
Autotuning FPGA design parameters for performance and power

Azamat Mametjanov∗, Prasanna Balaprakash∗†, Chekuri Choudary‡, Paul D. Hovland∗, Stefan M. Wild∗, and Gerald Sabin‡
∗ Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA

email: {azamat, pbalapra, hovland, wild}@mcs.anl.gov
† Leadership Computing Facility, Argonne National Laboratory, Argonne, IL 60439, USA

‡ RNET Technologies, Inc., Dayton, OH 45459, USA
email: {cchoudary, gsabin}@rnet-tech.com

Abstract—Many factors affect the performance and power
characteristics of FPGA designs. Among them are the optimiza-
tion parameters for synthesis, map, and place-and-route design
tools. Choosing the right combination of these parameters can
substantially lower power requirements, while still satisfying
timing constraints. Finding such an improvement, however,
requires significant experimentation by the FPGA designer.
Exhaustive search through the parameter space is an auto-
mated alternative to experimentation but is intractable because
of the large search space and the long build time of each
parameter combination. In this paper, we propose a machine-
learning-based approach to tune FPGA design parameters. It
performs sampling-based reduction of the parameter space and
guides the search toward promising parameter configurations.
In our experiments, such selective sampling finds parameter
configurations that meet the timing constraints and are within
0.2% of the optimal power consumption. Furthermore, these
configurations are found in an order of magnitude less time
compared with exhaustive search. Such speedups can substan-
tially alleviate bottlenecks in the FPGA design process.

Keywords-field programmable gate arrays; tuned circuits;
optimal design and tuning; power optimization

I. INTRODUCTION

Field programmable gate arrays (FPGAs) have experi-
enced an exponential growth in the past three decades.
When FPGAs were introduced in the mid-1980s, the Xilinx
XC2064 FPGA had 64 lookup tables (LUTs) [1], [2].
Current-generation FPGA chips such as Xilinx Virtex-7 offer
2,000,000 logic cells (i.e., LUTs), a >30,000X increase in
logic capacity [3]. Such an increase enables implementation
of highly complex system-on-a-chip designs by, for example,
embedding the entire 1 GHz dual-core ARM Cortex-A9
processor in a device’s programmable logic fabric [4].

For programming such complex devices, design tools play
a critical role in the compilation of design specifications and
constraints into bit-streams to configure FPGAs. A typical
design work flow invokes synthesis, map, and place-and-
route tools. The placed-and-routed design undergoes area,
timing, and power analyses to determine whether the design
fits into available resources, whether it operates at the ex-
pected frequency, and what the expected power consumption
is. Each of the build tools provides parameters that control
its behavior in terms of metrics such as power, execution

speed, and build speed. While the initial development of
an FPGA design may leave tool options at default values,
optimizing redesign iterations may involve tightening of area
and timing constraints and/or tuning of tool options in order
to improve the power consumption.

Manual search for the best parameter values is imprac-
tical, and thus there exist tools to explore a user-defined
parameter space by empirically evaluating area, timing, and
power metrics by recompiling a design with each parameter
configuration. Because of the time needed to rebuild and re-
analyze a design for each configuration, however, automated
exploration even for small parameter spaces may take days
or weeks. If the expected time to optimize a design exceeds
the allotted tuning time budget, one can be left with an
FPGA design whose performance is far from optimal.

In this paper, we describe an automated tuning (autotun-
ing) approach to finding the best parameter configuration.
The primary contributions of this approach are the following:
• User-defined parameter space is selectively sampled

instead of exhaustively enumerated to find the feasible
configuration with the lowest power metric. The result-
ing tuning time is reduced by an order of magnitude in
our experiments.

• The autotuning produces a machine-learning model
over the parameter space. The model of how design
parameters affect the metrics of interest enables “what-
if” analysis of parameter customization in presence of
trade-offs among area, speed, and/or power.

In Section II we present an overview of the FPGA design
flow, and in Section III we review prior work. Our approach
is outlined in Section IV, and the results are discussed in
Section V. In Section VI we summarize our conclusions.

II. OVERVIEW OF FPGA DESIGN

In this section, we summarize the essential elements of
FPGA design, including the architecture, design flow, and
tools for programming FPGAs.

