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Abstract4

We present a systematic framework to manage conflicts among multiple decision makers (stake-5

holders) arising in the multiobjective design and operations of process systems. Addressing such6

situations is particularly relevant in sustainability studies because many conflicting social, envi-7

ronmental, and economic objectives need to considered. The proposed framework factors in the8

opinion of the stakeholders and computes a compromise solution that seeks to minimize a mea-9

sure of their dissatisfactions. We propose to use conditional-value-at-risk (CVaR) as a measure10

of dissatisfaction as this provides a generalization of average and worst-case metrics considered11

previously in the literature. In addition, the use of CVaR enables us to shape the distribution of12

dissatisfactions and to avoid extreme conservativeness of worst-case solutions. A key advantage13

of the proposed framework is that it does not require the computation of a Pareto front and can14

thus be used to address problems with many stakeholders and objectives. Examples are presented15

to illustrate the concepts.16

Keywords: multiobjective, stakeholders, disagreement, decision making.17

1 Introduction18

Almost any decision-making activity must resolve conflicts among multiple stakeholders. Conflicts19

arise because stakeholders have different opinions and perceptions on the economic, environmen-20

tal, and safety metrics (objectives) that should be used and/or on how they should be prioritized21

[1]. As an example, in designing an infrastructure that supports an urban area; the community, local22
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government, and environmental groups would like to find a solution that minimizes the compet-23

ing objectives of investment, project duration, and environmental impact. Some stakeholders prefer24

to minimize environmental impact, some other prefer to minimize investment, some others value25

project duration and investment equally, and some other are indifferent. In other words, stakehold-26

ers disagree on priorities. In addition, when expressing their preferences, stakeholders are often not27

aware of how much a certain metric (e.g., environmental impact) should be sacrificed to improve28

another one (e.g., investment). Moreover, metrics are often ambiguous, in the sense that they mean29

different things to different stakeholders. This, in fact, is a key issue in the design of sustainability30

metrics [2]. Consequently, when stakeholders opinions are not systematically managed, they can31

leave a subset of stakeholders strongly dissatisfied. This situation can ultimately delay consensus32

reaching and lead to arbitrary decisions.33

The most popular approach for dealing with conflicting objectives consists on computing the set34

of Pareto solutions (often called the Pareto front) and let an expert make a final decision by choosing a35

”suitable” Pareto solution in the set (compromise solution) [3, 4, 5]. This approach has two important36

disadvantages: (i) it is ambiguous by assuming that the judgement of a single expert is used to obtain37

the compromise and (ii) the complexity of computing the Pareto set is exponential in the number of38

objectives. Consequently, choosing a compromise solution can be cumbersome if not impossible, par-39

ticularly when many conflict metrics must be considered. For instance, once a Pareto set is computed40

and the trade-offs are obtained, an expert can try to factor in the opinion of the stakeholders when41

picking a solution or a group of stakeholders will negotiate and try to reach consensus based on the42

observed trade-offs. Such negotiations, however, are often performed in non-systematic ways and43

they are particularly complicated when many metrics and stakeholders are involved. Consequently,44

it is necessary to develop decision-making frameworks that factor in the opinion of multiple experts45

in more systematic ways and that are capable of computing compromise solutions without explicit46

enumeration of trade-offs (i.e., without computing the Pareto set).47

Another approach commonly used in multiobjective decision-making is to give equal priority to48

all objectives (i.e., weighting all objectives equally). This approach is equivalent to picking a specific49

point in the Pareto set and therefore is ambiguous. Moreover, the approach is also unreliable because,50

depending on the strength of the trade-offs, a slight modification of the weights can yield drastically51

different solutions [6]. In other words, this approach does not capture the shape of the Pareto set and52

thus might neglect solutions that yield high returns for one objective with few sacrifices for others.53

Another popular approach in multiobjective decision-making is to prioritize objectives, as proposed54

in [7]. This approach, however, also assumes that a single expert is involved in creating the priority55
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hierarchy and consequently it is ambiguous.56

