
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, IL 60439

Collective I/O tuning using analytical and machine learning models0

Florin Isaila,1,3 Prasanna Balaprakash,1,2 Stefan M. Wild,1 Dries Kimpe,1

Rob Latham,1 Rob Ross,1 and Paul Hovland1

Mathematics and Computer Science Division

Preprint ANL/MCS-P5264-1214

December 2014

0This material was based upon work supported by the U.S. Department of Energy, Office of Science, Advanced Scientific
Computing Research program, under contract number DE-AC02-06CH11357.
1Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
2Leadership Computing Facility, Argonne National Laboratory, Argonne, IL, USA
3Department of Computer Engineering, University Carlos III, Spain

Collective I/O tuning using analytical and machine learning
models

ABSTRACT
The optimization of parallel I/O has become challenging be-
cause of the increasing storage hierarchy, performance vari-
ability of shared storage systems, and the number of fac-
tors in the hardware and software stacks that impact per-
formance. In this paper, we perform an in-depth study
of the complexity involved in I/O autotuning and perfor-
mance modeling, including the architecture, software stack,
and noise. We propose a novel hybrid model combining an-
alytical models for communication and storage operations
and black-box models for the performance of the individual
operations. The experimental results show that the hybrid
approach performs significantly better and shows a higher
robustness to noise than state-of-the-art machine learning
approaches, at the cost of a higher modeling complexity.

1. INTRODUCTION
The complexity of today’s large-scale supercomputers has

substantially increased the challenges of optimizing the per-
formance of parallel applications. Factors contributing to
this evolution include the larger amount of concurrency,
deepening memory/storage hierarchies, the distribution of
system services (e.g., the separation of compute and I/O
nodes), and the lack of global optimizations for the software
stack. In this context, there is an increasing demand for
novel methodologies and models to address these challenges.

On large-scale platforms many factors are involved in per-
formance optimization. The architecture is an important
factor, which can have an orders-of-magnitude effect on per-
formance (e.g., caching in the memory hierarchy). The soft-
ware stack offers tunable optimizations at different layers.
Application factors such as access patterns also have a signif-
icant effect on performance. Moreover, external noise from
application interference and system management activities
can cause performance variability, which can cancel out the
effect of an optimization.

Ideally, analytical models for all system components could
be used for predicting the performance and automatically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

choosing the best parameters for an optimization. However,
analytical models for such complex systems are notoriously
difficult to build and validate. At the other extreme, black-
box modeling approaches, such as machine learning, lever-
age only the input and output parameters and therefore lack
the flexibility of adapting to changing conditions (e.g., dif-
ferent levels of noise, modifications of a subsystem) and may
require empirical evaluation of too many parameters to be
computationally feasible. An intermediate approach is to
use expert knowledge to build analytical models whenever
the task is feasible and to complement the missing capabil-
ities with data-driven approaches such as machine learning.

This paper presents a case study of a model-based ap-
proach for autotuning a popular collective I/O implemen-
tation, two-phase I/O from ROMIO [14], the most popu-
lar MPI-IO distribution. This collective I/O implementa-
tion is widely used in checkpoint and analysis output phases
of computational science codes. Since its performance is
known to be highly variable, it is a good target for optimiza-
tion. The main contributions of the paper are the following.
First, based on domain expertise, we build analytical mod-
els that drive the optimization process in combination with
statistical performance models. Second, we identify several
challenges inherent to this process and study the impact of
architectural, software stack, and run time factors on the
optimization process. Third, we present a comprehensive
evaluation of our approach, including a comparison with
the best-performing machine learning techniques in terms
of speedup and model robustness.

The remainder of the paper is structured as follows. Sec-
tion 2 introduces the problem and the experimental setup.
Section 3 provides a high-level overview of our approach.
Sections 4 and 5 respectively discuss black-box and hybrid
modeling approaches of collective I/O. Section 6 presents
the main modeling results. Section 7 discusses related work,
and Sec. 8 presents conclusions about the hybrid approach
and its benefits for improving performance predictability.

2. THE PROBLEM AND SETUP
For a given application and target architecture, the prob-

lem of finding an optimal I/O parameter configuration can
be formulated as the mathematical optimization problem

min
x
{f(x) : x ∈ D ⊂ Rm} , (1)

where x ∈ Rm is a vector parameterizing m I/O decisions
and D captures the set of allowable configurations. Math-
ematically, f is a function that takes the vector x as input
and returns a scalar f(x), corresponding to a specified per-

Table 1: Parameter values used for autotuning.

Parameter Value
n 128, 256, 512
sp (MB) 1, 2, 4, 8, 16, 32, 64, 96, 128, 196, 256
scb (MB) 8, 16 (default), 32
na pset 4, 16, 64 (default)

formance metric for the configuration defined by x. In this
paper, we focus on run time as the performance metric.

Several approaches exist for approximately solving (1).
These approaches can be coarsely classified into model-based
tuning and search-based tuning. In the former, the focus is
on developing a performance model (a surrogate of f), which
is then used to identify the best configuration. In the latter,
a search algorithm is employed to systematically navigate a
search space of promising configurations in order to identify
the best configuration.

In this paper, we focus on model-based tuning for two-
phase I/O, the algorithm employed in the collective I/O im-
plementation of ROMIO. The main idea of two-phase I/O
is aggregating file system accesses from n × c processes (n
nodes with c cores) each writing sp bytes to a smaller num-
ber (na) of processes called aggregators before sending the
data to the file system. In particular, for the Blue Gene/Q
(BG/Q) platform used in this study, the na parameter is set
through na pset as explained below. Each aggregator uses a
buffer of size scb. In ROMIO na pset and scb are MPI Info
hints and are set to default values; in this paper we examine
the value of model-based tuning of these parameters.

