∗, Mingyu Chen∗, Ninghui Sun∗
∗State Key Laboratory of Computer Architecture,

Institute of Computing Technology, Chinese Academy of Sciences
†Argonne National Laboratory

Email: huiweilu@mcs.anl.gov, tgm@ict.ac.cn, cmy@ict.ac.cn, snh@ncic.ac.cn

Abstract—Breadth-first search (BFS) is a key operation in
data-intensive graph analysis applications. However, for dis-
tributed BFS algorithm on large distributed memory systems,
data communication often limits the scalability of the algorithm
as it costs significantly more than arithmetic computation. In
this work, we try to reduce the communication cost in dis-
tributed BFS by sieving and compressing the messages. First,
we propose a novel distributed directory to sieve the redundant
data in collective communications. Then we leverage a bitmap
compression algorithm to further reduce the size of messages
in communication. Experiments on a 6,144-core Intel Westmere
based cluster show our algorithm achieve a BFS performance
rate of 12.1 billion edge visits per second on an undirected
graph of 8 billion vertices and 128 billion edges with scale-free
distribution. Compared to the “replicated-csr” version BFS in
Graph500, our algorithm reduces communication cost by 79.0%
and gets a speedup of 2.2×.

I. INTRODUCTION

Recently, graph has been extensively used to abstract
complex systems and interactions in emerging “big data”
applications, such as social network analysis, world wide web,
biological systems and data mining. With the increasing growth
in these areas, petabyte-sized graph datasets are produced for
knowledge discovery [1], [2], which could only be solved by
distributed memory systems. These data-intensive applications
are new but increasingly important high performance com-
puting (HPC) workloads. To guide the design of hardware
architectures and software systems intended to support such
applications, a new benchmark, Graph500 [3], is established
in 2010 by HPC community to evaluate the data processing
ability of current hardware platforms, and breadth-first search
(BFS) is chosen as the first representative application kernel.
As it serves as a building block for a great many graph algo-
rithms such as minimum spanning tree, betweenness centrality,
and shortest paths [4], [5], [6].

However, implementing a parallel BFS algorithm on a
distributed memory system with high performance is a chal-
lenging task due to inherent characteristics of graph problems.
First, data access in a BFS algorithm is highly irregular,
which lead to poor locality and little data reuse. Second, BFS
algorithms have very low computation to data access ratio. Its
performance is limited by the data movement, – in distributed

This work was done when Huiwei Lu was a student in the Institute of
Computing Technology, Chinese Academy of Sciences.

Number of Cores

96 384 1536 6144
P

er
ce

nt
 o

f T
im

e 
(%

)
0.0

20.0

40.0

60.0

80.0

100.0

communication
computation

Fig. 1. Time breakdown of the “replicated-csr” BFS algorithm in Graph500
in a weak scaling experiment on an Intel Westmere based cluster that use
fixed problem size per computing node (each node with about 16M vertices).
Communication time becomes the bottleneck when scale goes up.

memory systems, the communication [2], [7]. Finally, the per-
cent of communication time goes up when scale goes up. For
example, on a 6,144-core Intel Westmere based cluster system,
the “replicated-csr” BFS algorithm in Graph500 spends about
70% time on communication traversing a scale-free graph
with 8 billion vertices (Fig. 1). Therefore, to optimize BFS
algorithms in large-scale distributed memory systems, the most
critical task is to minimize its communication.

Different approaches have been proposed to optimize com-
munication in distributed BFS. Yoo [8] and Buluc [7] use
two-dimensional partitioning of the graph to reduce com-
munication overhead. The “replicated-csr” version BFS in
Graph500 reference code using bitmap to reduce the size of
messages [3]. In this paper, we will focus on minimizing
the size of communication messages. We design a novel
distributed cross directory to remove redundant data in the
collective communication operations. We further leverage data
compression techniques to reduce messages sizes, and evaluate
the tradeoff of compression ratio and compression time in
different compression techniques. The main contributions of
this paper include:

• We design a novel distributed data structure, cross
directory, to reduce communication cost in distributed
BFS algorithms, with which we propose a new dis-
tributed BFS algorithm that eliminates the redundant
communication operations. Experiments show that the



Fig. 2. The operation of (a) one BFS iteration on an undirected graph is equivalent to (b) one matrix vector multiplication. Frontier i can be obtained by
multiplication of the adjacent matrix and frontier i−1. (c) For distributed BFS, the frontier is partitioned among processors, which needs to be gathered together
using MPI_Allgather.

new algorithm scales well on large-scale parallel com-
puters.