FPGAs consist of an array of logic blocks interconnected
with memory banks, special-purpose circuits, and I/O blocks
using routed wires [5]. The logic blocks consist of mul-
tiple, interconnected basic logic elements. Each element

jbullock
Typewritten Text

consists of a LUT and a state-storing flip-flop (register).
The logic blocks transform input to outputs depending on
the programmed state of the registers. The interconnecting
channels consist of multiple segmented wires of varying
length connected in a fixed or switched manner. The width,
length, and connectivity of a channel provide for flexible
interconnection of logic blocks. This flexibility is also a
source of complexity addressed by placement and routing
tools. An essential component is a clocking network that
connects logic blocks to the clock signal, which drives the
computation state of a circuit. Because of signal propagation
delays, chip area and composition of logic blocks and
channels determine the maximum clock frequency of a chip.

A. Design Flow

An FPGA design typically involves a sequence of design
flow steps. We consider the Xilinx command-line build flow;
other tools, such as IDEs or tools from other vendors, use
similar processes. The advantage of command-line tools is
the complete control over the build process by using various
options available in each tool to customize its processes.

Synthesis: This process converts HDL code into a
netlist – a gate-level description of the source code. This
involves architecture-independent control-flow and data-flow
analysis and optimization to improve the performance and
memory footprint of the code.

Mapping: This process converts a logical netlist into
a physical circuit description using device-specific compo-
nents such as embedded memory blocks and special-purpose
logic blocks (e.g., multipliers).

Place and Route: A mapped netlist is placed onto
specific logic blocks of a device, and routing is defined.
This is an iterative process that can include restructuring or
replication of logic to minimize interconnect delays.

Area, Timing, and Power Analysis: Having obtained
a complete physical circuit description, these processes
determine the area, timing, and power metrics of the design.

Bitstream Generation: This process creates a bitstream
file that can be loaded onto an FPGA to program the device.

B. Design Problem

Given the high-level program Psrc and constraint values
C = {Carea, Ctime, Cpwr}, the task of an FPGA designer is
to either tune the source program P ′src or the build tools

B = {Bsyn, Bmap, Bpar, Barea, Btime, Bpwr}

such that the low-level, placed-and-routed program

Ppar = Bpar(Bmap(Bsyn(P
′
src)))

satisfies constraints such as

Barea(Ppar) ≤ Carea, Btime(Ppar) ≤ Ctime.

In practice, engineering of a feasible design goes through
multiple iterations, with constraints being prioritized in

order of importance: area constraints, followed by timing
constraints (a timing closure problem). Power is an objective
that is usually minimized after satisfying the constraints.

C. Design Optimization

The design constraints specify minimal criteria for a
satisfactory design. Hence, significant gains can be realized
by searching for an optimal design among all the designs
that satisfy the constraints. When posed as an optimization
problem, for example, where power consumption is mini-
mized, the goal is to find a design P opt

par that has the lowest
power metric among all possible (semantically identical)
versions that satisfy the area and time constraints. That is,
P opt
par belongs to the set of satisfactory designs

Psatisfactory =
{
P i
par : Barea(P

i
par) ≤ Carea and

Btime(P
i
par) ≤ Ctime }

and

Bpwr(P
opt
par) ≤ Bpwr(P

i
par) ∀ P i

par ∈ Psatisfactory. (1)

D. Optimization Parameters

Each of the design tools provides a set of options that
affect its output metrics. The designer can change the
options’ default values (underlined below) to obtain better
area, timing, and power metrics. We summarize some of the
options that affect trade-offs between timing and power or
between build and execution speed [6].

1) Synthesis: The synthesis tool xst has two options that
affect the timing and area metrics:
• -opt mode speed|area The optimization mode switch

specifies the strategy that should be used in synthesis.
The default value of speed reduces the number of logic
levels and therefore increases the frequency, while area
reduces the total number of gates used and hence the
required area.

• -opt level 1|2 This flag defines how much effort should
be spent on reducing the number of logic gates. A
higher value leads to increased synthesis build time.

2) Mapping: The mapping tool map translates a logical
design into a physical circuit description. Some of the most
relevant optimization options are as follows:
• -global opt off|speed|area|power Performs the speci-

fied optimization on a fully assembled netlist prior to
any mapping.

• -timing Instructs to perform packing and placement in
the map process, instead of exclusively in par, which
can improve the performance.