For the performance of collective I/O operations, we use
IOR, one of the most popular parallel I/O benchmarks [13],
which has been shown to accurately reproduce representa-
tive parallel I/O access patterns and predict the performance
of a significant class of scientific parallel applications. In our
experiments, p = n×c processes concurrently write contigu-
ous non-overlapping regions to a file through MPI collective
I/O (of MPICH 3.1 distributions), a common access pattern.
Even though the models from this paper are evaluated for
one benchmark, our approach is more general, as we model
the collective I/O operation and not the overall access pat-
tern of IOR. We concentrate on the file system write oper-
ations. However, a similar modeling and analysis approach
can be performed for read operations. The IOR parameter
values considered in our experiments are shown in Table 1.
All the other IOR parameters have the default values. We
refer to each unique combination of n and sp values as an
instance. There are 33 (3× 11) instances, and our goal is to
find the best (na pset, scb) combination for each instance.

The experiments for our study are run on the Vesta BG/Q
supercomputer at Argonne National Laboratory. Vesta has
2,048 compute nodes (4 racks of 512 compute nodes each)
with PowerPC A2 cores (1.6 GHz, 16 cores/node, and 16 GB
RAM). The compute nodes are interconnected in a 5D torus
network and do not have persistent storage. Each compute
node has 11 network links of 2 GB/s and can concurrently
receive/send an aggregate bandwidth of 44 GB/s. While 10
of these links are used by the torus interconnect, the 11th
link provides connection to the I/O nodes. On Vesta, a set
of 32 compute nodes (known as a pset) has one I/O node
acting as an I/O proxy. For every I/O node there are two
network links of 2 GB/s toward two distinct compute nodes
acting as bridge. Therefore, for every 128-node partition,
there are nb = 4 × 2 = 8 bridges. The I/O traffic from
compute nodes passes through these bridge nodes on the

way to the I/O node. The I/O nodes are connected to the
storage servers through Quad-data-rate (QDR) InfiniBand
links. On BG/Q the programmer can set the number of
aggregators per pset na pset (the hint on BG/Q is known
as bg_nodes_pset). The total number of aggregators of an
application na is computed as a function of na pset, c, n, nb:

na = (na pset + 1)× nb ×
n

128
. (2)

In our study, c and nb have constant values: c = 16 (one
process per core) and nb = 8 (architectural constant).

The file system on Vesta is GPFS 3.5. The data are
stored on 40 NSD SATA drives with a 250 MB/s maximum
throughput per disk; the block size is 8 MB. The file system
blocks are distributed by GPFS in a round-robin fashion
over several NSDs, with the goal of balancing the space uti-
lization of all system NSDs. The I/O nodes are file system
clients, and the size of the client cache on each I/O node is
4 GB.

3. APPROACH OVERVIEW
The major challenge in model-based I/O tuning stems

from the fact that developing exact analytical expressions
for function f in Eq. (1) is difficult, or even impossible. To
address this, we investigate two approaches: black-box and
hybrid.

The black-box approach to model the function f consists
of developing a statistical surrogate model h(x) ≈ f(x), by
fitting the model to application run times obtained from
the evaluation of a small number of I/O parameter configu-
rations on the target machine.

The hybrid approach that we propose is based on the
fact that f depends on the number of communication and
storage operations involved in I/O and their corresponding
run times on the target machine. Therefore we have

f(x) = g(q(x, θ̂), β̂,⊕), (3)

where q(x, θ̂) is a function that computes the number of ele-
mental operations for a configuration x using some system-
and algorithm-specific hyperparameters θ̂ and g(q(x, θ̂), β̂,⊕)

is a function that uses q(x, θ̂) to compute the run time of
each elemental operation based on some system- and algorithm-
level hyperparameters β̂ and combines (⊕) these run times

to predict the overall run time f(x). Note that β̂ includes
parameters that can have an impact on f(x) but remain
unchanged and/or uncontrolled. The function g may also
include the effects of network congestion, disk contention,
and shared resources.

The development of the hybrid approach consists of three
stages. First, by analyzing the ROMIO implementation,
we derive an analytical model, m(x), for q(x, θ̂). Second,
because of the challenges involved in modeling the run time
of I/O operations analytically (as outlined in Sec. 5.3), we

develop a statistical surrogate model g̃(m(x), β̂) to estimate
the run times of the elemental operations. Third, we use an
analytical model⊕ to combine the run times of the elemental
operations. We then have

g̃(m(x), β̂,⊕) ≈ g(q(x, θ̂), β̂,⊕) = f(x). (4)

The data for building the surrogate model g̃ come from
elemental-operation benchmark runs, which are independent
of the application and are hence a one-time expense.

Figure 1: A purely black-box model.

In the following two sections, we detail the development
of the models based on black-box and hybrid approaches.

4. BLACK-BOX MODELING
A purely black-box approach for I/O modeling (illustrated

in Fig. 1) does not require detailed expert knowledge of
the underlying algorithms used for communication, inter-
connect, or storage array operations. Typical black-box
approaches are data-driven and based on supervised sta-
tistical modeling/machine learning. Formally, given a set
of training points {(x1, y1), . . . , (xl, yl)}, where xi ∈ D and
yi = f(xi) are I/O parameter configurations and the corre-
sponding application run times, respectively, the supervised
machine learning approach tries to find a surrogate function
h for the expensive f such that the difference between f(x)
and h(x) is minimal for all x ∈ {x1, . . . , xl} (and, ideally, all
x ∈ D). The function h, which is called an empirical per-
formance model, can be used to predict the run times of all
x ∈ D (not just those xi for which f(xi) has been evaluated)
and can be used to identify configurations x∗ that minimize
the model h. We refer to this approach as ml.