• We evaluate several compression techniques to reduce
communication volume in distributed BFS algorithms.
In this case, by compressing the messages (bitmap
vectors) on the fly before communication, we reduce
the message size in communication effectively at the
cost of relatively cheap arithmetic operations.

• Experiments on a 6,144-core Intel Westmere cluster
shows our proposed distributed BFS algorithm is
capable of traversing a scale-free graph of 8 billion
(233) vertices and 128 billion edges at a speed of 12.1
billion of traversed edges per seconds, and achieves a
total 79.0% communication reduction and an averaged
2.2× performance improvement over the baseline al-
gorithm.

II. BASELINE BFS

A. Baseline BFS Described in Linear Algebra

We will first describe the baseline algorithm in linear alge-
bra. Let A denote the adjacency matrix of the graph G, fLk de-
note the frontier at level k, and πk =

∪k
i=1 fLi denote the vis-

ited information of previous frontiers. The exploration of level
k in BFS is algebraically equivalent to a sparse matrix vector
multiplication (SpMV): fL(k+1) ← AT ⊗fLk⊙πk. For exam-
ple, in Fig. 2 (a), traversing from level 0 to level 1 is equivalent
to the matrix vector multiplication in Fig. 2 (b). The syntax
⊗ denotes the matrix-vector multiplication operation, ⊙ de-
notes element-wise multiplication, where (a1, a2, · · · , an)T ⊙
(b1, b2, · · · , bn)T = (a1b1, a2b2, · · · , anbn)T , and overline
represents the complement operation. In other words, vi = 0
for vi ̸= 0 and vi = 1 for vi = 0.

Algorithm 1 describes the baseline BFS. Each loop block
(starting in line 3) performs a single level traversal. f rep-
resents the current frontier, which is initialized as an empty
bitmap; t is an bitmap that holds the temporary parent in-
formation for that iteration only; π is the visited information
of previous frontiers. The computational step (line 4,5,6) can
be efficiently parallelized with multithreading. For SpMV
operation in line 4, the matrix data is naturally split into pieces
for multithreading. At the end of each loop, ALLGATHER

Algorithm 1: Baseline BFS described in linear algebra.
Input : s: source vertex id

1 f(s)← s;
2 foreach processor Pi in parallel do
3 while f ̸= ∅ do
4 ti ← Ai ⊗ f ;
5 ti ← ti ⊙ πi; πi ← πi + ti;
6 fi ← ti;
7 f ← ALLGATHER(fi, Pi);

updates f with MPI_Allgather, which gathers all fi from
Pi (Fig. 2 (c)).

There are several reference BFS algorithms in Graph500.
We choose the “replicated-csr” implementation as the baseline
BFS for following reasons: First, the reference “replicated-
csr” BFS in Graph500 is much faster than the “simple”
and the “replicated-csc” [9]. The “replicated-csr” is faster
than “simple” because it use bitmap for the frontier vertices.
Instead of use 64-bit for each vertex, bitmap use only one
bit for each vertex, thus considerably reduces the size of the
communication messages. For a scale-free graph of diameter
d, the use of bitmap save 64/d in the size of communication
messages. Second, it is used as a subroutine in many state-
of-the-art BFS algorithms [10], [7], [8]. The improvement of
“replicated-csr” BFS is also applicable to these algorithms.
However, the “replicated-csr” BFS has several limitations: 1.
it use broadcast to update the frontier vertices, which cause
unnecessary communication; 2. the bitmap needs to include all
vertices in the frontier to form a set, even when there is only a
few vertices in the frontier. In the next section we will propose
two improvements to the “replicated-csr” BFS algorithm.

