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Abstract

We propose a derivative-free algorithm for finding high-quality local
minima for functions that require significant computational resources to
evaluate. Our algorithm efficiently utilizes the computational resources al-
located to it and also has strong theoretical results, almost surely starting
a finite number of local optimization runs and identifying all local minima.
We propose metrics for measuring how efficiently an algorithm finds local
minima, and we benchmark our algorithm on synthetic problems (with
known local minima) and two real-world applications.

1 Introduction

In this paper, we are interested in finding multiple, high-quality local minima
for the bound-constrained, nonlinear optimization problem

minimize
x∈Rn

f(x)

subject to: x ∈ D = {x : −∞ < l ≤ x ≤ u <∞}
(1)

when the function f is expensive to evaluate and w concurrent evaluations of f
are possible.

Why multiple, high-quality local minima? In settings where problems
such as (1) are stated without a given nominal design or starting point x0 ∈ D,
a typical practitioner desires a globally optimal solution, meaning an x∗ ∈ D
with f(x∗) ≤ f(x) for all x ∈ D. On the other hand, whether driven by the-
oretical guarantees or practical time constraints, many algorithmic approaches
for solving (1) focus on efficiently finding local minimizers. Such a local mini-
mizer x̄∗ has the desirable property that no improvements in the objective can
be obtained by small, feasible perturbations of x̄∗. In the context of global

∗This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, SciDAC and applied mathematics
programs under Contract DE-AC02-06CH11357.
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optimization, “high quality” would thus refer to those local minimizers whose
corresponding function values are small, the highest-quality minimizer(s) corre-
sponding to the global minimizer(s).

Finding multiple, high-quality local minimizers, however, is not just a surro-
gate for finding an approximate global minimizer. For example, in many physical
systems one is interested not just in the ground state (that which globally min-
imizes energy) but also in nearby (also in terms of energy) excited states; see
[7] for another application where all local minima are desired.

In engineering design optimization, such a task is also frequent when one
has not just the quantifiable objective f but also additional nonquantifiable or
nonordinal metrics that are used to compare points within the domain. For
example, the objective f may be the cost of producing a structure, but the
aesthetics of the design may also matter in a way that cannot be captured in
terms of cost or some other ordinal objective. In this context, “high quality”
would refer to the trade-off between the objective function value of different
minima and their nonordinal objective value. In this work we focus on f as
a measure of quality in order to demonstrate our proposed approach and to
test this approach’s ability to find all minima of (1). This approach naturally
produces a list of points to be evaluated by nonordinal metrics.

Why concurrent evaluations? For many engineering design problems, eval-
uating the objective f involves running a complex numerical simulation. To
reduce the overall wall time required by the simulation, researchers increasingly
use parallel resources (cores and/or nodes). However, savings in time from such
parallelism is useful only up to a point (see, e.g., [12]); beyond this point, more
resources do not decrease the time required to evaluate the simulation at a sin-
gle input. When the computational resources that can be effectively utilized by
a simulation are less than the available computational resources, the only way
to further decrease the time needed to solve the design problem (without fun-
damentally altering the simulation) is to evaluate the objective function (and,
hence, the simulation) concurrently at multiple inputs.

In many situations with computationally expensive simulations, the number
of concurrent evaluations possible, w, is relatively small; this is often because
the simulation is run on a computational system that is not multiple orders
of magnitude larger than the resources that the simulation can efficiently use.
Furthermore, when the time required to evaluate the simulation is relatively ho-
mogeneous throughout the domain D, it is natural to think of such evaluations
as occurring in synchronous batches of size w. Although this batch assump-
tion will be relaxed in future work (see, e.g., [12] and [1] for cases when such
asynchronous behavior is useful), here we focus exclusively on the synchronous
batch case.

Given the above context, a natural approach for identifying multiple local
minima is a batch, multistart method. In a serial paradigm, such methods
iteratively identify a point x̂ that will be improved by using a local optimization
run and then, on subsequent iterations, decide whether to continue improving
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x̂ or to find a new point to start improving. In a parallel, batch paradigm,
the batches of w points could consist of some combination of the next point in
a serial local optimization run, points randomly sampled from the domain in
order to determine points from which to start future local optimization runs,
and a group of points in a concurrent local optimization run. Here, we do
not consider the third class of points; instead we focus on the use of readily
available local optimization solvers that perform sequential evaluations of the
objective. Intuitively, handling multiple local optimization runs simultaneously
allows one to make quicker progress in identifying more local minima than does
sequentially completing local optimization runs; this situation is especially true
when considerable evaluations are expended in the “tail” of a local optimization
run.

In addition to these practical concerns, we would like to establish theoreti-
cal properties of our algorithm, especially those that have implications on the
algorithm’s empirical performance. In particular, we will show that our algo-
rithm finds every local minimum while starting only a finite number of local
optimization runs; we view these local optimization runs as the chief expense
of multistart methods. Since our algorithm is stochastic, these results can at
best be in the almost sure sense. That is, the algorithm finds all minima while
starting a finite number of local optimization runs with probability 1.

Although the analysis holds when derivatives are available, in this paper we
focus on the case where derivatives of f are unavailable. In particular, we show
that the framework is effective when the local solver employed does not require
derivative information. Our algorithm can be viewed as a master giving points
to w workers of two types: workers that are randomly sampling points in the
domain and workers that are performing a local optimization run. We ensure
that these w workers are occupied in every batch iteration; for example, if no
local optimization run requires function evaluations, then w randomly sampled
points will be evaluated in that iteration.

An outline of the paper and its contribution are as follows. Section 2 contains
background information on previous methods for solving (1) and other necessary
information. In Section 3, we propose a new, batch parallel multistart algorithm,
which prioritizes and begins local optimization runs according to the availability
of computational resources. Our analysis of the algorithm shows that it finds all
local minima almost surely and that it starts finitely many local optimization
runs almost surely. Section 4 discusses performance measures, and we propose
a new convergence test to measure how efficiently an algorithm identifies a set
of local minima. We use this test in Section 5 on synthetic test problems and
two engineering applications and show that the proposed algorithm reliably
finds multiple, high-quality local minima. Furthermore, our numerical results
show that these minima are found without significantly sacrificing efficiency in
finding a global minimum, often surpassing other algorithms designed with this
single goal in mind. A summary of the paper and a discussion of future work
in Section 6 conclude the paper.
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2 Background

We first discuss previous algorithms and then develop some notation and back-
ground material necessary for our algorithm.