The success of any such supervised-learning approach de-
pends on rigorous model selection: identifying appropri-
ate data-preprocessing techniques, selecting a supervised-
learning algorithm that effectively models the relationship
between the inputs and the output, and tuning the algo-
rithm’s internal hyperparameters. A disadvantage of this
approach stems from the fact that it is application-specific: a
model obtained from training points for one application may
not be useful for another application with different I/O char-
acteristics. Moreover, a large number of training points—
requiring many computationally expensive application runs
or specialized methods for training-point selection—may be
needed in order to obtain a sufficiently accurate model.

5. HYBRID MODELING
The hybrid modeling approach that we propose leverages

the strengths of both analytical and data-driven models. In
particular, our approach decouples the models for I/O oper-
ations from the models for estimating the performance (run
times) of those operations on a given architecture. Figure 2
illustrates the hybrid approach. The first step is building
performance-agnostic analytical models for I/O operation
counts and data chunk sizes by using a priori knowledge of
I/O algorithmic implementations. The second step is build-
ing data-driven performance models for the elemental I/O
operations on the target architecture. The modeling effort at
this step may include other performance-affecting external
factors such as system noise, states of the operations (e.g.,
caching versus noncaching), and sensitivity to various archi-
tectural details (e.g., topology). The operation count models
and data-driven performance models then are composed in
a global model, which provides performance prediction.

To construct these models, we analyze the phases involved
in the collective I/O implementation of ROMIO (see Fig. 3).

Figure 2: Hybrid model of two-phase I/O.

First, the total file range to be accessed is computed and
partitioned among aggregators (file “partitioning”). Second,
the data are shuffled into collective buffers from application
processes to aggregators (“shuffle”). Third, the collective
buffers are written to the file systems (storage “I/O”). These
three steps involve network, CPU, and storage resources.
Since the total time is dominated by network and storage
time, we consider the CPU time negligible. Thus, the total
run time f(x) of a collective I/O operation can be expressed
as

f(x) = g(q(x, θ̂), β̂,⊕)
= tpartitioning(n, sp, na pset, scb)

+tshuffle(n, sp, na pset, scb) + ts(n, sp, na pset, scb)
= tc(n, sp, na pset, scb) + ts(n, sp, na pset, scb).

In our use of IOR each process writes sp bytes, and thus
the total collective access size is given by st = n× c× sp.

If the total data to be written (st) is larger than the sum
of all collective buffers, the second and third steps above are
repeated until all the data are written. Each such repetition
is called a round, and we can derive the number of rounds
and the bytes transferred in the collective I/O operation.
The maximum total size to be written in a round, sr, is the
total capacity of the aggregators’ collective buffers: sr =

na×scb. The number of complete rounds is thus rc =
⌊

st
sr

⌋
.

The last round may be incomplete because the remainder
of the data to be transferred may be smaller than the total
capacity of the aggregators’ collective buffers. The formula
ri = [(st mod sr) > 0] thus yields ri = 1 (TRUE) if the last
round is incomplete, and ri = 0 (FALSE) if the last round
is complete.

For an incomplete last round, the number of bytes trans-
ferred is calculated by subtracting the bytes transferred in
complete rounds from the total access size: si = st−sr×rc.

Using the preceding equations, we derive analytical mod-
els for communication and storage activity from ROMIO’s
collective I/O implementation.

Figure 3: Anatomy of the collective I/O implemen-
tation from ROMIO. In this example, processes 0
and 2 act as aggregators.

5.1 Communication modeling
A collective I/O implementation analysis shows that on

the target platform the following collective communication
operations are involved: MPI_Allreduce, MPI_Alltoall, and
MPI_Alltoallv. The communication time, tc(n, sp, na pset, scb),
is given by the sum of communication operation times per-
formed by the storage I/O operations alltoallv (taav), alltoall
(taa), and allreduce (tar):

tc(n, sp, na pset, scb) = tar(n, sp, na pset, scb)
+taa(n, sp, na pset, scb) + taav(n, sp, na pset, scb).

Two-phase I/O uses two MPI_Allreduce operations in the
file partitioning phase: one operation in which each node
sends 2 × n × c file offsets of 8 bytes and one operation in
which each node sends one counter of 4 bytes, representing
the size of data to be transferred. Given an MPI_Allreduce

performance model Mar(n, c, sar), the allreduce operation
time can be predicted by

tar(n, sp, na pset, scb) =Mar(n, c, 2×n×c×8)+Mar(n, c, 4).

Two-phase I/O calls MPI_Alltoall 1 + rc + ri times in
both the file partitioning and shuffle phases, each node send-
ing to all other nodes one counter of 4 bytes. Given an
MPI_Alltoall performance modelMaa(n, c, sar), the alltoall
operation time can be predicted by

taa(n, sp, na pset, scb) = (1 + rc + ri)×Maa(n, c, 4).

The collective communication operation MPI_Alltoallv is
used in both the file partitioning and shuffle phases. In the
shuffle phase, the communication pattern of MPI_Alltoallv
depends on the file access pattern of the parallel application.
In our use of the IOR benchmark, the access of each indi-
vidual process is contiguous, causing each node to send one
message to a single aggregator. The message size, saav, used
for communication between a compute node and an aggre-
gator is the minimum between the access size and the col-
lective buffer size, saav = min{st, scb}. The number of com-
pute nodes sending a message to an aggregator is limited
by the buffering capacity of the aggregator. For complete
rounds, each of naav send = min{sr/saav, n × c} processes
sends one message to one of naav recv = min{naav send, na}
aggregators. For incomplete rounds, each of naav sendri

=
min{si/saav, n × c} processes sends one message to one of
naav recvri

= min{naav sendri
, na} aggregators.