III. BFS WITH SIEVE AND COMPRESSION

A. Sieve

The problem of bitmap in Algorithm 1 is that each proces-
sor gets all frontier vertices from all the processors, regardless
whether a vertex is useful to each processor. For example, in
Fig. 3 (a), v2 does not has a direct edge connecting to the
vertices of P4, so sending it to P4 will be useless. However,
since v2 is included in the bitmap, it will be sent anyway
(Fig. 3 (b)).



Fig. 3. BFS with sieve. (a) v2 has no direct connection with P4. (b) The wasted communication of v2 in MPI_Allgather. (c) Use sieving to eliminate
unnecessary messages.

To explain this in linear algebra, let

A⊗f =


A1

A2

...
Ap



f1
f2
...
fp

 , Ai = (Ai,1 Ai,2 · · · Ai,p) , (1)

then f4 =
∑4

i=1 A4,i ⊗ fi. The connection of P2 and P4 is

A4,2 ⊗ f2 =

(
01
00

)(
x1

x2

)
=

(
y1
y2

)
. (2)

Denote Ai,j = [ai,j ]m×n, because a0,0 and a1,0 of A4,2 are
always zero, then whatever x1 is, y1 will always be zero. So
we always set x1 to be zero in communication as step one,
the benefit of this is that we can eliminate the zeros by using
compression in step two.

To set vertices like x1 to be zero, we formally define a
directory vector as follows: for each item vk in vector Vi,j , vk
is set to one if column k in Ai,j contains at least one non-zero.

Vi,j = (v1, v2, · · · , vn) (3)

where vk =

{
1, ∃ai,k = 1, i ∈ [1,m], k ∈ [1, n]

0, otherwise

For the above example, V4,2 = (0, 1) is sent to P2 from P4

during initialization. When traversing begins, f2 is sieved into
f2,4 = f2 ⊙ V4,2 = (1, 1)T ⊙ (0, 1)T = (0, 1)T , so we only
send one vertex (in compressed bitmap format) back instead
of two (Fig. 3). This “sieve effect” is where communication is
reduced.

The cross directory of processor Pi is defined as:

Ci = {Vx,i or Vi,x | x = 1, 2, · · · , p} (4)

Besides a row of directory vectors Vi = {Vi,y | y =
1, 2, · · · , p}, Pi own a copy of the directory vectors {Vx,i |
x = 1, 2, · · · , p} in column i. The directory in the column
direction is established during initialization and used to provide
a local lookup for sieving.

Algorithm 2: Distributed BFS with sieving and compres-
sion.

Data: f ′
i = {f ′

i,1, f
′
i,2, · · · , f ′

i,n−1}:send buffer;
g′i = {g′i,1, g′i,2, · · · , g′i,n−1}:receive buffer;
Ci:cross directory for Pi.

1 f(s)← s;
2 initialize Ci;
3 foreach processor Pi in parallel do
4 while f ̸= ∅ do
5 ti ←

∑n
j=1 Ai,j ⊗ fi,j ;

6 ti ← ti ⊙ πi;
7 πi ← πi + ti; fi ← ti;
8 foreach j ∈ [0, n) in parallel do
9 fi,j = fi ⊙ Vj,i; /* sieving */;

10 f ′
i,j ← Compress(fi,j);

11 g′i ← ALLTOALLV(f ′
i , Pi);

12 foreach j ∈ [0, n) in parallel do
13 fi,j ← Uncompress(g′i,j);

B. Compression

Sieving helps to eliminate the unnecessary vertices in the
frontier vector. However, instead of being completely removed
from the bitmap, the unnecessary vertices are set to zero after
sieving, as the bitmap need to maintain all bits in the set to
index each bit. This limitation of bitmap holds back the benefit
of sieving to reduce the message size in communication.
A closer examination of the bitmap reveals that most bits
in the bitmap are zero. This leads us to the idea of using
lossless compression to eliminate the redundancy of the zeros.
Fig. 4 illustrates the process of sieving and compressing.
Algorithm 2 is our directory-based algorithm with compression
and sieve: based on Algorithm 1, Algorithm 2 first sieves the
frontier bitmap with the directory vector (line 9), making the
bitmap sparser; then it compresses this sieved bitmap (line
10) and send it with ALLTOALLV (line 11); after received the
compressed bitmap, the original vector could be restored with
uncompression (line 13).