• -power off|on|high|xe Performs power-optimized place-
ment of gates onto logic elements to reduce switching
logic and capacitive power loading on data and clocking
nets. This option controls the trade-off in increased area
and reduced performance for lower dynamic power to
drive circuit signals.

• -logic opt off|on Performs optimization of timing-
critical connections by restructuring their gates and
rerunning synthesis, placement, and timing.

3) Place and route: The place-and-route tool par takes
the output of map and creates a complete physical circuit
description that can be used to generate a bitstream.
• -ol std|high Defines the overall effort level to achieve

better results through greater process run time. Similar
options are available for placer effort level (-pl) and
router effort level (-rl).

• -power off|on Optimizes the dynamic capacitance of
non-timing-critical design signals.

This small set of parameters generates a discrete space
of 1,024 (22 × 26 × 22) possible parameter configurations.
There are other parameters, such as map and par cost
tables (random seeds used for placement), which can af-
fect design performance and whose values are integers in
{1, · · · , 100}. Since a typical design build time ranges from
several minutes to several hours, an exhaustive search of
the entire parameter space for the best configuration is not
practical. However, there exist techniques, which we review
next, for finding the optimal configuration while considering
the reduced search space.

III. PRIOR WORK

Existing design tools provide the capability of exploring
the design space in order to meet or optimize the timing
constraints. We focus on design exploration with Xilinx
SmartXplorer, but other tools such as Altera’s Design Space
Explorer use similar techniques [7], [8].

Each design variant is represented as a set of tool options
(parameter configurations) to synthesize and implement the
design in order to satisfy particular area and speed con-
straints or to minimize power. The build of different variants
can be performed in parallel on multiple compute cores or
nodes to reduce the overall search time.

A user can search for the best parameter configuration
using the built-in search space specification or modify the
parameters and explore the space using custom specification.
Figure 1 illustrates the format of specifying the customized
set of parameters to explore. Given a custom parameter set,
the tool performs a two-stage design exploration. In the
first stage, synthesis variants are built with default map-
par options optimized for the shortest build-time, and the
timing metric is obtained for each variant. In the second
stage, implementation variants are built with the synthesized
netlist, which has the lowest timing metric that was arrived
at in the first stage. The parameter configuration that has the
lowest timing metric in this two-stage exploration is chosen
as the best one for a given device architecture.

If two or more parameter configurations result in an
identical timing metric, the configuration with the lowest
expected power consumption is picked. If two or more

{” v i r t e x 6 ” : {
”XST o p t i o n s ” : (
{”name ” : ” my xst1 ” ,

” x s t ” : ” −opt mode speed −o p t l e v e l 1”} ,
{”name ” : ” my xst2 ” ,

” x s t ” : ” −opt mode a r e a −o p t l e v e l 2”} ,
. . .

) ,
”Map−Par o p t i o n s ” : (
{”name ” : ” my impl1 ” ,

”map” : ” −t i m i n g −o l h igh −xe n −g l o b a l o p t on
−r e t i m i n g on ” ,

” p a r ” : ” −o l h igh ”} ,
{”name ” : ” my impl2 ” ,

”map” : ” −t i m i n g −o l h igh −xe n ” ,
” p a r ” : ” −o l h igh ”} ,

. . .
) ,
} , ” s p a r t a n 6 ” : . . .
}

Figure 1. Sample SmartXplorer search space specification. Users specify
parameters and allowable values to search for better timing or lower power.

configurations have identical timing and power metrics, then
the configuration with the shortest build-time to synthesize
and implement the design is chosen as the best one.

The ability to customize the search space of possible
design variants, combined with parallelization of search, pro-
vides a user complete control over design space exploration.
However, this does not mitigate the challenges presented
by the large-scale design space; because of the number of
possible tool options and the values that they can take, the
size of the search space is very large.

To do a preliminary test of how quickly one could find the
best parameter configuration, we used a a toy example of a
cyclic redundancy check design and generated a search space
of 8,000 configurations that included all optimization param-
eters summarized above. Searching for the best parameter
configuration with 16-way concurrency on a 16-core Intel
Xeon E5620 2.40GHz machine took 10 days. Since a build
of the CRC design variant with one parameter configuration
takes about two minutes, the cost of exhaustive search is
disproportionately high. Further, since the best parameter
configuration may vary from one design problem to another,
the search cost might not be amortizeable over multiple
designs. Therefore, we seek a search method that can arrive
at a near-optimal configuration within several hours (e.g.,
using overnight or weekend idle compute hours).