2.1 Algorithms for finding multiple local minima

Multistart methods are a broad category of algorithms that aim to find the best
local optima by starting local optimization runs from different points in the
domain. This multistart mechanism can be added on top of any local optimiza-
tion method, and thus many abstractions of multistart algorithms do little more
than determine starting points for local optimization runs. Consequently, such
multistart algorithms must be implemented with great care in settings where
local optimization algorithms converge only asymptotically and computational
resources are limited.

One such multistart algorithm is multilevel single linkage (MLSL) [16, 17], a
stochastic method with the theoretical property that all local minima are found
almost surely and that only a finite number of local optimization runs are started
almost surely. The GLOBAL algorithm [2] is a sequential implementation of
MLSL in the derivative-free case. In each iteration, GLOBAL randomly samples
the domain and then sequentially performs local optimization runs, refining
randomly sampled points until all are assigned to known clusters of points.

In addition to algorithms that start multiple local optimization runs, meth-
ods for finding a global minimum of (1) may also identify local minima, even
if the methods were not designed with this goal in mind. Without additional
assumptions on f , any algorithm with a theoretical guarantee of identifying a
global minimum must generate a dense set of iterates in the domain [20]. Thus,
any global optimization algorithm with a convergence guarantee will eventually
evaluate points arbitrarily close to the local minima of (1). The points evalu-
ated by the algorithm could easily be processed to find points in the domain
that are better than all nearby points.

Many algorithms utilize the components of multistart and global algorithms.
For example, the “Global and Local Optimization using Direct Search” (GLODS)
algorithm [3] starts several direct searches in regions of interest, possibly merg-
ing local optimization runs that approach each other. The Multilevel Coordinate
Search algorithm [13] is a modification of the global optimization algorithm DI-
RECT [14] to also include some local optimization components. Each of these
three methods is purely sequential: each evaluates a single point in D on every
iteration.

An example of a global optimization method that is not sequential is the
parallel implementation of DIRECT called pVTdirect [11, 10]. This algorithm
uses parallel function evaluations to solve derivative-free optimization problems
and can approximate a batch algorithm if it is allocated w + 1 MPI ranks (one
additional rank to coordinate the w workers evaluating points of interest). By
design, pVTdirect does not attempt to always evaluate w points concurrently
when w is small. Rather, the algorithm was implemented to avoid bottlenecks
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that could arise from a master giving each of w workers a point to evaluate on
every iteration.

Largely because of its theoretical results regarding the number of local op-
timization runs started, we base our algorithm on MLSL. We follow the spirit
of the sequential MIPE algorithm from [21, Ch. 6] and use all previously eval-
uated points when determining where to start a local optimization run. This
is a key distinction; to our knowledge, all other methods consider starting runs
only from randomly sampled points.

Since we assume that computational resources are limited, we want a theo-
retical multistart framework that does not start optimization runs arbitrarily.
Rather, our framework will start runs only when computational resources are
available. This distinction is glossed over by many multistart methods but is im-
portant for ensuring that a multistart algorithm can be implemented in practice
while retaining desired asymptotic properties.

In Section 5, we compare an implementation of our proposed algorithm with
implementations of several existing algorithms

2.2 Notation

We take X ∗ to denote the set of all local minima of f within D. We make the
following assumption about the problem (1).

Assumption 1. Assume that the function f and its local minima satisfy the
following:

(A) f is twice continuously differentiable,

(B) X ∗ ⊂ int(D), and

(C) there exists εx∗ > 0 such that ‖x∗ − y∗‖ > εx∗ for all x∗, y∗ ∈ X ∗.

Let f∗(i) be the ith smallest value in
{
f(x∗(i)) : x∗ ∈ X ∗

}
, and let x∗(i) be the

corresponding x∗ ∈ X ∗ (breaking ties arbitrarily). Denote the set of workers W
and its constituent sets of random-sampling and local-optimization workers by
WS and WL, respectively. Denote their respective sizes by |W| = |S|+ |L|.

Denote the cumulative history of points evaluated after batch k by Hk =
Sk
⋃Lk where Sk are randomly sampled points and Lk are local optimization

points. Let Ak ∈ Lk be the subset of points that are within active local opti-
mization runs, and let X ∗k be the set of local optimizers identified after batch k.
When necessary, define xk,` to be the point evaluated by worker ` on batch k.
Let Di,j = ‖xi − xj‖ for all points in Hk. Let B(x; δ) denote the ball of radius
δ around x ∈ Rn.

An algorithm is said to identify all local minima almost surely if

P

[
lim
k→∞

X ∗k = X ∗
]

= 1.
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Table 1: Example logical conditions to determine when to start a local opti-
mization run.
(L1) x̂ ∈ Lk and @x ∈ Lk with [‖x̂− x‖ ≤ rk and f(x) < f(x̂)]
(S1) x̂ ∈ Sk and @x ∈ Lk with [‖x̂− x‖ ≤ rk and f(x) < f(x̂)]
(L2) x̂ ∈ Lk and @x ∈ Sk with [‖x̂− x‖ ≤ rk and f(x) < f(x̂)]
(S2) x̂ ∈ Sk and @x ∈ Sk with [‖x̂− x‖ ≤ rk and f(x) < f(x̂)]
(L3) x̂ ∈ Lk has not started a local optimization run
(S3) x̂ ∈ Sk has not started a local optimization run
(L4) x̂ ∈ Lk is at least a distance µ from the domain boundary
(S4) x̂ ∈ Sk is at least a distance µ from the domain boundary
(L5) x̂ ∈ Lk is at least a distance ν from any known local min
(S5) x̂ ∈ Sk is at least a distance ν from any known local min
(L6) x̂ ∈ Lk is not in an active local optimization run
(L7) x̂ ∈ Lk has not been ruled stationary
(L8) x̂ ∈ Lk is on an rk-descent path in Hk for some x ∈ Sk satisfying (S2-S5)

Similarly, an algorithm is said to start finitely many local optimization runs
almost surely if

P

[
lim
k→∞

( Local optimization runs started in batches 1 to k ) <∞
]

= 1.