Fig. 4. BFS with sieve and compression.

TABLE I. A WAH COMPRESSED BITMAP.

16 bits 1000000000000000
3-bit groups 100 000 000 000 000 0
WAH 0100 1100 0000

We use word-aligned hybrid (WAH) [11] for Compress
and Uncompress functions. We can use any lossless compres-
sion algorithm here, for example, LZ77 [12] or other text
compression schemes. However, the benefit depends on the
compression cost and compression ratio of a compression
algorithm. WAH is chosen for its fast compression speed
and reasonable compression ratio. We also evaluate multiple
compression methods from Zlib library [13] in Section V.

Table I gives an example of a WAH compressed bitmap. In
WAH, there are three types of words: literal words, fill words
and active words. The most significant bit of a word is used
to distinguish between a literal word (0) and a fill word (1).
And a active word stores the last few bits. We assume that
each computer word contains 4 bits and all fill bits are 0 in
this example. Under this assumption, each literal word stores 3
bits from the bitmap, and each fill word represents a multiple
of 3 bits. The second line in Table I shows the bitmap as 3-
bit groups. The last line shows the WAH words. The first two
words are regular words, the first is a literal word, and the
second a fill word. The fill word 1100 indicates a 0-fill of 4
words long (containing 12 consecutive 0 bits). Note that the fill
word stores the fill length as 4 rather than 12. The third word
is the active word; it stores the last few bits that could not be
stored in a regular word. For sparse bitmaps, where most of
the bits are 0, a WAH compressed bitmap would consist of
pairs of a fill word and a literal word [11].

IV. ALGORITHMIC ANALYSIS

A. Proof the Correctness of Sieving

We prove the correctness of Algorithm 2 by proving its
equivalence to Algorithm 1. Recall the observation that there
is wasted communication in the collective communication
ALLGATHER, which leads to the motive for using cross
directory to sieve the unnecessary messages in section III-A.
The fact behind this scene is that the unconnected parts of
the two communication sides will always result in a zero in
the product of matrix-vector multiplication. For example in

Fig. 3, whatever f2 is, the product of A4,2 ⊗ f2 will always
be (0, y2)

T because the first column of A4,2 is all zero (in
the graph, it means no vertex of P4 is connected to v2). And
the directory vector defined in equation 3 is used to record
this information and help identify the zero columns out. The
columns that consists only of zeros will be marked as 0 in
the cross vector. And the result of matrix-vector multiplication
remains correct as long as Vj,i is correct at the zero positions.
More formally, we prove it as follows.

Lemma 4.1: Ai,j ⊗ fj = Ai,j ⊗ fj ⊙ Vj,i.

Proof: Let X = (x1, x2, · · · , xn)
T = Ai,j ⊗ fj , Vj,i =

(v1, v2, · · · , vn)T , Y = (y1, y2, · · · , yn)T = Ai,j ⊗ fj ⊙ Vj,i,
then Y = X ⊙ Vj,i = (x1v1, x2v2, · · · , xnvn)

T . To prove
X = Y , we prove ∀i ∈ [1, n], xi = xivi.

Denote matrix Ai,j = [ai,j ]m×n, fj = (z1, z2, · · · , zn)T ,
as X = Ai,j ⊗ fj , then xk =

∑n
l=1 ak,lzl.

According to the definition of directory vector Vi,j in
section III-A, if vk = 0 ⇒ ∀ak,i = 0, i ∈ [1, n] ⇒
xk =

∑n
l=1 ak,lzl = 0, so yk = xkvk = 0 = xk; if

vk = 1 ⇒ xk = xkvk = yk. Thus for i ∈ [1, n], xi = yi,
then X = Y .