IV. APPROACH

Our approach to reducing the search time is based on the
hypothesis that one can quickly arrive at models that can
predict the timing and power metrics based on the build
tool parameter configuration. In other words, we would like
to build functions Mtime and Mpwr such that

|Mtime(Iparam)−Btime(P
′
par)| ≤ εtime,

|Mpwr(Iparam)−Bpwr(P
′
par)| ≤ εpwr,

where Iparam is the build tool parameter configuration, P ′par
is the design built with tools set at values specified by Iparam
configuration, and ε∗ is the tolerance error rate between
actual and predicted metrics.

The models are built by randomly sampling the parameter
space, evaluating the function being modeled at sampled
points (i.e., building a design with tool parameters set to
sampled values and obtaining timing and power metrics of
the built design), and building a correlation function between
inputs and outputs. If the derived models predict the actual
timing and power within an acceptable error range, they can
be used as surrogate functions over the parameter space.

Our initial goal is to obtain models with error rates of at
most 5% that can be obtained by sampling no more than 5%
of the parameter space. The intended 20x reduction in the
portion of the search space that must be executed represents
significant savings, which directly translate into the feasibil-
ity of the search completing within a reasonable tuning time
budget expected by the designers in the field. The caveat
of sampling is the possibility of missing a configuration that
substantially outperforms the other parameter configurations.
However, we hypothesize that such scenarios occur with low
probability and can be guarded against by increasing the
number of sampled points, which would lower the error rate
and thereby improve the nearness of the optimality.

A. Problem and Experimental Setup

To test our approach, we performed model-building exper-
iments and compared results obtained by the models and by
exhaustive enumeration of the same parameter space. Below
we summarize the testing environment of the experiments.

To approximate practical FPGA design scenarios, we
chose a sample FPGA design of a serial digital interface
(SDI) stream pass-through processor of uncompressed digi-
tal video with embedded audio [9]. Such streams are often
used in professional broadcast studios and video production
centers. The SDI design can process streams in various
modes (SD, HD, 3G) and formats (NTSC/PAL for SD, frame
rate for other modes). The design is a foundation of various
video processing functions such as compression, scaling,
deinterlacing, frame timing, and buffering.

Our test platform consists of a Xilinx ML605 base board
that includes a Virtex-6 XC6VLX240T-1FFG1156 FPGA
chip, which contains over 240,000 LUTs, 37,680 CLBs, 768
DSP blocks, 15 Kb of on-chip block RAM, and 720 I/O
blocks [10].

After building the design in its default configuration,
we performed complete enumeration of several design tool
parameters. This produced approximately 8,000 configura-
tions for use in the model-based search: i.e., DT below.
In addition, the SDI design uses IPCore modules, which
are reusable logic blocks that can be called from a design
for a given library function. IPCores also provide tunable
parameters. Modifying these parameters affects the power

Algorithm 1 Our model-based search framework.
Input: Parameter configuration pool Xp, batch size bs, max

evaluations nmax

1 Xout ← sample min{bs, nmax} distinct configurations
from Xp

2 Yout ← Evaluate_Parallel(Xout)
3 M ← fit(Xout, Yout)
4 Xp ← Xp −Xout

5 for i← 1 to bnmax/bsc do
6 Yp ← predict(M, Xp)
7 xbsi ← select bs best configurations from Xp

8 ybsi ← Evaluate_Parallel(xbsi)
9 Xout ← Xout ∪ xbsi ; Yout ← Yout ∪ ybsi

10 M ← fit(Xout, Yout)
11 Xp ← Xp − xbsi
12 end for
13 xbest ← best (feasible) configuration(s) from Xout

Output: Best parameter configuration xbest

metrics of the overall design. To understand their impact
we enumerated the parameters and obtained approximately
2,400 configurations. We used this parameter set for a second
experiment of model-based search: i.e., IPC below. Overall,
exhaustive enumeration found a parameter configuration that
builds a design, whose expected power consumption is 10%
lower than the one built with default settings (timing closure
is achieved in both cases).