2.3 Previous MLSL results

A fundamental task of a multistart method is deciding where to start local op-
timization runs. The simplest methods perform random sampling and start a
local optimization run from every randomly sampled point. They continue this
procedure until a computational budget is exhausted. More complex methods,
naturally requiring more overhead, are more judicious in their selection of start-
ing points. Table 1 outlines some tests that may be used by a multistart method
for determining whether a local optimization run should be started from a pre-
vious randomly sampled point in Sk or a point in Lk evaluated during some
previous local optimization run.

The conditions (L1), (S1), (L2), and (S2) depend on a critical distance rk
that determines when no better points are sufficiently close to a point x̂. Al-
though many forms for rk are possible, we focus on the sequence from the
original MLSL paper. In iteration k, let

rk =
1√
π

n

√
Γ
(

1 +
n

2

)
vol (D)

σ log |Sk|
|Sk|

, (2)

where Γ(·) is the gamma operator, |Sk| is the total number of points randomly
sampled in the first k iterations, and σ is a positive constant. It is evident that
if sampling is guaranteed, |Sk| goes to infinity, and rk goes to zero.
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The conditions (L4), (S4), (L5), and (S5) are largely to show theoretical
results for the algorithm. (L6) is a computational construct of the algorithm.
The condition (L8) is needed in order to bound the number of local optimization
runs started. The conditions (L3), (S3), and (L7), are designed to prevent clearly
redundant local optimization runs.

Whether implicitly (e.g., (S2)) or explicitly (e.g., (L8)), several of the con-
ditions in Table 1 are based on the notion of an rk-descent path. An rk-descent
path in a set B from a point x0 ∈ B is a subset of points {xi ∈ B}hi=0 such that
Di,i+1 ≤ rk and f(xi) > f(xi+1) for i = 0, . . . , h− 1.

Algorithm 1: Original sequential MLSL

for k = 1, 2, . . . do
Evaluate f at N points uniformly sampled from D
Compute rk using (2)
Start a local optimization run at any previously evaluated point
satisfying

(S2), (S3), (S4), (S5)
end

The conditions in Table 1 allow us to succinctly define the original, sequential
MLSL algorithm in Algorithm 1. Although the presentation of this algorithm
is simple, many fundamental questions about MLSL must be addressed when
trying to implement it when the number of possible concurrent function evalua-
tions is limited. In order to prove that MLSL almost surely starts finitely many
local optimization runs and almost surely identifies all local minima, the original
MLSL analysis [16] made the following assumption about the local optimization
method.

Assumption 2. Assume the following:

(A) The local optimization method is “strictly descent” for a path contained in
D. That is, starting from any point x ∈ D, the local optimization method
generates a sequence of points xk′ , with xk′+1 = xk′ + pk′ , which converges
to a local minimum x∗ such that f(xk′ + β1pk′) ≤ f(xk′ + β2pk′) for all k′

and all β1, β2 satisfying 0 ≤ β1 ≤ β2 ≤ 1.

(B) If the local optimization method is applied to a point that is within distance
ν of a local minimizer x̄∗, then it will recognize x̄∗ as such.

Under these assumptions, the original MLSL algorithm has the following
theoretical results; the first result is proved in [16, Theorem 8], and the second
result is proved in [16, Theorem 12].

Theorem 1. If the problem in (1) satisfies Assumption 1, the local optimiza-
tion method satisfies Assumption 2, and rk is defined by (2) with σ > 4, then
Algorithm 1 will start a finite number of local optimization runs and will identify
every local minimum.
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3 A batch, derivative-free algorithm for finding
multiple minima

The simplest way that Algorithm 1 can be adjusted to the concurrent evaluation,
derivative-free setting is to exploit the natural parallelism offered by having N
randomly sampled points and possibly starting multiple local optimization runs
in each iteration. However, such an approach raises three problems, which
motivate our algorithmic developments.

First, the algorithm may request more or fewer local optimization runs than
there are available resources. If the local optimization method is a sequential
derivative-free algorithm, evaluating one point at a time, and |W| function eval-
uations can occur concurrently, then computational resources will not be used
if fewer than |W| local optimization runs are called for. If more than |W| local
optimization runs are requested, then such runs would need to be prioritized.

Second, even if exactly |W| local optimization runs are requested, it is un-
likely that each run will stop after the same number of function evaluations.
Rather, one must wait for the local optimization method requiring the most
function evaluations to terminate before proceeding to the next iteration.

Third, one iteration of Algorithm 1 may request only N evaluations, but the
next will request N plus however many local optimization function evaluations
are performed. This situation can make estimating the required computational
resources difficult.

We propose a batch algorithm for finding multiple local minima in Algo-
rithm 2 that efficiently uses the available computational resources by always
evaluating |W| evaluations on every iteration. The algorithm also uses Algo-
rithm 3 to explicitly state how local optimization runs should be prioritized.
Note that we must use rk−1 when deciding where to start local optimization
runs since only |Sk−1| random sample points have been evaluated at batch k.

Aside from the batch/sequential nature, Algorithm 2 and Algorithm 1 have
two key distinctions that we highlight. First, whereas Algorithm 1 bases its
decisions solely on randomly sample points (as indicated by the letter “S” in
the conditions (S2), (S3), (S4), (S5)), Algorithm 2 employs the entire history
of evaluations thus far (with decisions based on points from local optimization
runs indicated by the letter “L” in the conditions in Table 1). Second, the
batch iteration counter k in Algorithm 2 is fundamentally different from the
iteration counter in Algorithm 1. The counter in Algorithm 2 is directly tied to
the number of function evaluations performed, with exactly k|W| evaluations
performed in the first k iterations. This decision has practical benefits (the
number of iterations now directly relates with wall time) but will complicate
the analysis.