The above Lemma proves that each partial matrix-vector
multiplication product is effectively the same after unnecessary
messages has been filtered out by the cross directory. In Algo-
rithm 2 (line 5), these partial products are combined to form a
whole temporary frontier ti. Compared with Algorithm 1 (line
4) before sieving, these two approaches will get the same ti
as long as each partial product of ti remains the same. The
equivalence is proved formally as follows.

Lemma 4.2: ti =
∪n

j=1 Ai,j ⊗ fi,j in Algorithm 2 (line 5)
is equivalent to ti = Ai ⊗ f in Algorithm 1 (line 4).

Proof: In Algorithm 2, for ∀j ∈ [1, n], fi,j = fi ⊙ Vj,i,
according to Lemma 4.1,

∪n
j=1 Ai,j⊗fi,j =

∪n
j=1 Ai,j⊗fj⊙

Vj,i =
∪n

j=1 Ai,j ⊗ fj = Ai ⊗ f = ti.

Let’s take a look at a detail example. Using Algorithm 1
in Fig. 3, P4 gets its ti as

t4 = A4 ⊗ f =

(
01010000
01001100

)
⊗ (00110100)

T
=

(
1
1

)
(5)



Using Algorithm 2, P4 get t4 as

t4 = A4,1 ⊗ f4,1
∪

A4,2 ⊗ f4,2
∪

A4,3 ⊗ f4,3
∪

A4,4 ⊗ f4,4

=

(
01
01

)
⊗ (0, 0)T

∪(
01
00

)
⊗ (0, 1)T

∪(
00
11

)
⊗ (0, 1)T∪(

00
00

)
⊗ (0, 0)T =

(
1
1

)
(6)

The two different algorithms eventually get the same result.

B. Communication Cost

We study the parallel BFS problem in the message passing
model of distributed computing: every processor has its own
local memory, and data exchange between processors are done
by message passing. The time taken to send a message between
any two processors can be modeled as T (n) = α+nβ, where
α is the latency (or startup time) per message, independent
of message size, β is the transfer time per byte (inverse of
bandwidth), and n is the number of bytes transfered [14]. This
time cost model is generally used to model data movement
either between levels of a memory hierarchy or over a network
connecting processors. In this paper, we focus on the latter
case. To simplify the analysis, we assume bandwidth cost is
much bigger than latency cost (nβ ≫ α), — as the dataset of
distributed BFS is big, — therefore T (n) will be dominated by
the bandwidth cost nβ. For a given network, β is constant, so
the communication cost is in direct proportion to the message
size n. Let communication volume of a processor Vi be the size
of all messages communicated on processor Pi in an algorithm.
The communication volume of an algorithm is defined as V =
max{Vi | i ∈ [1, p]}.

The communication volume of MPI collective communi-
cation is derived from [15], [16]: For p processors, when each
processor needs to broadcast n/p size of message to others,
the communication volume of both allgather and alltoall are
O(n). There are many algorithms for allgather, for example,
ring and recursive doubling [15]. The ring algorithm finishes
in p− 1 steps, in each step process i send n/p data to process
i + 1 and receives n/p from process i − 1; the recursive
doubling algorithm finishes in log p steps, in step s process
i exchanges ns/p data with process (i+s)%p. The time taken
for these two algorithm is Tring = (p − 1)α + p−1

p nβ and
Trec dbl = log pα + p−1

p nβ, respectively. No matter what
algorithm is used, the bandwidth cost is the same p−1

p nβ.
In data-intensive applications like BFS, we assume bandwidth
cost is much bigger than latency cost, so its communication
volume is bound to O(n). The communication volume of
alltoall can be done in the same manner [16].

For graph G(V,E), let m = |E|, n = |V |, let d be the
diameter of the graph. At each level of BFS, the communi-
cation volume of allgather (Algorithm 1, line 7) is O(n); the
algorithm will finish at level d. So the communication volume
of Algorithm 1 is d×O(n).