In summary, the following MPI_Alltoallv operations take
place in two-phase I/O: one operation in which each node
sends one file offset of 8 bytes to na aggregators, one opera-
tion in which each node sends one counter of 4 bytes to na

aggregators, rc operations in which naav send nodes send one
message of saav bytes to naav recv aggregators, and ri oper-
ations in which naav sendri

nodes send one message of saav

bytes to naav recvri
aggregators. Given an MPI_Alltoallv

performance model Maav(n, c, naav send, naav recv, saav), the
time can be predicted by

taav(n, sp, na pset, scb) =Maav(n, c, n× c, na, 4)
+Maav(n, c, n× c, na, 8)
+rc ×Maav(n, c, naav s, naav recv, saav)
+ri ×Maav(n, c, naav sendri

, naav recvri
, saav).

5.2 Storage modeling
In each round, once the data are collected in the collec-

tive buffers, aggregators issue storage accesses. If a round is

complete, each aggregator issues one file access of scb bytes.
If a round is incomplete, only a fraction si

sr
of the na aggre-

gators are involved in the storage access. Given a storage
performance model Ms(n, c, sp), the storage time is

ts(n, sp, na pset, scb) = rc ×Ms(n, na
n
, scb)

+ri ×Ms(n, si
sr
× na

n
, scb).

5.3 Challenges of analytically modeling the per-
formance of operations

Given a perfectly predictable system and an analytical
model that calculates the count and the size of storage and
network operations for a parametric configuration, one can
exactly predict the performance of the system for various
parameters and pick their optimal values. However, several
factors present challenges to predicting the performance of
computer subsystems such as the storage and network. In
this section we discuss these factors and the construction
of data-driven performance models for network and storage
operations on BG/Q.

5.3.1 Communication
The performance of the 5D torus network on the BG/Q

architecture is known to have small noise, since applications
do not share network partitions. In all our evaluations of
5D network performance, the estimated standard deviation
is within 0.1% of the mean of the operation latency. Perfor-
mance interference is more likely to occur on other network
links traversed by storage I/O traffic. The InfiniBand net-
work and storage network are shared among all the applica-
tions.

5.3.2 Storage
Shared storage performance is notoriously difficult to model

and predict [10, 15]. Several factors complicate the model-
ing, including interference, locking, network topology, caching
effects, and disk architecture. We now illustrate some of
these factors on the BG/Q platform used in this study.

Interference: The storage performance of a particular
application on a BG/Q platform is subject to interference
from other nodes concurrently accessing the shared file sys-
tem. These nodes include I/O nodes serving the compute
nodes of other applications, login nodes, and service nodes.
The interference occurs at various levels of the storage hier-
archy, including file system caches on the I/O nodes, inter-
connects (i.e., compute to I/O node, InfiniBand, and stor-
age network), and storage. The interference is difficult to
measure and model, since it can be caused by unexpected
variations in user activities, applications, or system admin-
istration tasks, typically appears in short bursts, and may
depend on the stateful services such as caching.

Figure 4 shows the performance of two different runs rep-
resentative for the storage I/O phase of collective I/O. The
writing processes are selected based on the topology-aware
algorithm of the collective I/O implementation, and the con-
current accesses are repeated 32 times in which 544 processes
on 512 nodes (in all three cases na pset = 16) are writing 16
MB each (scb = 16 MB). Even though the same parameters
are used, the throughput in each round differs significantly.
The variation in performance from one round to the next
is most likely due to file system caching effects. The per-
formance pattern appears to be out of phase, which may
indicate that the states of the caches at the beginning of the

Figure 4: Concurrent POSIX file write throughput
for two different runs. Each process writes 16 MB,
for 32 consecutive times. The horizontal lines rep-
resent the mean throughput for all rounds.

two runs are different. Furthermore, the unexpected drops
in performance can probably be attributed to other applica-
tions, users, or administrative tasks sharing the file system.

Locking: GPFS guarantees POSIX read/write atomicity
semantics for file system operations [12]. The GPFS locking
protocol dynamically partitions a shared file into byte-range
locking domains. The partitioning into lock domains is per-
formed on demand. The first client is granted a lock for the
whole file. Subsequent accesses from other clients gradually
partition the file into locking domains, so the first access of
any client for a new non-overlapping domain is slower be-
cause it involves the partitioning of the locking domain. The
locking overhead increases with lock domain fragmentation.

In order to efficiently address this behavior in the collec-
tive I/O implementation for GPFS, the file is partitioned
into a number of domains equal to the number of aggrega-
tors, and the domains are aligned to the file system block
size (first phase in Fig. 3). With this approach, even if the
collective I/O operation consists of several rounds, the over-
head of locking is perceived only in the first round. For
instance, in Fig. 4 the first operation is significantly slower
than the average because it incurs the locking overhead.

Figure 5 shows a comparison between the aggregate through-
put in the first round and the average of the aggregate
throughputs of subsequent rounds. The first round access
was repeated 10 times on a newly created file, while the num-
ber of rounds for writing 8 MB/process, 16 MB/process, and
32 MB/process were 128, 64, and 32, respectively. For the
number of writing processes we use the number of aggrega-
tors per pset (na pset) from collective I/O listed in Table 1.