Algorithm 3 starts local optimization runs at the best points satisfying the
conditions in Table 1 and never stops giving computational resources to an
active local optimization run until it is completed. After the last point in a
local optimization run has been evaluated, the local optimization method will
identify the run as completed. This check ensures that Algorithm 3 has total
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Algorithm 2: Batch algorithm for finding multiple local minima

Given |W| workers, a function f , and a bound-constrained domain D
Set σ > 0, X ∗k = ∅
for w` ∈ W do

Give w` a uniformly sampled point x0,` to evaluate
end
k = 1
while true do

Receive f(xk−1,`)-values from each w` ∈ W and update Hk
Give Hk to the local optimization method to see if next point in any
run is

already evaluated and/or mark any worker w` as having no active
run

Possibly update Ak, and X ∗k
Compute rk−1 using (2)
for w` ∈ W do

xk,` = point generator(w`,Hk,Ak, rk−1) (see Algorithm 3)
Give xk,` to worker w` to evaluate

end
Increment k

end

Algorithm 3: point generator for worker w`

if w` ∈ WS then
Draw xk,` uniformly from D

else
if w` has an active local optimization run then

Set xk,` to be the next point determined by
the local optimization method

else
Identify the point x̂ ∈ Hk satisfying the list of conditions in
Table 1 with the smallest function value (breaking ties arbitrarily)
if No such x̂ ∈ Hk exists then

Draw xk,` uniformly from D
else

Start a local optimization run at x̂, set xk,` as the first point
evaluated by this run, mark w` as having an active local
optimization run, and mark x̂ (and the associated point in Sk
from condition (L8)) as having started a run

end

end

end

9



knowledge of what runs are completed and ensures that any local optimization
points have not been previously evaluated.

For the analysis of the algorithm, we assume the following about the local
optimization method employed in Algorithm 2.

Assumption 3. The local optimization algorithm has the following features:

(A) It is strictly descent.

(B) Started from any x ∈ D, it will evaluate some point within a distance ν
of some local minimizer x̄∗ in a finite number of function evaluations, for
arbitrary ν > 0.

(C) Once within a distance ν of x̄∗ (ν sufficiently small) the local optimization
algorithm will identify x̄∗ as a minimizer in a finite number of function
evaluations.

Assumption 3(A) is the MLSL Assumption 2(A) and Assumption 3(C) as-
sumption is a more explicit statement of what is required in practice for As-
sumption 2(B), namely that MLSL “recognizes a local minimizer as such,” to be
satisfied. Assumption 3(B) is necessary because our algorithm explicitly bounds
the number of active local optimization runs. This can be relaxed if one assumes
(as done in the analysis of other multistart methods) that local optimization runs
can be started arbitrarily without concern for available resources.

We make the following assumption about the number of workers of each
type.

Assumption 4. Assume that |WL| > 0 for infinitely many batch iterations.

This assumption guarantees that any local optimization run will eventually
be given the computational resources it needs. Note that if no randomly sampled
points are available to start a local optimization run and if |WS | = 0, then
Algorithm 3 will naturally generate |W| sample points to be used in the next
iteration.

Using these assumptions, we can prove that Algorithm 2 will almost surely
start a finite number of local optimization runs. We then use this result to
show that every local minimum will be identified almost surely by Algorithm 2
(and computational resources will be available to perform the local optimization
run).

Theorem 2. If the problem in (1) satisfies Assumption 1, the local optimiza-
tion method satisfies Assumption 3, and rk is defined by (2) with σ > 4, then
Algorithm 2 will start a finite number of local optimization runs almost surely.

Proof. The result follows from establishing that the conditions that must be
satisfied to start a local optimization run in Algorithm 2 are more restrictive
than the conditions required to start a point in Algorithm 1.

In order to start a local optimization run in Algorithm 2 from a random
sample point in Sk, the conditions in Table 1 that must be satisfied are a superset
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of the conditions used to determine when to start a local optimization run in
Algorithm 1. In order to start a local optimization run in Algorithm 2 from a
local optimization point in Lk, condition (L8) ensures that the run is associated
with a random sample point that would have satisfied the subset of conditions
required to start a local optimization run in Algorithm 1. Therefore, since
Algorithm 2 starts no more runs than does Algorithm 1 and since Algorithm 1
starts finitely many local optimization runs almost surely by Theorem 1, so does
Algorithm 2.

We now use the fact that the number of local optimization runs is finite
almost surely to guarantee almost surely that a worker will be available for
Algorithm 2 to start a local optimization run that will identify every local min-
imum.

Theorem 3. If the function f satisfies Assumption 1, the local optimization
method satisfies Assumption 3, the set of workers satisfies Assumption 4, and
limk→∞ rk = 0, then every local minimum will be found by Algorithm 2 within
a finite number of batches.

Proof. Let x∗(i) be any local minimum that has not yet been identified by Al-

gorithm 2 before batch iteration k̄ (defined below). Define Qµ ⊂ D to be the
set of all points within a distance µ of the boundary of D. For x∗(i) ∈ X ∗, let

ψ(x∗(i)) > 0 be the largest scalar such that B(x∗(i);ψ(x∗(i))) satisfies the following:

1. B(x∗(i);ψ(x∗(i)))
⋂
Qµ = ∅, and

2. x1, x2 ∈ B(x∗(i);ψ(x∗(i))) with
∥∥∥x1 − x∗(i)

∥∥∥ <
∥∥∥x2 − x∗(i)

∥∥∥ ≤ ψ(x∗(i)) implies

f(x1) < f(x2).

Let ψ = min
x∗
(i)
∈X∗

{
ψ(x∗(i))

}
. That is, ψ is the largest Euclidean distance around

any local minima such that no points are within a distance µ of the boundary
of D and f is increasing.