For Algorithm 2, let p be the number of the processors,
e = m/n be the average degree of a vertex, and σ′ be the
compression ratio factor of Algorithm 2. The communication
volume of Algorithm 2 is σ′ × d × O(n). After sieve by
the distributed cross directory algorithm, a vertex is sent to

at most min(e, p) processors in Algorithm 2 instead of p in
Algorithm 1. Thus the messages in Algorithm 2 will contain
less non-zeros than those in Algorithm 1, which leads to a
compression ratio σ′ < 1.

C. Memory Consumption

For Algorithm 1, the memory consumption of f is O(n);
ti and πi are O(n/p). So the memory consumption of each
processor of Algorithm 1 is O(n). Compared to Algorithm 1,
Algorithm 2 adds f ′ and Vi, both of which costs O(n) memory.
So the memory consumption of Algorithm 2 is also bound to
O(n).

V. EXPERIMENTAL RESULTS

A. Experiment Setup

Our performance results is collected on a 6,144-core Intel
Westmere based cluster, connected by Infiniband of 40 Gb/s.
Each computing node has an SMP architecture with two
Xeon X5650 CPUs (Westmere), which are connected through
Intel QuickPath Interconnect (QPI) of 6.4 GT/s. The Xeon
X5650 has six cores, each supports simultaneous multithread-
ing (SMT) up to two threads. Each computing node has 24 GB
DDR3-1333 RAM. In our experiments we used up to 6,144
cores, to run the experiment. We use gcc 4.3.4 and MPICH2
1.4.1 to compile our algorithms. The GNU OpenMP library is
used for intra-node threading.

The input datasets are generated use synthetic kronecker
graphs [17] in Graph500 benchmark which follow power law
distributions: heavy tails for the degree distribution; small
diameters; and densification and shrinking diameters over
time. That means most of vertices has a small number of
neighboring vertices and the graph is sparse. The graph size
is determined by two parameters: “scale” and “edge factor”,
where the total number of vertices N equals 2scale, and
the number of edges, M = edgefactor ∗ N . The default
edgefactor is set 16. Different from TOP500 [18], Graph500
use a new rate called traversed edges per second (TEPS)
to measure BFS performance. Let time be the measured
execution time for running BFS. Let m be the number of input
edge tuples within the component traversed by the search,
counting any multiple edges and self-loops. The normalized
performance rate traversed edges per second (TEPS) is defined
as: TEPS = m/time.

B. Experiment Results

Fig. 5 shows the weak scaling performance of our BFS
algorithms. We run this experiment on a 6,144-core Intel
Westmere based cluster, with one process per SMP node (12
cores for each node). For intra-node threading, we use the
GNU OpenMP library. Algorithm 2 (DIR-WAH) outperforms
all other algorithms and have the best scalability. DIR-WAH
achieves 1.21E+10 TEPS at scale 33 with 6,144 cores, 2.24×
faster than Algorithm 1 (BIT). As a comparison, we also
implement another BFS algorithm with only compression (WAH
in the plot) to see the effect of sieve: with only compression,
WAH is 1.69× faster than BIT; with sieve, DIR-WAH is another
1.33× than WAH. The performance gap between DIR-WAH and
BIT becomes wider as the number of CPU cores increases.
This is because the larger the number of CPU cores used, the



Number of Cores

96 384 1536 6144

T
E

P
S

0.0

2.0e+9

4.0e+9

6.0e+9

8.0e+9

1.0e+10

1.2e+10

1.4e+10

DIR-WAH: with sieve and compression
WAH: with compression
BIT: baseline BFS

Fig. 5. Weak scaling performance of different BFS algorithms. The
experiment use fixed problem size per computing node (each node has about
16M vertices).

Number of Cores

96 38
4

15
36

61
44 96 38

4
15

36
61

44 96 38
4

15
36

61
44

T
im

e 
(in

 s
ec

on
ds

)

0

5

10

15

20

25

30

traversing
reducing
communication
compression & sieve

DIR-WAH WAH BIT

Fig. 6. Time breakdown of different BFS algorithms.

more distributed BFS algorithm will depend communication,
and the more benefits compression and sieve will bring. We
will see the time breakdown in the next figure.