V. MODEL-BASED SEARCH

Our search framework consists of sampling a small num-
ber of input parameter configurations, empirically evaluating
the build processes with sampled parameter values to obtain
the corresponding output metrics, and fitting a surrogate
model over the input-output space. The surrogate model
is then iteratively refined in the promising input parameter
region by obtaining new output metrics at unevaluated input
configurations predicted to be high-performing by the model.

The search framework is shown as Algorithm 1. The
symbols ∪ and − denote set union and difference operators,
respectively. Given a pool Xp of unevaluated configurations,
a tuning budget expressed in the form of the maximum
number nmax of allowed evaluations, and sample size bs,
the algorithm proceeds in two phases. In the initializa-
tion phase, the algorithm first samples bs configurations
at random and evaluates them in parallel to obtain their
corresponding output values. A surrogate modeling method
uses these points to build predictive models. In the iterative
phase, the algorithm predicts the outputs of all remaining
unevaluated configurations using the model, evaluating the

best bs configurations, and retraining the model with the
results.

When the evaluation output is a vector rather than a scalar,
we can fit one model for each output. In this case, the
search problem becomes: (1) a constrained single-objective
problem, where only one output needs to be optimized
subject to some constraints on other outputs; (2) a multiob-
jective problem, where all the outputs need to be optimized
without a priori weight for each output; or (3) a constrained
multiobjective problem, where more than one output needs
to be optimized subject to some constraints on the other
outputs. Without loss of generality, Algorithm 1 can be used
in all these scenarios. Note that for the multiobjective case,
the best configurations are typically defined in terms of a
Pareto front (see, e.g., [11]).
A. Search Results

In this section, we demonstrate the applicability of the
proposed search framework on the IPCore parameter dataset
(IPC) and design-tool parameter dataset (DT). IPC is a
single-objective search problem with the goal of minimizing
power. DT represents a constrained single-objective search
problem with the goal of minimizing the power subject to
the constraint that the timing metric should be less than
1.0: i.e., timing constraints are satisfied. Therefore for DT,
Algorithm 1 builds models of the power and timing metrics,
but these models are for different purposes: the timing model
is used to predict points that satisfy the constraints.

For the surrogate modeling in Algorithm 1, we use
statistical machine-learning methods [12]. We experimented
with a number of supervised-learning methods. Although
random forest [13], cubist [14], and support vector machines
[15] produced promising results, we found linear regression
sufficient for modeling and identifying promising regions for
power optimization. The main advantage of linear regression
is its simplicity: a model is obtained with the least squares
approach that minimizes the sum of squared differences
between each observed and fitted value of the model. We
note that the framework does not restrict the user from
using nonlinear models within the search; support vector
machines with a nonlinear kernel or random forests can be
adopted for search when linear models prove ineffective. To
enable modeling, we apply feature binarization to convert
categorical values (e.g., the map’s -power parameter values
∈ {off,on,high,xe}) to binary parameters. For the timing
model, we use the cubist method – a recursive partitioning
algorithm with boosting [14]. This allows our implementa-
tion of Algorithm 1 to quickly identify the points that violate
timing constraints, minimize power, and break ties between
identical power values using worst case timing slack.

For the experimental analysis, we set the maximum
evaluations, nmax, to 1,000 and vary the batch size bs ∈
{10, 25, 50}. To minimize the effects of randomness in
the initialization phase and the machine-learning methods,
we repeated the search 10 times for each combination of

problem and batch size. To evaluate the effectiveness of the
search algorithm, we measure the percentage away from the
optimal point found by exhaustive enumeration. This is given
by 100× ybest,k−yopt

yopt
, where ybest,k and yopt are the minimal

power value found until iteration k and the optimal power
value, respectively.