For smaller numbers of aggregators, the average perfor-
mance of all rounds excluding the first round is substantially
better than the performance of the first round. The reason
is that the first round includes the locking overhead. For the
largest number of aggregators (the default configuration of
collective I/O on BG/Q), the performance of the first round
is better. This may appear surprising but is easily explained:
For a high number of aggregators, the total bytes written in
each round represent a significant fraction of the aggregated
file system client cache. Consequently, in the first round
the chances are higher that there is enough available cache
space and the performance is better than in the subsequent
rounds, in spite of the cost of locking. For example, for 128
nodes and 520 aggregators writing 32 MB each, each round
writes out 520 × 32 = 16,640 MB, whereas the total file
cache capacity of the four I/O nodes is 4 × 4,096 = 16,384
MB. In this case, one round exceeds the cache capacity.

Topology: On BG/Q platforms, file system performance
is topology-dependent. Bridge nodes are closer than non-
bridge nodes to the I/O nodes and will thus see a higher file
system throughput. The collective I/O implementation for
BG/Q partially leverages topology information for choos-
ing the process ranks that perform data aggregation. First,
bridge nodes are selected and, subsequently, the remainder

Figure 5: Non-locking versus locking speedup. The
x-axis represents the 9 parameter configurations
from Table 1 corresponding to the cross-product of
scb and na pset.

Figure 6: Topology-aware versus uniform aggrega-
tor placement speedup. The x-axis represents the 9
parameter configurations from Table 1 correspond-
ing to the cross-product of scb and na pset.

number of aggregators are distributed evenly into the pset
of each bridge.

Figure 6 shows the speedup of topology-aware aggregator
placement over the uniform aggregator placement. As ex-
pected, in most cases the topology-aware aggregator place-
ment outperforms the uniform aggregator placement. The
performance improvement can be up to 69%. In some cases,
however, the uniform distribution places approximatively 4
aggregators on each node, and the topology-aware placement
does not appear to bring any advantage.

Other factors: Besides interference, locking, and topol-
ogy we identified other factors that pose additional chal-
lenges to building an analytical performance model for the
shared storage of BG/Q architectures. For example, the
concurrent storage I/O operations coming from cores of the
same nodes are serialized in the I/O forwarding implemen-
tation. Furthermore, the cache write-back policy directly
influences the rate at which cache space becomes available
and can have significant impact on performance. The per-
formance of storage arrays also strongly depends on various
factors such as caching, seeks, and rotational delays.

5.3.3 Communication and storage surrogate models
Building a model that incorporates all the factors affecting

performance presents a challenge because many of these fac-
tors are difficult to observe and directly control. Therefore,
we augment our model-based approach with a supervised-
learning approach to model the performance.

For simplicity, the analytical model presented in Sec. 5.2
treats the write operations from all rounds equally. In re-
ality, however, the performance varies from round to round
because of the factors mentioned above. Building a perfor-
mance model for each round is not feasible, however, because
the number of rounds varies and each particular round can
show highly variable performance in repeated runs.

We address this problem in the following way. First, we
consider the first round independently, because it includes
the file locking; we estimate the storage performance of the
first round by averaging several runs. Second, for all sub-
sequent rounds we average the performance of a number of
accesses that is large enough to exceed the cache capacity.
With this approach we account for caching effects, minimize

the impact of noise coming from other applications (by dis-
tributing the impact of access bursts of other applications
over several rounds), and distribute as evenly as possible the
impact of flushing over several rounds. Third, for estimating
the storage performance of all runs we use performance data
for the topology-aware case, which is representative for the
POSIX operations of collective I/O. Based on these obser-
vations, we reformulate the storage model as follows:

ts(n, sp, na pset, scb) = Ms lock(n, na
n
, scb)

+ max{0, rc − 1} ×Ms nl full(n,
na
n
, scb)

+ ri ×Ms nl full(n,
si
sr
× na

n
, scb).

The data for storage performance are obtained based on
a custom benchmark that concurrently writes data to a file
from a subset of processes of an application. The benchmark
allows the selection of the number of MPI processes per-
forming POSIX storage I/O, and a process selection module
chooses the nodes involved. Currently, two process selection
techniques are supported for an MPI program with n × c
processes, of which na processes are performing storage I/O:
uniform selection and topology-aware selection. In uniform
selection, every dn× c/nae-th process rank performs writes
to the file system. The topology-aware selection represents
the choice of aggregators from the collective I/O implemen-
tation: first the bridge nodes are chosen as aggregators,
and then all the remaining processes are evenly distributed
among the psets. The input for the data-driven storage per-
formance model consists of three sets of data corresponding
to the three cases discussed above. The first set, “s lock,”
corresponds to the full and partial rounds including the file
locking and consists of 270 points representing the latency
of concurrently writing to a file 1, 2, and 4 file blocks (a
file block is 8 MB) for various subsets of processes out of
2,048, 4,096, and 8,192 ranks. The second set, “s nl full,”
measures full rounds not including locking and consists of
27 points. Each point represents the average latency of re-
peating a sequence of concurrent writes 1, 2, and 4 file blocks
to the file system by three different subsets of processes out
of 2,048, 4,096, and 8,192 ranks. In all measurements, the
dataset is at least twice the size of the file system cache.
The third set, “s nl partial,” corresponds to partial rounds
not including locking and consists of 270 points represent-
ing the latency of writing 1, 2, and 4 file blocks for various
subsets of processes out of 2,048, 4,096, and 8,192 ranks.