Fig. 6 is the time breakdown of the algorithms in Fig. 5:
“traversing” time is the time spent on local computing; “re-
ducing” time is the time spent on a MPI reduction operation
to get the total vertex count of the frontier; “communication”
time is the time spent on communication; “compression &
sieve” time is the time spent on compression and sieve. For
all three algorithms, as the number of CPU cores increases,
“communication” times increase exponentially. For BIT, it
accounts for as much as 73.2% of the total time for 6,144
cores. The “reducing” times also increases because the imbal-
ance of a graph become more severe as the graph becomes
larger; the local “traversing” times remain more or less the
same because the problem size per computing node is fixed. At
6,144 cores, WAH reduces the “communication” time by 52.4%
compared to BIT; DIR-WAH reduces the “communication”
time by another 55.9% compared to WAH, achieving a total
79.0% reduction compared to BIT, from 18.6 seconds to 3.9
seconds. On one hand, the “compression & sieve” time of WAH
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(only compression time is counted for WAH) at 6,144 cores is
less than 0.1% of the total run time and not shown in the
figure. This means the benefit of compression is at very little
cost. On the other hand, the time of “compression & sieve”
in DIR-WAH, — the computing time traded for bandwidth —
accounts for 11.1% of the total. This is because Algorithm 2
(line 9) needs to copy the frontier for each process before
sieve. This copying time is expensive because it is in direct
proportion to the number of processes. Overall, comparing
DIR-WAH to WAH (6,144 cores), sieve costs about 1.3 seconds
but saves 5.0 seconds in communication.

Fig. 7 plots the performance of different BFS algorithms at
different scales. The experiment runs on 6,144 cores. We can
learn from this plot that the compression and sieve method
favors larger messages. The size of messages will affect the
results: at scale 26, DIR-WAH, WAH and BIT need to exchange
8MB bitmap globally using MPI collective communications;
at scale 33, 1GB. DIR-WAH is the slowest when the scale
is small, but it gradually catches up and surpasses all other
algorithms when scale gets bigger.
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We compare the efficiency of different compression meth-
ods: WAH [11] and Zlib [13] with different compression levels.
Here, DIR stands for with sieve, ZLB stands for Zlib, and
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WAH stands for WAH compression; DF, BS and BC stands for
“default”, “best speed” and “best compression ratio” options
for Zlib. Fig. 8 shows the weak scaling performance of BFS
algorithms with different compression and sieve methods. BFS
with Zlib best compression ZLB-BC is the slowest. With 6,144
cores, DIR-WAH provides the best performance, followed
by ZLB-BS (69.9% of DIR-WAH), DIR-ZLB-BS (66.7%),
ZLB-BC (53.5%), and DIR-ZLB-DF (39.7%) respectivelly.
Fig. 9 shows the time breakdown of these algorithms. At
scale 33 with 6,144 cores, DIR-ZLB-DF’s “communica-
tion” time is the smallest, 0.82× of DIR-WAH, followed
by DIR-ZLB-BS (0.83×), DIR-ZLB-BC (1.23×), ZLB-BS
(1.57×) and ZLB-BC (1.61×). Although DIR-ZLB-DF
and DIR-ZLB-BS’s communication times are less than
DIR-WAH, their “compression and sieve” times are 14.25×
and 5.44× of DIR-WAH. So the overall performance of
DIR-ZLB-DF and DIR-ZLB-BS are worse than DIR-WAH.
For all three compression levels in Zlib we tested, default
method, not the best compression method, provides the best
compression ratio. In fact, the Zlib best compression method
is not suited for bitmap compression: it is not only the slowest,
but also provides the worst compression ratio.