Ambiguity can be mitigated by considering the opinion (judgement) of multiple stakeholders57

when obtaining a compromise solution. An interesting multistakeholder approach was recently pre-58

sented by [8]. Here, the authors assume that stakeholders are polled to provide priority rules to be59

followed. From these rules, a unique set of weights that satisfy such rules is computed and these60

weights are used to obtain a compromise solution. A disadvantage of this approach is that it can61

yield situations in which no unique feasible weights can be obtained that satisfy all the stakehold-62

ers’ rules. In addition, this approach does not provide insights into the level of dissatisfaction of the63

stakeholders with a given compromise decision.64

In this work, we present an optimization framework that systematically quantifies and mitigates65

dissatisfactions among stakeholders. The idea consists of factoring the opinion of the multiple stake-66

holders in the form of weights (instead of rules). Consequently, compared with the approach pre-67

sented in [8], the proposed framework provides more flexibility. The framework is an extension of68

the robust optimization approach proposed in [9] in which a compromise decision is obtained by69

minimizing the maximum dissatisfaction among the stakeholders. A key advantage of the robust70

approach is that it provides a metric to quantify stakeholder dissatisfaction. In addition, it does not71

require the computation of a Pareto front and can thus be used to address problems with many objec-72

tives and stakeholders. We generalize this approach by considering average and conditional-value-73

at-risk (CVaR) metrics. This enable us to shape the distributions of the stakeholder dissatisfactions74

and capture the statistics of the stakeholder population more effectively. We argue that this feature75

is advantageous in certain applications. In addition, generalizing the robust approach using CVaR76

and average metrics enable us to provide utopia-tracking interpretations of the different metrics in a77

common setting.78

The proposed approach provides a systematic procedure to inform decision-makers about the79

influence of their opinions on the final decision and can help decision-makers reassess their priorities80

and thus resolve and quantify the cost of conflict. Examples are presented to illustrate the concepts.81

2 Approach82

Consider a set of objectives functions O := {1...O} and the corresponding objective function vec-83

tor f(x)T = [f1(x), f2(x)..., fO(x)]T . Consider also a set of stakeholders S := {1..S} and that each84

stakeholder s ∈ S prioritizes the objectives according to the weight vector ws ∈ <O. We define85

the elements of weight vector ws as ws,i, i ∈ O and we assume that the weight vectors satisfy86
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∑
i∈O ws,i = 1, i ∈ O. Note that this definition of weight vectors assumes that a proper scaling of87

the objectives has taken place so that the range of all objectives fi(·), i ∈ S is [0, 1]. This can be done88

by scaling the objectives using the coordinates of the so-called utopia point (the point at which each89

objective is minimized independently). For more details, we refer the reader to [10, 11].90

In a sustainability context, objectives can be of social nature (human health hazard, safety hazard,91

jobs created), economic nature (net present value, return of investment, initial investment, budget92

allocations), and environmental nature (ecotoxicity, global warming potential, energy intensity, re-93

source use) [1, 3]. Stakeholders can involve government (federal, state, and local agencies); society94

(communities, advocacy groups); industry (investors, managers, technology provides); and so on [9].95

Our framework implicitly covers situations in which a stakeholder s wishes to consider a sin-96

gle objective function. In this case, the stakeholder will set one of the weights ws,i to one and the97

condition
∑

i∈O ws,i = 1, i ∈ O guarantees that the rest of the weights should be set to zero.98

A key observation that we make is that, if the stakeholder population is finite, we can interpret99

the weight vectors ws as samples from a probability distribution with finite support. In other words,100

the weight vectors can be interpreted as weight samples from the population of stakeholders. It is101

natural that each stakeholder s ∈ S seeks to solve its individual weighted optimization problem102

(based on her/his individual priorities):103

min
x

wT
s f(x) =

∑
i∈O

ws,ifi(x) (2.1a)

s.t. g(x) ≤ 0. (2.1b)