For building surrogate performance models, we measured
the performance of collective communication operations in-
volved in the collective I/O implementation based on an
extended version of the ALCF MPI benchmark [11]. The
original version of this benchmark reports the latency of
three collective communication operations: Barrier, Broad-
cast, and Allreduce. We extended the benchmark for mea-
suring the latency of two other collective operations: Alltoall
and Alltoallv. The model input data for Allreduce consists
of 57 points representing the mean latency of 100 repetitions
for 2,048, 4,096, and 8,192 ranks and for message sizes be-
tween 4 bytes (one integer) and 1 MB (in powers of 2). The
model input data for Alltoall consists of 51 points represent-
ing the mean latency of 100 repetitions for 2,048, 4,096, and
8,192 ranks and for message sizes between 1 byte and 256
kB (in powers of 2). The model input data for Alltoallv con-
sists of 1,044 points for distributing message sizes between
1 byte and 64 MB (in powers of 2) for sets of 2,048, 4,096,
and 8,192 ranks.

Table 2: Cross-validation results for ml and hybrid

Approach component R2 RMSE

ml - 0.85 1.79e+01

hybrid

M̃aa 0.89 3.58e-01

M̃aav 0.88 6.73e+01

M̃aar 0.84 4.58e-04

M̃s nl full 0.57 1.89e+00

M̃s lock 0.79 2.85e-01

M̃s nl partial 0.83 2.49e-01

We deploy supervised learning to build surrogate perfor-
mance models M̃aav, M̃aa, M̃aar, M̃s lock, M̃s nl full, and
M̃s nl partial for Maav, Maa, Maar, Ms lock, Ms nl full, and
Ms nl partial, respectively. Substituting all these terms in
Eq. (5), we obtain the final model for hybrid:

f(x) = g(q(x, θ̂), β̂,⊕)

≈ g̃(m(x), β̂,⊕)
≈ t̃c(n, sp, na pset, scb) + t̃s(n, sp, na pset, scb)

≈ M̃ar(n, c, 2× n× c× 8) + M̃ar(n, c, 4)

+(1 + rc + ri)× M̃aa(n, c, 4)

+M̃aav(n, c, n× c, na, 4) + M̃aav(n, c, n× c, na, 8)

+rc × M̃aav(n, c, naav s, naav recv, saav)

+ri × M̃aav(n, c, naav sendri
, naav recvri

, saav)

+M̃s lock(n, na
n
, scb)

+ max{0, rc − 1} × M̃s nl full(n,
na
n
, scb)

+ri × M̃s nl partial(n,
si
sr
× na

n
, scb).

6. EXPERIMENTAL RESULTS
In this section, we present the model selection experiments

in which we identify the suitable learning algorithms for ml

and for the components of hybrid. We then compare the
speedups obtained by ml and hybrid over default (i.e., us-
ing all default settings) and optimal (i.e., the parameter con-
figuration providing the best performance). We also assess
the impact of the number of training points on the effec-
tiveness of ml, and we discuss the robustness of the two
approaches with respect to noise.

6.1 Model selection
For a given supervised learning task, model selection con-

Figure 7: Speedup distribution for 33 instances of
IOR benchmark.

Figure 8: Average speedup of rs, ml, and hybrid.

sists of finding the right combination of data-preprocessing
techniques, supervised-learning algorithm, and the algorithm’s
hyperparameter values. For data preprocessing, we consider
Box-Cox transformation, centering, scaling, and principal
component analysis [3]. For the learning algorithm, we test a
wide range of algorithms: linear regression, neural networks,
support vector machines, random forest, and cubist [3, 6].
All the algorithms are implemented in the R “caret” pack-
age [7], which provides a framework for the model selection.
Within this framework, for each learning algorithm, we sam-
pled 30 candidate parameter configurations prescribed by
the package and identified the best parameter setting using
10−fold cross-validation. We then compared each algorithm
with the best parameter setting and selected the one based
on Root Mean Squared Error (RMSE) and coefficient of de-
termination (R2) values [3]. When a model perfectly fits the
data, RMSE and R2 will be 0 and 1, respectively. For the
ml approach, we generate the training set as follows. For
each instance (a unique combination of n and sp), we sam-
ple 3 points using fractional factorial design. Consequently,
99 points are available for training the model. For hybrid,
the training points are obtained independently of the IOR
benchmark, as discussed in Sec. 5.3.3.

For hybrid, no single algorithm performs best for all the
components. While k nearest neighbor was the best for
M̃s lock, M̃s nl full, and M̃s nl partial, support vector machines
using radial basis functions outperformed other algorithms
for M̃aav and M̃aa, and the cubist algorithm was the best for
M̃aar. For the ml approach, support vector machines using
radial basis functions performed best. The cross-validation
results from the best learning algorithms for ml and hybrid

are shown in Table 2. For ml, even though the R2 value
is 0.85, we found that the model is less effective for shorter
run times. For hybrid, the best algorithms obtain R2 values
greater than 0.80, except on M̃s nl full (which we attribute
to the paucity of training data).

6.2 Speedup comparison
We now examine the effectiveness of the ml and hybrid

approaches over default. We also include random search
(rs) as a baseline, in which the parameter configuration for
each IOR instance is chosen uniformly at random. To reduce
the impact of randomness, we repeat ml, hybrid, and rs 10
times. As a measure of effectiveness, we consider the average
speedup obtained by a given approach with respect to the
default. This is computed as follows. For a repetition r
and an instance, speedup is given by the ratio of run time of
the default and the best configuration obtained by a given

approach, respectively; the average speedup is given by the
arithmetic mean of 10 speedup values from 10 repetitions.