The existence of such a ψ satisfying the first condition is guaranteed by X ∗ ⊂
int(D) from Assumption 1(B) for µ sufficiently small. The existence of such a
ψ further satisfying the second condition is guaranteed by Assumption 1(C)

ensuring an εx∗ > 0 such that
∥∥∥x∗(i) − x∗(j)

∥∥∥ ≥ εx∗ for all x∗(i), x
∗
(j) ∈ X ∗ and the

boundedness of D ensuring that |X ∗| is finite.

Since vol
(
B(x∗(i);ψ)

)
> 0, the uniform random sampling within Algorithm 2

will almost surely produce a point x̂ ∈ B(x∗(i);ψ) at some batch iteration k̄ when
rk̄ ≤ ψ.

Since the total number of local optimization runs started is almost surely
finite by Theorem 2 and by Assumption 3(B), each of these runs will evaluate
a point within a distance ν of a local minimizer in a finite number of func-
tion evaluations. By Assumption 3(C), the local optimization algorithm will
identify that minimizer as such in a finite number of function evaluations. By
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Assumption 4, these runs will all eventually be given the needed computational
resources. Therefore, almost surely, a worker wL ∈ WL eventually will be avail-
able to start the local optimization run at batch iteration k̄.

Therefore at batch iteration k̄, we will start a run either at x̂ or at a point
x̂′ ∈ Lk̄ on an rk̄-descent path in Hk̄ from x̂. By construction of ψ, x̂′ must
also be in B(x∗(i);ψ). In either case, since the local optimization procedure is

strictly descent by Assumption 3(A), the local optimization run started from x̂
or x̂′ will identify x∗(i) as a local minimizer.

4 Measuring performance

Plots of the best-found function value at batch k or the minimum distance from
an evaluated point to a given minimum at batch k may sufficiently display a
solver’s performance on a single problem. Examining such plots for a collection
of problems is much less straightforward. We use the performance and data
profiles developed in [15] to more succinctly compare the performance of a set of
numerical methodsM on the collection of problems P. These profiles require a
measure of convergence (parameterized by a constant τ) to determine whether or
when an algorithm has “solved” a given problem. We will measure convergence
using the following tests.

4.1 Within a relative distance τ of the j best local minima

Measuring convergence to a set of local minima is not straightforward. Moni-
toring only the function values observed by an algorithm is irrelevant without
also ensuring that the points producing those function values are close to a min-
imum of interest. However, just monitoring the minimum distance from a local
minimum to any point evaluated by an algorithm is also unsatisfactory since it
is relatively harder to find a point within a sphere of radius τ of a local mini-
mizer in higher dimensions. For example, a ball in Rn with radius 0.1 around a
local minimizer has a volume that is 3.1% of the volume of the unit cube when
n = 2, but 4.2× 10−5% of the volume of the unit cube when n = 7. Therefore,
in our estimation the more appropriate metric will keep a constant probability
(independent of dimension) of a point drawn uniformly from the domain being
sufficiently close (in the Euclidean sense) to a local minimizer.

Before defining how we measure how close an algorithm is to the j best local
minimizers, we first use the fact that f∗(i) ≤ f∗(i+1) to define j̄ ≥ j and j ≥ j to
be the largest and smallest indices such that f∗

(j̄)
= f∗(j) = f∗(j). These definitions

are necessary in order to handle the case when multiple local minima exist with
the function value f∗(j). For example, if we want to monitor progress to the
three best minima, but the five best local minima all have the same value, an
algorithm should receive credit for finding any of those five minima.

We consider a method to have found the j best local minima at a level τ ≥ 0
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after k batches if
∣∣∣
{
x∗(1), . . . , x

∗
(j−1)

}⋂{
x∗(i) : ∃x ∈ Hk with

∥∥x− x∗(i)
∥∥ ≤ γn(τ)

}∣∣∣ = j − 1

and∣∣∣
{
x∗(j), . . . , x

∗
(j̄)

}⋂{
x∗(i) : ∃x ∈ Hk with

∥∥x− x∗(i)
∥∥ ≤ γn(τ)

}∣∣∣ ≥ j − j + 1,

(3)

where γn(τ) = n

√
τ vol(D) Γ( n

2 +1)

πn/2 . Here, τ is interpreted as being a fraction of

the domain. This test has the desirable properties of being equally likely to
be satisfied by a point drawn uniformly from Rn independent of n. We note
that this measure of convergence requires adequate knowledge of the minimizers
{x∗(1), . . . , x

∗
(j̄)
}. We note that the definition of γn(τ) depends on the domain D

and therefore depends on how the domain is scaled.

4.2 Within a relative distance τ of the best function value

In addition to measuring when an algorithm finds points close to a set of local
minima, we want a test that measures when an algorithm finds function values
close to a global minimum. We consider an algorithm to find a global minimum
at a level τ after k batches if it has found a point x ∈ Hk satisfying

f(x0)− f(x) ≥ (1− τ) (f(x0)− fG) , (4)

where x0 is the starting point for problem p and fG is an estimate of the global
minimum (e.g., the known value f∗(1) or the least function value computed by

any solver in M). The quantity 1− τ denotes the fraction of possible decrease
found.

4.3 Performance profiles

We now describe how to construct performance profiles to monitor how effec-
tively an algorithm is solving problems in P relative to other methods inM for
a given convergence test. Let tp,m be the smallest number of batches required
for method m to satisfy the given convergence test for problem p ∈ P. Then the
performance profile of each solver m is the fraction of the problems in P where
the ratio

φp,m =
tp,m

minm′∈M {tp,m′}
is at most α ≥ 1. That is,

ρm(α) =
|{p ∈ P : φp,m ≤ α}|

|P| .

Some relevant values of ρm(α) are given in Table 2.
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Table 2: Relevant values of ρm and their interpretations.
Value Interpretation
ρm(1) Fraction of problems method m solves fastest among the

methods in M.
ρm(α) Fraction of problems method m solves in fewer than α

times the batches required by the fastest method in M.
lim
α→∞

ρm(α) Fraction of problems method m solves (within the com-
putational budget alloted).