Figure 2 shows the results of the model-based search for
the experiments. In each plot, for an iteration k, we show
the distribution of ybest,k with a box-whisker from 10 runs.
From the distribution, we also plot the best, median, and
worst-case power values. In practice, the search algorithm
will be run only once; therefore, we focus on the worst-case
results. For IPCores, the search algorithm finds the optimal
in 45, 15, and 6 iterations for batch sizes 10, 25, and 50,
respectively. Clearly, increasing the batch size has a positive
effect on the worst-case performance of the algorithm, but
has a relatively minor effect on the median and best-case
performance. Each iteration denotes an SDI design build
that takes 20–25 minutes. The batching allows for a higher
degree of parameter space exploration and increases the
probability of finding high-quality configurations in fewer
iterations. Given a multinode computing environment (even
a small cluster) that can perform bs evaluations at the same
time, and assuming each evaluation requires the same wall
clock time, the search time will be significantly reduced
(especially for large batch sizes). This trend is similar for
DT except that in the worst case, the search can find the
configurations whose power values are 0.2% away from
optimal. Here, the near-optimal point is found in 40, 9, and
6 iterations. We conjecture that DT is harder to model than
IPC because of the timing constraint and the size of the
parameter space.

Overall, model-based search provides substantial savings
in tuning time. Exhaustive enumeration of 2,400 IPCore
parameter configurations in concurrent batches of 10, 25,
and 50 would need 240, 96, and 48 design builds. Model-
based search provides 5x, 6x, and 8x speedups. Exhaustive
enumeration of 8,000 design tool parameter configurations
would require 800, 320, and 160 design builds. Model-based
search provides 20x, 35x, and 26x speedups.

B. Sensitivity and Modeling Results
Typically, search algorithms do not give insights into the

impact of the input parameters and the relationship between
the inputs and outputs. Therefore, we devised a subsidiary
procedure that takes the parameter configurations and their
resulting timing and power metrics to develop surrogate
models of input-output relationships over the entire input
parameter space. For this, we used 1,000 evaluations (Xout,
Yout), solely from the evaluations performed in the search
stage. The main caveat is that since the empirical evaluations
are biased by the search algorithm toward the promising
regions of the space, the obtained models from these points
may not accurately capture the entire, global input space.

Figure 2. Search trajectory of best feasible configuration for IPC (row 1) and DT (row 2) when using concurrent evaluation batch sizes of bs = 10, 25,
and 50. For IPC, the best parameter configuration is found in 45, 15, and 6 concurrent design builds. For DT, the near-optimal parameter configuration is
found in 40, 9, and 6 parallel design builds.

The development of global surrogate models proceeds in
two stages. The first stage is sensitivity analysis, where we
reduce the dimensionality of the input space by analyzing the
impact of the input parameters on the outputs and removing
uncorrelated inputs. For this purpose, we use the random
forest method, a state-of-the-art machine learning approach
that constructs a large number of decision trees at training
time [13]. For an unseen input, each tree predicts a value
of the desired output; the final output is an average over
all the trees. First, the random forest model is fit on the
training set. The mean squared error (MSE) on the training
set is given by 1

l

∑l
i=1(yi − ŷi)2, where l is the number of

training points and yi and ŷi are the observed value from
the simulation and predicted value from the random forest
model at the input parameter configuration xi, respectively.
In order to assess the impact of an input parameter m,
the values of m in the training set are randomly permuted.
Again, a random forest model is fit on this permuted training
set, and the MSE is computed. This procedure is repeated
for a number of random permutations. If a parameter m

is important, permuting the values of m should affect the
prediction accuracy significantly, resulting in a large increase
in the MSE. A permutation example is shown below. To
assess the importance of the first parameter in the training
set represented by the matrix T, we permute the values of
the first column (corresponding to the values of the first
parameter) in the matrix, shown in T′1.

T =

x1x2
x3

 =

5 · · · · · ·

6
. . .

...
7 · · · · · ·

 T′1 =

7 · · · · · ·

5
. . .

...
6 · · · · · ·


Figure 3 shows the most sensitive input parameters for

each output metric using the percentage increase in MSE
(%IncMSE). The IPCore parameters are the depth of the
data buffer (sample data depth), the match unit type to
use for all the match units connected to the trigger port
(match type), whether to use relationally placed macros
(use rpms), the edge of the clock to capture and trig-
ger upon (sample on), optional trigger output port (en-
able trigger output port), whether to enable optional stor-

Figure 3. Sensitivity analysis for global models. Power and timing are more sensitive toward changes in the parameters with a higher percentage increase
in the mean squared error.

age qualification (enable storage qualification), and width
of the match unit counters (counter width). Among these
parameters, the sample data depth is empirically shown to
have significant impact on the power consumption: 50%In-
cMSE. This is expected because high samples consume more
FPGA resources and hence more power. With these models,
we can quantify the sensitivity impact of the different IPCore
options on the estimated power consumption of the design.