First, we assess the effectiveness of the default configura-
tion and speedup potential in the IOR benchmark. For each
instance, we compute the speedup/slowdown of 9 configu-
rations with respect to the default. Figure 7 shows the
speedup/slowdown distribution on the 33 IOR instances.
We observe that the default configuration is optimal or
close to optimal for 12 instances. For the remaining 21 in-
stances, however, other configurations show run times shorter
than that of the default: more than 3x (2 instances), be-
tween 1.5x and 2.5x (6 instances), and up to 1.5x (13 in-
stances). From these plots, we can also assess the difficulty
of finding a better parameter configuration by analyzing the
quantiles of the distribution. For 15 instances, the 75%
quantile of the distribution is above 1, which suggests that
7 out of 9 configurations are better than the default. Con-
sequently, on such instances, we conjecture that rs can find
configurations that are better than the default.

Figure 8 shows the average speedup for rs, ml, and hy-

brid. As expected, rs finds better configurations than the
default for 15 instances. However, the obtained speedups
are less than 1.5x (the exceptions being 2 configurations for
which rs obtains 1.7x and 1.9x). On 18 configurations, the
run times of configurations obtained by rs are worse than
the default. The ml and hybrid clearly outperform rs, and
hybrid is significantly better than ml. The ml and hybrid

approaches obtain speedups of more than 1.5x on 6 instances
and between 1.1x and 1.5x on 5 and 11 instances, respec-
tively. The hybrid approach is worse than the default on
2 instances, whereas the ml is worse on 5 instances.

Figure 9 shows the speedup distribution for rs, ml, hy-

Figure 9: Comparison of rs, ml, hybrid, optimal, and
default.

Figure 10: Impact of different numbers of training
points on ml.

brid, and optimal with respect to the default over 10 repli-
cations. The distributions show a trend similar to that of
the average speedups as shown in Fig. 8. The hybrid is
close to optimal. Moreover, the 5% quantile of hybrid is
at 0.25, suggesting that the potential relative slowdown is
better than that of ml.

6.3 Impact of training points in ml
Crucial to the effectiveness of the ml approach is a suffi-

ciently large number of points used for training the model.
Therefore, we studied the impact of the number of training
points on the speedup. In addition to the default training
set size of 99 points, we used training set sizes of 66 and
33 points, chosen at random from the 99 training points for
each replication. Figure 10 shows the speedup distributions
obtained over 33 instances and 10 replications. We observe
that the number of training points has a significant impact
on the speedups. With the decrease in the training set size,
the speedups become progressively worse. With 33 training
points, only 50% of the configurations are better than the
default, and the distribution is comparable to that of rs.

We expect that the number of training points used for
building the surrogate storage models also affect the hybrid.
Nevertheless, it will be a one-time application-independent
cost and time to generate the training points from the bench-
marks is rather tiny.

6.4 Impact of noise
We next assess the robustness of ml and hybrid with re-

spect to the noise. Although previous research acknowledges
the impact of noise in tuning [1], the robustness of tuning
approaches has not been investigated thoroughly. While a
detailed noise characterization in I/O tuning is beyond the
scope of this work, we present a preliminary analysis of the
impact of noise on the effectiveness of the ml and hybrid ap-
proaches. We assume that noise is random and can be char-
acterized by a parameterized distribution. For our study,
we consider Gaussian noise with mean µ = 0 and various
standard deviations σ ∈ {0.001, 0.01, 0.1, 0.5, 1.0, 2.0, 3.0,
4.0, 5.0, 6.0, 7.0}. For each run time ti in the training set of
ml and hybrid, we set ti = ti × (1 +N (µ, σ2)): for hybrid,
we inject noise to the run times of the training set in each
component (Alltoall, Alltoallv, Allreduce, full round time,
lock, and partial run times); for ml, the noise is injected for
the run times of parameter configurations.

Figure 11: Impact of noise on ml and hybrid.

The speedup distribution of ml and hybrid for various
σ levels is plotted in Fig. 11. The results show that de-
spite relative noise added to the six components, hybrid is
more robust than ml. For σ values up to 0.5, the speedup
distributions of hybrid remain the same, but the speedup
distribution of ml deteriorates starting at σ = 0.001. This
result indicates that the magnitude of noise that is injected
in ml significantly affects the relative rank/order of the con-
figurations for a given instance. On the other hand, hy-

brid appears to be more robust to noise and preserves the
relative ordering of the configurations. This behavior can
be attributed to the separation of the analytical operation
count models from the surrogate performance models, with
the noise only affecting the latter.

7. RELATED WORK
Autotuning the performance of software I/O stack on in-

creasingly complex platforms is extremely hard. The high
numbers of parameters at various levels of the stack generate
a huge search space. Genetic algorithms [2] and simulated
annealing [5] have been used to address this problem. How-
ever, these approaches involve a huge overhead in estimat-
ing a high number of parameter combinations. Performance
models have been used to reduce the parameter space of
autotuning tuning [1]. However, system noise and other ap-
plications can interfere in the optimization process and pose
additional challenges. You et al. [17] use queuing theory to
model the performance of the Lustre file system on Cray
XT5 systems and used a search-based approach to optimize
access parameters. They reduce the search overhead using

simulation instead of real runs. Our work concentrates on
model-based and not on search-based autotuning.

The optimization process has been also approached by
using expert knowledge of the I/O system in run-time op-
timizations such as dynamically adapting middleware file
domain partitioning to parallel file system locking proto-
cols [9] and dynamically tuning parameters of collective I/O
such as number of aggregators and buffer sizes [4, 16]. Ex-
pert knowledge remains valuable; but the number of compo-
nents, availability of information on how these components
operate, and complexity of interactions between components
limit how well experts can guide applications to optimal so-
lutions. In this paper we use expert knowledge for building
analytical models for counts and sizes of network and storage
operations involved in collective I/O.