4.4 Data profiles

Performance profiles are a relative metric: an algorithm may perform better or
worse depending on the other methods it is being compared with. Data profiles
are an absolute metric to compare the performance of a set of solversM on a set
of problems P. Data profiles can be especially useful for analyzing algorithms
for optimizing computationally expensive functions. While performance profiles
consider a fixed budget of evaluations, data profiles measure the fraction of
problems solved as a function of the number of batches. That is, the data
profile of a method m ∈M is

dm(α) =

∣∣∣
{
p ∈ P :

tp,m
np+1 ≤ α

}∣∣∣
|P| ,

where np is the dimension of problem p. In other words, for a given budget of
α(np + 1) function evaluations for each problem p ∈ P, dm(α) is the fraction of
problems that method m will solve within α(np+1) evaluations. This definition
mirrors that in [15] and considers a problem’s “difficulty” to grow linearly with
the problem dimension.

5 Numerical experiments

We now compare the performance of a few optimization routines on a collec-
tion of benchmark problems. The problems (explained in greater detail below)
include a family of synthetic functions and two real-world applications, one per-
taining to microscopy and the other to biometrics. The microscopy problem has
three variables, which is few enough to allow us to have some understanding of
its local minima within the domain. This is not possible for the 57-variable bio-
metrics problem. The synthetic benchmark problems are generated randomly;
but each problem comes with a complete list of local minima, thereby allowing
us to monitor how effectively each optimization algorithm identifies them.

5.1 Algorithms considered

We compare BAMLM (a Matlab prototype of Algorithm 2), the serial global/local
search method GLODS [3], and two implementations of DIRECT (a serial ver-
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sion written in Matlab [5], which we will call “Direct,” and a parallel implemen-
tation in Fortran95 [11] denoted “pVTdirect”). We also include a Random Sam-
pling method that uniformly samples points from D. We consider all methods
to be batch methods that evaluate |W| points concurrently, with the restriction
that |W| = 1 for the serial algorithms GLODS and Direct. We also examine the
idealized performance of Direct, GLODS, and pVTdirect in the Results section.

The performance of BAMLM critically depends on the local optimization
routine used to generate points in Lk. Example properties of a local optimization
method that would be desirable in BAMLM include the following:

1. Accepting a history of previously evaluated points to efficiently utilize past
function evaluations.

2. Honoring a given starting point by not moving to the best point in the
history.

3. Honoring the bound constraints in (1).

4. Accepting additional constraints on where new points will be evaluated
(e.g., avoiding areas being explored by other local optimization runs).

5. Having the ability to generate anywhere from 1 to |W| points for concur-
rent evaluation, and indicating how useful to the local optimization each
of these points is expected to be.

We are unaware of an implementation of a local optimization routine that has all
these properties. Algorithm 2 was developed to evaluate only a single point from
a given local optimization run, in part because of the dearth of methods that
satisfy the last characteristic. In the tests that follow, the local optimization
runs were performed with ORBIT [22], a trust-region method that uses radial
basis function models. ORBIT honors bound constraints and uses a history of
previously evaluated points to help construct local models; it thus satisfies some
of the desired properties listed above.

ORBIT was run in our computational experiments with its default termi-
nation criteria. In engineering applications, selection of an efficient solver and
its associated termination criteria (which define what it means to be a “local
solution” in that application) are key to ensuring that the proposed algorithm
performs effectively.

BAMLM was run with |W| = 4 workers, three possible local optimization
workers and one worker dedicated to uniform random sampling. Each pVTdirect
run was given five MPI ranks, one master rank telling four worker ranks which
points to evaluate. Random Sampling evaluates points in batches of four as well.
Since the two DIRECT implementations evaluate a predetermined set of 2n+ 1
points, independent of the function, we also ensure that GLODS, BAMLM, and
Random Sampling initialize with these points. Therefore, all methods start by
first evaluating the centroid of D and agree on their first 2n + 1 evaluations.
BAMLM completes its initialization by evaluating f at an additional 8n − 1
points drawn uniformly over the domain (so 10n points are always evaluated
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before deciding where to start the first local optimization run); if less sampling
is desired, fewer initial points can be evaluated.

All algorithms other than pVTdirect have Matlab implementations, so we
can easily monitor which points are being evaluated in each batch. Since pVT-
direct does not provide a history of points evaluated, we monitor its progress
by having the objective function print out every x being evaluated, f(x), the
MPI rank doing the evaluation, and the time of the evaluation. The objective
function pauses for a fixed amount of time, allowing us to determine which eval-
uations are occurring simultaneously; similar steps were taken to benchmark
pVTdirect in [8, 9]. However, pVTdirect is not a batch algorithm, so each rank
is not evaluating a point at every iteration, and these inactive ranks must be
accounted for. Since these inactive ranks can consume over 20% of the allo-
cated budget, we also plot an “idealized pVTdirect” for the simulation-based
engineering problems using the raw output grouped into batches of four, thus
eliminating inactive ranks.

The default GLODS parameters specify a deterministic 2n-centers-search
step to generate points that are asymptotically dense in the domain. When
running GLODS, we use this setting on all problems except for the biometrics
problem, where merely generating the first set of 257 points is prohibitive. For
the biometrics problem alone, the search step points are generated uniformly
over the domain. The GLODS results presented for the biometrics problem
are the average of 10 such runs. Otherwise, the only changes to the default
GLODS parameters are decreasing the initial step size from 1 to 0.1 (since all
the problems are scaled to the unit cube turning off the stopping criteria based
on the step size parameter, so that the computational budget is exhausted), and
setting the initial set of points to mirror the Direct and pVTdirect.

For each synthetic problem and the microscopy problem, algorithms were run
for 5,000 total function evaluations, or 1,250 four-evaluation batches. The local
optimization runs within BAMLM were given at most 200 function evaluations
for these problems. For the biometrics problem, each method was allocated 105

function evaluations (or 2.5× 104 batches), and the local runs in BAMLM were
limited to 103 evaluations. The stochastic algorithms (BAMLM and Random
Sampling) were run on each synthetic problem with 5 different random seeds,
run with 40 different seeds on the microscopy problem, and run with 10 different
seeds on the biometrics problem.