Here, the constraint vector g(x) includes operational constraints and/or system models. The104

solution of problem (2.1) will yield an optimal solution x∗s and a weighted cost for stakeholder s that105

we denote as wT
s f
∗
s := wT

s f(x
∗
s). This weighted cost is ideal or utopian in the sense that it assumes that106

stakeholder s does not have to compromise with the rest of the stakeholders.107

When compromise is needed, as is often the case, we define the dissatisfaction of stakeholder s at108

an arbitrary compromise decision x as ds(x) := wT
s (f(x) − f∗s ). From optimality of x∗s and of the109

associated weighted cost wT
s f
∗
s we have that ds(x) ≥ 0 for all x and for all s ∈ S . Consider now that110

two arbitrary decisions x̄, x yield ds(x̄) < ds(x) for a given stakeholder s. Thus, stakeholder s will be111

more satisfied under decision x̄ than under decision x. Because of disagreement, however, another112

stakeholder s′ might be less satisfied under decision x̄ than under decision x (i.e., ds′(x̄) > ds′(x)). We113

thus have that, given a compromise decision x, we can measure the disagreement among stakeholders114
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by using a measure of the dissatisfactions ds(x), s ∈ S. Note that the case in which no disagreement115

at decision x can only occur when ds(x) = 0 for all s ∈ S. In the presence of disagreements among116

stakeholders, however, this situation cannot occur.117

Our objective is to find a compromise decision x that minimizes a measure of the dissatisfactions118

ds(x), s ∈ S. We can think of this problem as one of shaping the distribution of the dissatisfactions.119

For convenience, we define the vector of dissatisfactions d(x)T := [d1(x), d2(x), ..., dS(x)]T .120

The most straightforward alternative to managing disagreements consists of minimizing the av-121

erage dissatisfaction among the stakeholders. This is done by solving the problem,122

min
x

1

|S|
∑
s∈S

wT
s (f(x)− f∗s ) (2.2a)

s.t. g(x) ≤ 0. (2.2b)

Note that, because ds(x) ≥ 0 for all s ∈ S and x, we have that problem (2.2) is also equivalent to,

min
x

1

|S|
‖d(x)‖1 =

1

|S|
∑
s∈S

ds(x) (2.3a)

s.t. g(x) ≤ 0. (2.3b)

In other words, the solution of problem (2.2) can be interpreted as a compromise solution relative123

to an utopia point given by the collection of the ideal stakeholder weighted costs wT
s f
∗
s . This def-124

inition of utopia point is not to be confused with the traditional definition used in multiobjective125

optimization in which the utopia point is given by the minimization of individual objectives [11].126

Another way to address disagreement consists of minimizing the worst (largest) dissatisfaction127

among the stakeholders. In other words, we find a solution under which the dissatisfaction of the128

most dissatisfied stakeholder is minimized. This is done by solving the robust optimization problem,129

min
x

max
s∈S

{
wT
s (f(x)− f∗s )

}
(2.4a)

s.t. g(x) ≤ 0. (2.4b)

This formulation was proposed in [9]. It is well-known that the minimax problem (2.4) can be130

reformulated as,131
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min
x

η (2.5a)

s.t. wT
s (f(x)− f∗s ) ≤ η, s ∈ S (2.5b)

g(x) ≤ 0. (2.5c)

The optimal value of η is the worst dissatisfaction. Because ds(x) ≥ 0, a solution x of problem132

(2.4) also solves the problem,133

min
x

1

|S|
‖d(x)‖∞ =

1

|S|
max
s∈S
{ds(x)} (2.6a)

s.t. g(x) ≤ 0. (2.6b)

Because we can assume that the stakeholders polls are obtained from a finite population, we can134

measure the disagreement by using a risk metric such as the conditional value at risk (CVaR) [12]. To135

this end we solve the following problem:136

min
x

CVaRα
[
wT
s (f(x)− f∗s )

]
(2.7a)

s.t. g(x) ≤ 0. (2.7b)

Here α ∈ [0, 1] is the probability level. This problem can be reformulated as [12],137

min
x,ν,φs

1

|S|
∑
s∈S

(
1

1− α
φs + ν

)
(2.8a)

s.t. wT
s (f(x)− f∗s )− ν ≤ φs, s ∈ S (2.8b)