VI. RELATED WORKS

Several different approaches are proposed to reduce the
communication in distributed BFS. Yoo et al. [8] run dis-
tributed BFS on IBM Blue Gene/L with 32,768 nodes. Its
high scalability is achieved through a set of memory and
communication optimizations, including a two-dimensional
partitioning of the graph to reduce communication overhead.
Buluç and Madduri [7] improved Yoo et al.’s work by adding
hybrid MPI/OpenMP programming to optimize computation
on state-of-the-art multicore processors, and managed to run
distributed BFS on a 40,000-core machine. The method of
two-dimensional partitioning reduces the number of processes
involved in collective communications. Our algorithm reduces
the communication overhead in a different way: minimizing
the size of messages with compression and sieve. Moreover,
these two optimizations could be combined together to fur-
ther reduce the communication cost in distributed BFS. A
preliminary result is presented in Section VII to demonstrate
its potential. Beamer et al. [10] use a hybrid top-down and

bottom-up approach that dramatically reduces the number of
edges examined. The sample code in Graph500 [3] use bitmap
(bit array) in communication, reducing its message size.

Benchmarks, algorithms and runtime systems for graph
algorithms have gained much popularity in both academia and
industry. Earlier works on Cray XMT/MTA [19], [20] and
IBM Cyclops-64 [21] prove that both massive threads and fine-
grained data synchronization improve BFS performance. Bader
and Madduri [19] designed a fine-grained parallel BFS which
utilizes the support for hardware threading and synchronization
provided by MTA-2, and ensures that the graph traversal is
load-balanced to run on thousands of hardware threads. Mizell
and Maschhoff [20] discussed an improvement on Cray XMT.
Using massive number of threads to hide latency has long be
employed in these specialized multi-threaded machines. With
the recent progress of multi-core and SMT, this technique
can be popularized to more commodity users. Both core-
level parallelism and memory-level parallelism are exploited
by Agarwal et al. [22] for optimized parallel BFS on Intel
Nehalem EP and EX processors. They achieved performances
comparable to special purpose hardwares like Cray XMT and
Cray MTA-2 and first identified the capability of commodity
multi-core systems for parallel BFS algorithms. Scarpazza et
al. [23] use an asynchronous algorithm to optimize communi-
cation between SPE and SPU for running BFS on STI CELL
processors. Leiserson and Schardl [24] use Cilk++ runtime
model to implement parallel BFS. Cong et al. [25] present
a fast PGAS implementation of distributed graph algorithms.
Another trend is to use GPU for parallel BFS, for they pro-
vide massively parallel hardware threads, and are more cost-
effective than the specialized hardwares. Generally, GPUs are
good at regular problems with contiguous memory accesses.
The challenge of designing an effective BFS algorithm on GPU
is to solve the imbalance between threads and to hide the cost
of data transfer between CPU and GPU. There are several
works [26], [27] working on this direction.

The cross directory proposed in this paper is inspired by
Pinar and Hendrickson’s distributed directory [28] and Baker
et al.’s assumed partition algorithm [29]. In their work, the
communication pattern is dynamically determined and more
general,while in our case,the communication parties are static.
So we store the directory on both side of the communication,
and update them synchronously on each side instead of send
the updated directory over the network each time.

VII. CONCLUSION

The purpose of this paper is to reduce the communication
cost in distributed breadth-first search (BFS), which is the
bottleneck of the algorithm at scale. We found two problems
in previous distributed BFS algorithms: first, their message
formats are not condensed enough; second, broadcasting mes-
sages causes waste. We propose to reduce the message size
by compressing and sieving. By compressing the messages,
we reduce the communication time by 52.4%. By sieving the
messages with a distributed directory before compression, we
reduce the communication time by another 55.9%, achieving
a total 79.0% reduction in communication time and 2.2×
performance improvement over the baseline implementation.

For future works, we would like to combine our opti-
mization of message size with other methods such as two-



dimensional partitioning [7] and hybrid top-down and bottom-
up algorithm [10]. The potential of compression and sieve
is clear. A preliminary optimization of the distributed BFS
algorithm in combinational BLAS library [30], compressing
the sparse vector using Zlib library, reduces the communication
time by 41.9% and increases overall performance by 1.11×.
By using compressed bitmap and adding sieve, we expect to
further improve its performance.
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