The most sensitive map tool parameters are power opti-
mization (power), register ordering (r), combinatorial logic
optimization (logic opt), placing registers in I/O (pr), extra
effort level (xe), and LUT-combining of two LUT compo-
nents into a single LUT with dual output pins (lc). The most
sensitive par tool parameter is extra effort level (xe 1).
Logic restructuring by passing one of {none,-ntd,-x} to
map (flags map) or par (flags par) also shows significant
sensitivity. Overall, we can observe that input parameter
r has a significant impact on both output metrics whereas
other parameters have a varying impact on each output. The
parameter r controls the register ordering; that is, the map
tool optimizes the grouping of registers into CLBs. From this
model, we can deduce that tuning the register ordering has
a significant impact on power consumption of the design.

The second stage of modeling is construction of the
relationship between the most sensitive inputs and outputs
over the whole space. While for search, linear regression
was sufficient to detect promising regions, modeling required
a more effective machine learning method to take into
account the nonlinear interactions among the input param-
eters. Therefore, we used the random forest algorithm. For
validation purposes, Figure 4 shows the correlation plot of
actually observed and model-predicted power metrics. The
results show that, for both problems, the average prediction
error is within 1.0%. Moreover, the prediction accuracy of
low power values is better than that of high power values.
The reason is that the training points obtained from the

Figure 4. Validation results on IPC and DT datasets for global power
models built using the 1,000 evaluations performed in the search.

search algorithm are biased toward low power values.
Overall, global models can be useful to quantify how

design parameters affect timing and power metrics. For
example, plugging in different values of design parameters
into the model enables “what-if” analyses of their impact
on output. Such analyses can help a designer in making
informed customization decisions in presence of trade-offs
among area, speed, and/or power.

In related work, Altera Design Space Explorer and Xilinx
SmartXplorer are the closest design parameter exploration
tools. Autotuning and machine learning-based search have

been extensively studied in high-performance computing
(e.g., [16]). Our approach applies the autotuning techniques
used in HPC to the problem of parameter tuning in FPGA
design. Design tool parameters have been recently studied
in [17]. Our work focuses on Xilinx tools whereas [17]
study Altera tools. Exploration of parameters of the design
itself has been studied in [18]. This work is similar to
our exploration of IPCore parameters, which are specific
to a particular IPCore and design. Finally, various C-to-
RTL synthesis parameters affecting operation scheduling,
resource allocation and control flow synthesis have been
studied in [19]. Although our search methodology is similar
to these methods, the key differences are in the adopted
learning algorithm, which results in interpretable models and
can give insights into the impact of the parameters. Among
the limitations of presented work is whether model-based
search produces similar results for other FPGA designs. This
is to be addressed in future work by applying the approach
to larger and more sophisticated designs.

VI. CONCLUSION

In this paper we presented a preliminary investigation
into an autotuning approach for model-based FPGA design
space exploration. Our experiments show that it picks a near-
optimal parameter configuration that is within 0.2% of the
globally optimal power consumption among designs with
satisfactory timing and area constraints. The tuning is based
on selective sampling and can find a near-optimal value after
about 300 samples each as opposed to the 8,000 design
tool or 2,400 IPCore parameter configurations required by
exhaustive search. Furthermore, without requiring additional
parameter configuration sampling, the models resulting from
optimization produce relatively accurate predictions of per-
formance and power across the entire design parameter
space. Based on these speedups and accuracy, machine
learning-based autotuning shows promise of becoming an
important part of FPGA design and optimization workflows.

REFERENCES

[1] W. Carter, K. Duong, R. H. Freeman, H.-C. Hsieh, J. Y.
Ja, J. E. Mahoney, L. T. Ngo, and S. L. Sze, “A user
programmable reconfigurable logic array,” in Proceedings of
the Custom Integrated Circuits Conference, 1986, pp. 233–
235.

[2] D. Chen, J. Cong, and P. Pan, “FPGA design automation:
A survey,” Foundations and Trends in Electronic Design
Automation, vol. 1, no. 3, pp. 139–169, Oct 2006.

[3] Xilinx, “7 Series FPGAs Overview [DS180 (v1.16)],”
http://www.xilinx.com/support/documentation/data sheets/
ds180 7Series Overview.pdf, Oct 8, 2014.