5.2 Problems with known minima

We first constructed test functions with known local minima by minor modifi-
cations to the GKLS problem generator [6]. We have intentionally chosen these
problems with known local minima, not because any of the tested algorithms re-
quire knowledge of the location or number of minima, but because knowing the
minima allows us to measure how efficiently each algorithm finds them. Each
problem consists of a convex quadratic augmented by polynomials to introduce
local minima at random locations.

The GKLS problem generator requires that r∗, the distance from the quadratic
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vertex to the (unique, by construction) global minimum, satisfies 0 < r∗ <
1
2 mini {ui − li} and that GKLS’s radius of attraction around the global mini-

mum be at most r∗

2 . For a problem on the unit cube in R7, the volume of this

basin is less than π7/2

Γ( n
2 +1)

1
4

7 ≈ 0.00029. Even if the entire basin were to be con-

tained in D (which is not guaranteed), we find this fraction of the domain to be
too small relative to the volume bound given for problems in R2. We therefore
modify the upper bound on r∗ to be n

2 for problems on the unit cube. This
modification allows for the possibility of placing the global minimum outside the
domain; but we remove the restriction that only 100 problems can be generated,
and we then take the first 100 problems with all feasible local minima. As a
result, we obtain 100 continuously differentiable functions in each of R2, R3,. . . ,
R7, and each with unit cube domains and 10 local minima.

5.2.1 Results

We ran Random Sampling, BAMLM, Direct, pVTdirect, and GLODS on the
3,000 synthetic problem instances (100 different problems in each of the 6 dimen-
sions between R2 and R7, each with 5 different random seeds). Since the Direct,
pVTdirect, and GLODS implementations are deterministic, their performance
on the 600 unique problems was duplicated 5 times.

We can use the convergence test defined by (3) to measure how efficiently
each algorithm locates the j best local minima. Similarly, using the convergence
test defined by (4), we can compare how effectively the algorithms identify the
global minimum. As a point of reference, we also include a hypothetical “ideal-
ized Direct” that takes the points evaluated by Direct and then groups them into
batches of four points. This would be the result of a perfectly scalable Direct
implementation, meaning that the same set of points is evaluated, but the total
time required would be a factor four less because of the fourfold concurrency.

In Fig. 1, we see the relative performance of the set of algorithms at identi-
fying the j best minima to a level τ . Fig. 1(a) shows that BAMLM finds (for a
very restrictive τ and within 1,250 batch iterations) the three best minima on
over 60% of the problems. Fig. 1(b) shows that Random Sampling is as good
as any method at evaluating points close to the three best minima for a less
restrictive τ ; this result suggests that finding points within a level τ = 10−2 of
the three best minima is relatively easy and that the convergence test defined
by (3) is sensitive to the value of τ .

For a level τ = 10−3, Figs. 1(c)–1(d) show that BAMLM is successful at
identifying the best minima ((c) and (d) indicating whether four or seven min-
ima were desired, respectively) within the computational budget for most of
the problems. The fact that BAMLM does not identify 100% of the minima
is unsurprising given that the radius of the basins for the nonglobal minima
can be small and thus difficult to randomly sample within a limited budget of
evaluations.

Although BAMLM is effective at identifying many high-quality local minima,
this additional effort does not hinder its progress toward the global minimum on
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(a) τ = 10−4, j = 3
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(c) τ = 10−3, j = 4
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(d) τ = 10−3, j = 7

Figure 1: Performance profiles using convergence test (3) to measure how six
methods identify the j best minima within a level τ on 3,000 synthetic problem
instances from Section 5.2.

18



1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

ρ
(α

)

 

 

BAMLM 4 workers
Random Sampling
pVTdirect 4 workers
Direct (serial)
GLODS (serial)
Direct (idealized)

(a) τ = 10−5

1 2 4 8 16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

ρ
(α

)
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Figure 2: Performance profiles using convergence test (4) to measure how six
methods identify the possible decrease from the starting point to the global
minimum on 3,000 synthetic problem instances from Section 5.2.

these problems. In Fig. 2, we see that nearly all the methods (aside from Ran-
dom Sampling) are effective at identifying a point within 99.9% of the possible
decrease from the starting point to the global minimum. The same is true for
finding 99.999% of the possible decrease, but we see that BAMLM takes fewer
function evaluations to do so compared with the other algorithms considered.

In Fig. 2, the idealized version of Direct behaves as expected. It is exactly
four times better than the serial version of Direct, and the performance of
pVTdirect falls between the idealized and serial version. Since pVTdirect is not
perfectly efficient at evaluating four function values on every iteration, we see
that it does not converge fast enough to the global minimum on approximately
5% of the 3,000 problems before the budget of 1,250 batches is exhausted. On
the other hand, we note from Fig. 1 that pVTdirect is better than the idealized
version of Direct at finding many of the local minima.

In Fig. 3, we present the data profiles for the same values of j and τ as
presented in Fig. 1 and Fig. 2 with performance profiles. The results of the
performance and data profiles are nearly identical; these results support the
previous conclusions and ensure that the three implementations of DIRECT are
not “stealing from each other” in the performance profiles.

We note that the performance of BAMLM, as measured by either of the
proposed convergence tests, would not decrease if more concurrent function
evaluations occurred. If |W| were larger, then more local optimization runs
could occur simultaneously, a situation that would never increase the number
of batches required to find a given local minimum. Fig. 2(b) suggests that for
τ = 10−3 and |W| = 4, BAMLM is roughly twice as efficient at identifying the
global minimum for these problems as is an idealized implementation of Direct,
and at least four times as efficient as an actual Direct implementation. There-
fore, |W| would have to at least be doubled, and BAMLM see no improvement
from an increase in workers, in order for even a hypothetical, perfectly scaling
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(c) τ = 10−3, j = 4
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(e) τ = 10−5
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(f) τ = 10−3

Figure 3: Data profiles. Figs. 3(a)–3(d) use convergence test (3) to measure
how six methods identify the j best minima within a level τ on 3,000 synthetic
problem instances from Section 5.2. Figs. 3(e)–3(f) use convergence test (4) to
measure how six methods identify the possible decrease from the starting point
to the global minimum.
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Figure 4: Trajectories of the minimum function value and maximum distance
from an evaluated point to both local minima for various algorithms for the
microscopy problem in Section 5.3.1.

implementation of Direct to perform as well as BAMLM.