Another set of works concentrates on using machine learn-
ing for parallel I/O autotuning. Kumar et al. [8] use several
linear and nonlinear regression techniques to characterize
and model the performance of the PIDX parallel I/O library
and select tunable parameters. Yu et al. [18] leverage neural
networks for building a platform-independent performance
metamodel for tuning a set of parameters of the Panda I/O
library. In our work we leverage various state-of-the art ma-
chine learning techniques for building performance models
of network and storage operations. However, we use ma-
chine learning in a hybrid model with the goal of exploring
intermediate approaches that make practical use of expert
knowledge of a collective I/O implementation.

8. CONCLUSION
This paper presents a case study of the effectiveness of

model-based autotuning in the context of ROMIO collective
I/O implementation. We compare a black-box approach and
a hybrid approach leveraging analytical modeling and ma-
chine learning. In the hybrid approach analytical models
are used for deriving the count and sizes of communication
and storage operations. We address the challenges of eval-
uating the performance of storage operations by building a
custom benchmark that synthesizes various factors affecting
the modeling accuracy including architecture, system soft-
ware, and noise. The results show that the two approaches
outperform the currently adopted default values, and that
the hybrid one is significantly better than the black-box ap-
proach. The hybrid approach shows a higher robustness
to noise than does the black-box approach. Applying the
hybrid methodology to a new platform does not require
any applications runs, but only the evaluation of elemen-
tary network and storage operations through an arbitrary
benchmark. This approach overcomes the limitations of the
previously proposed search-based tuning methods that have
significant runtime overhead.

While these results look promising, our approach is only
a small step toward the ultimate objective of improving the
autotuning of large-scale software stacks. Our findings could
be used not only for improving the efficiency of autotuning
but also for increasing the performance predictability of indi-
vidual subsystems. Without performance predictability the
increasing complexity of the storage I/O data path could
make global performance optimization intractable.

9. REFERENCES
[1] B. Behzad, S. Byna, S. M. Wild, M. Prabhat, and

M. Snir. Improving parallel I/O autotuning with

performance modeling. In Proc. of HPDC ’14, pages
253–256, 2014.

[2] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna,
Prabhat, R. Aydt, Q. Koziol, and M. Snir. Taming
parallel I/O complexity with auto-tuning. In Proc. of
SC ’13, pages 68:1–68:12, 2013.

[3] C. M. Bishop. Pattern Recognition and Machine
Learning, volume 1. Springer, New York, 2006.

[4] M. Chaarawi and E. Gabriel. Automatically selecting
the number of aggregators for collective I/O
operations. In CLUSTER (2011), pages 428–437, 2011.

[5] Y. Chen. Automated tuning of parallel I/O systems:
An approach to portable I/O performance for
scientific applications. IEEE Trans. Softw. Eng.,
26(4):362–383, Apr. 2000.

[6] G. Holmes, M. Hall, and E. Prank. Generating rule
sets from model trees. In N. Foo, editor, Advanced
Topics in Artificial Intelligence, volume 1747, pages
1–12. 1999.

[7] M. Kuhn. Building predictive models in R using the
caret package. J. Stat. Soft., 28(5):1–26, 2008.

[8] S. Kumar, A. Saha, V. Vishwanath, P. Carns, J. A.
Schmidt, G. Scorzelli, H. Kolla, R. Grout, R. Latham,
R. Ross, M. E. Papka, J. Chen, and V. Pascucci.
Characterization and modeling of PIDX parallel I/O
for performance optimization. In Proc. of SC ’13,
pages 67:1–67:12, 2013.

[9] W.-k. Liao and A. Choudhary. Dynamically adapting
file domain partitioning methods for collective I/O
based on underlying parallel file system locking
protocols. In Proc. of SC ’08, pages 3:1–3:12, 2008.

[10] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield,
T. Kordenbrock, K. Schwan, and M. Wolf. Managing
variability in the IO performance of petascale storage
systems. In Proc. of SC ’10, pages 1–12, 2010.

[11] V. Morozov, J. Meng, V. Vishwanath, J. R.
Hammond, K. Kumaran, and M. E. Papka. ALCF
MPI benchmarks: Understanding machine-specific
communication behavior. In Proc. of ICPPW ’12,
pages 19–28, 2012.

[12] F. Schmuck and R. Haskin. GPFS: A shared-disk file
system for large computing clusters. In Proc. of FAST
’02., 2002.

[13] H. Shan, K. Antypas, and J. Shalf. Characterizing and
predicting the I/O performance of HPC applications
using a parameterized synthetic benchmark. In Proc.
Conf. Supercomputing, pages 42:1–42:12, 2008.

[14] R. Thakur, W. Gropp, and E. Lusk. Data sieving and
collective I/O in ROMIO. In Proc. Front. Mass.
Parallel Comput., FRONTIERS ’99, pages 182–189,
1999.

[15] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R.
Ganger. Argon: Performance insulation for shared
storage servers. In Proc.of FAST ’07., pages 5–5, 2007.

[16] J. Worringen. Self-adaptive hints for collective I/O. In
Recent Advances in Parallel Virtual Machine and
Message Passing Interface, pages 202–211, 2006.

[17] H. You, Q. Liu, Z. Li, and S. Moore. The design of an
auto-tuning I/O framework on Cray XT5 system. In
Cray Users Group Conf., CUG ’11, May 2011.

[18] S. Yu, M. Winslett, J. Lee, and X. Ma. Automatic and

portable performance modeling for parallel I/O: A
machine-learning approach. SIGMETRICS Perform.
Eval. Rev., 30(3):3–5, Dec. 2002.

The submitted manuscript has been created by UChicago Ar-
gonne, LLC, Operator of Argonne National Laboratory (“Ar-
gonne”). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up, nonexclusive, irrevocable world-
wide license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.