[4] ——, “Zynq-7000 All Programmable SoC Overview [DS190
(v1.7)],” http://www.xilinx.com/support/documentation/data
sheets/ds190-Zynq-7000-Overview.pdf, Oct 8, 2014.

[5] I. Kuon, R. Tessier, and J. Rose, “FPGA architecture: Survey
and challenges,” Foundations and Trends in Electronic Design
Automation, vol. 2, no. 2, pp. 135–253, Apr 2008.

[6] Xilinx, Command Line Tools User Guide [UG628 (v14.5)
March 20, 2013], 14th ed., Xilinx Inc., 2100 Logic Dr, San
Jose, CA 95124, March 20, 2013.

[7] ——, SmartXplorer for ISE Project Navigator Users Tutorial
[UG689 (v12.1.1) May 28, 2010], 12th ed., Xilinx Inc., 2100
Logic Dr, San Jose, CA 95124, May 2010.

[8] Altera, Quartus II Handbook Volume 1: Design and Synthesis,
qii5v1 ed., Altera Corporation, 101 Innovation Dr, San Jose,
CA 95134, Aug 2014.

[9] Xilinx, “Implementing Triple-Rate SDI with Virtex-6 FPGA
GTX Transceivers [XAPP1075 (v1.1)],” Nov 2, 2010.

[10] ——, “Virtex-6 FPGA ML605 Evaluation Kit,” http://www.
xilinx.com/publications/prod mktg/ml605 product brief.pdf,
Oct 2012.

[11] P. Balaprakash, A. Tiwari, and S. M. Wild, “Multi-objective
optimization of HPC kernels for performance, power, and
energy,” in Proc. PMBS13, Nov 2013.

[12] C. M. Bishop, Pattern Recognition and Machine Learning.
Springer, New York, 2006, vol. 1.

[13] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, 2001.

[14] G. Holmes, M. Hall, and E. Prank, “Generating rule sets from
model trees,” in Advanced Topics in Artificial Intelligence,
N. Foo, Ed. Springer Berlin Heidelberg, 1999, vol. 1747,
pp. 1–12.

[15] M. A. Hearst, S. Dumais, E. Osman, J. Platt, and
B. Scholkopf, “Support vector machines,” Intelligent Systems
and Their Applications, IEEE, vol. 13, no. 4, pp. 18–28, 1998.

[16] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,
L. Oliker, D. Patterson, J. Shalf, and K. Yelick, “Stencil
computation optimization and auto-tuning on state-of-
the-art multicore architectures,” in Proceedings of the
2008 ACM/IEEE conference on Supercomputing, ser. SC
’08. Piscataway, NJ, USA: IEEE Press, 2008, pp. 4:1–
4:12. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1413370.1413375

[17] N. Kapre, H. Ng, K. Teo, and J. Naude, “InTime: A machine
learning approach for efficient selection of FPGA CAD tool
parameters,” in Proceedings of the 23rd ACM/SIGDA Int’l
Symposium on FPGAs, 2015, pp. 23–26.

[18] M. Kurek, T. Becker, T. C. Chau, and W. Luk, “Automating
optimization of reconfigurable designs,” in Proceedings of the
22nd IEEE Int’l Symposium on Field-Programmable Custom
Computing Machines, 2014, pp. 210–213.

[19] C. Pilato, D. Loiacono, A. Tumeo, F. Ferrandi, P. L. Lanzi,
and D. Sciuto, “Speeding-up expensive evaluations in high-
level synthesis using solution modeling and fitness inher-
itance,” in Computational Intelligence in Expensive Opti-
mization Problems. Adaptation, Learning, and Optimization,
Y. Tenne and C.-K. Goh, Eds. Springer, 2010, vol. 2, pp.
701–723.

http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/publications/prod_mktg/ml605_product_brief.pdf
http://www.xilinx.com/publications/prod_mktg/ml605_product_brief.pdf
http://dl.acm.org/citation.cfm?id=1413370.1413375
http://dl.acm.org/citation.cfm?id=1413370.1413375
jbullock
Typewritten Text
This material is based upon work supported by the U.S. Department of Energy, Office of Science, under contract number DE-AC02-06CH11357.
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