5.3 Simulation-based problems

We now evaluate the performance on BAMLM on two problems from engineering
applications.

5.3.1 Microscopy problem

This three-dimensional, simulation-based problem that we refer to as the “mi-
croscopy problem” entails improving the quality of an image obtained from a
scanning transmission electron microscope. The goal is to minimize the variance
in an image by adjusting the defocus parameter and two astigmatism param-
eters. Computing the image quality is significantly cheaper than recording an
image with such a microscopy with a given set of parameters. Since the repeated
capturing of images can degrade or destroy the sample, the variance should be
minimized in as few function evaluations as possible. The problem is explained
in detail in [19, 18] and the citations therein.

Here we work within the bounded domain [−700, 300]3, which contains two
known local minima with non-negligible basins. As with the other problems, this
domain was scaled to the unit cube to more consistently compare the algorithms
(with their default parameter values). The better of the two minima is located
close to the origin and has a function value of −8.8×105; the nonglobal minima
has a value of −4.3× 105, which is still better than the average function value
over D, which we estimate to be approximately −3.57 × 105. We will denote
these two points x̃∗(1) and x̃∗(2) to signify that they approximate x∗(1) and x∗(2),
respectively.
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We can then measure how effectively a method m in a set of solversM finds
these two points by observing

λm(k) = max





min
1≤j≤k

1≤`≤|W|

∥∥∥xj,` − x̃∗(1)

∥∥∥ , min
1≤j′≤k

1≤`′≤|W|

∥∥∥xj′,`′ − x̃∗(2)

∥∥∥




. (5)

That is, λm(k) is the larger of δ1(k) and δ2(k), where δj(k) is the minimum
distance between points evaluated by method m through batch k and x̃∗(j).

We performed 40 runs of the stochastic algorithms (Random Sampling and
BAMLM) and show the function value trajectories in Fig. 4(b). We see that, on
average, BAMLM finds the global minimum as fast as pVTdirect, but Fig. 4(a)
shows that even the worst instance of BAMLM locates both minima faster
than does either of the implementations of Direct. GLODS takes considerably
more batches before evaluating a point near the second minimum. Even under
perfect scaling (which is unrealistic), GLODS, Direct, and pVTdirect do not
significantly outperform BAMLM in converging to the global minimum. Their
idealized performance remains worse in identifying the two best local minima
(as measured by the λ-distance from (5)).

5.3.2 Biometrics problem

The last problem we consider is a 57-dimensional biomechanical control prob-
lem whose local minima are not precisely known, although Easterling et al. [4]
report a best-known global solution of f = 1222.05; finding this value required
significant computational expense. The problem appears to be highly multi-
modal and noisy; see [4, Fig. 2]. The variables of the problem are torque levels
for three joints (hips, knee, and ankle) at each of nineteen 100-millisecond inter-
vals in a human musculoskeletal model. The optimization problem arises from
trying to keep the model stable (without stepping) after a quick displacement of
the supporting surface occurs. The objective function contains a weighted sum
of desired properties, including movement of the model center of mass and the
change between activation levels at consecutive time steps for each given joint.

In Fig. 5, we plot the minimum function value found by each algorithm as
each progresses through 105 function evaluations (or 2.5×104 batches). The av-
erage of 10 runs is shown for the three stochastic algorithms: Random Sampling,
BAMLM, and GLODS. We plot the idealized versions of pVTdirect, Direct, and
GLODS by grouping their first 105 function evaluations into batches of four. We
see that BAMLM is, on average, better than all the other algorithms at finding
a smaller function value. Even the worst performing of the 10 BAMLM runs
is comparable to the (unrealistic) idealized pVTdirect and Direct implementa-
tions. The best BAMLM run finds a function value half as small as the other
algorithms. (Note that BAMLM performs well on this noisy problem in spite
of the problem not satisfying Assumption 1(A), and possibly neither Assump-
tion 1(B) nor Assumption 1(C). This empirical robustness is an indication that
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Figure 5: Trajectories of the minimum function value for various algorithms on
the biometrics problem in Section 5.3.2.

BAMLM might enjoy similar success on other engineerings problems that may
not satisfy all of Assumption 1.)

6 Conclusion

In this paper we presented a derivative-free, multistart algorithm for finding
multiple, high-quality local minima for a bound-constrained optimization prob-
lems when relatively few concurrent functions are possible. If the function is
sufficiently smooth and has nonconnected local minima, we showed that the
algorithm almost surely starts finitely many local optimization runs while still
finding all local minima. In addition to these theoretical results, a numerical
implementation of the algorithm was shown to be efficient at evaluating points
close to the local minima of problems from a large set of synthetic test problems.
Our results on two engineering optimization problems show that in situations
where the theoretical assumptions do not hold, our algorithm performs well.

Furthermore, the effort expended in identifying multiple minima on these
problems does not appear to hinder the algorithm’s progress to a global mini-
mum since it often outperforms existing methods (both currently parallel meth-
ods and sequential methods viewed under idealized parallel scaling conditions)
in this metric. More rigorous tests are required to see whether this behavior is
independent of problem dimension.

Many interesting avenues remain for extensions of this research. Our pro-
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duction implementation of the proposed algorithm will target simulation-based
problems on high-performance computers and address the associated difficul-
ties. In particular, we plan to extend our theoretical framework from the batch
paradigm to the case where function evaluations are completed asynchronously
and possibly terminated before evaluation has completed. We are also interested
in developing a local optimization method that is well suited for our framework,
being able to usefully generate more than one point at a time, on an as-needed
basis. Moreover, we wish to augment our algorithm so the local optimization
runs can communicate with each other, preventing multiple runs from evaluating
points within the same part of the domain.
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