φs ≥ 0, s ∈ S (2.8c)

g(x) ≤ 0. (2.8d)

This approach penalizes the large dissatisfactions in the (1 − α) tail of the distribution. In other138

words, for a given decision x, computing the CVaR of vector d(x) is equivalent to arrange the dissat-139

isfactions ds(x) in increasing order, take the (1− α) largest elements (the tail), and we average them.140

The CVaR minimization problem thus finds the decision x under which the average of the (1 − α)141

largest elements are minimized. Consequently, one can show that the CVaR solution converges to142

the robust solution as α→ 1 (we take only the largest element corresponding to the most dissatisfied143
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stakeholder) and to the average solution as α → 0 (we average all the elements) [13]. Consequently,144

the CVaR solution has the important property that it covers the spectrum of solutions between the145

average and robust solutions and can help us shape the distribution of dissatisfactions. This is impor-146

tant, as CVaR allows us to prevent the extreme conservatism of the worst-case solution and to shape147

the distribution of stakeholders. For instance, in some circumstances we would like to explore if a148

decision changes when we minimize the worst-case dissatisfaction and when we discard the (1− α)149

tail of largest dissatisfactions. If the decision does not change, it would imply that the opinion of150

some stakeholders does not influence the decision.151

3 Illustrative Examples152

In this section we present a couple of examples to demonstrate the applicability of the presented153

concepts.154

3.1 Generation Expansion155

Consider a decision-making setting in which a community (stakeholders) needs to decide among156

three technologies (denoted as I, II, and III) for power generation. In doing so, the community must157

satisfy a given demand while trading off three objectives: minimize electricity cost (denoted as C),158

minimize carbon emissions (denoted as E), and minimize land use (denoted as L). Table 1 lists the159

coefficients for cost, emissions, and land use for the three technologies.160

Table 1: Emissions, cost, and land use for each technology.

Technology E C L

I 100 10 100

II 50 50 50

III 75 50 25

The coefficients are dimensionless and are used only to represent relative magnitudes of different161

technologies. Technology I has high emissions, low cost, and high land use (relative to the others).162

Technology II has low emissions, high cost, and medium land use. Technology III has medium emis-163

sions, medium cost, and low land use.164
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The weighted multi-objective optimization problem can be formulated as form:165

min wCC + wEE + wLL (3.9a)

s.t. C = yICI + yIICII + yIIICIII (3.9b)

E = yIEI + yIIEII + yIIIEIII (3.9c)

L = yILI + yIILII + yIIILIII (3.9d)

D = yIPI + yIIPII + yIIIPIII (3.9e)

yI , yII , yIII ∈ {0, 1}. (3.9f)

Here, yI , yII , and yIII denote the decisions to install technology I,II, or III, respectively. Symbol D166

denotes the electricity demand and PI , PII , and PIII denote the power supplied by each technology.167

For simplicity, we assume that PI = PII = PIII = 10 and we set D = 10. Note that the demand168

constraint (3.9e) implies that only one technology must be installed. The objectives (C,E,L) are all169

normalized by their best and worst possible values (these can be obtained from Table 1) so that their170

value lie in the range [0, 1]. For instance, we rescale objective E as,171

E ← 100− E
E − 50

. (3.10)

In Table 2 we present the average and worst-case solutions under four different polls from 100172

stakeholders. We assume that the polls are designed in such a way that the stakeholders express four173

different opinions: 1) their only priority is emissions, 2) their only priority is cost, 3) their only priority174

is land use, and 4) all three objectives are equally important. In a first poll we have {50%,50%,0%,0%};175

in a second poll we have {49%,51%,0%,0%}, in a third poll we have {25%,25%,25%,25%}, and in a176

fourth poll we have {0%,0%,0%,100%}. The first poll indicates that 50% of stakeholders give full177

priority to minimize emissions and 50% give full priority to minimize cost. In the second poll, the178

number of stakeholders giving full priority to minimize cost dominates by 1% the number of stake-179

holders giving full priority to minimize emissions. In the third poll 25% of the stakeholders give full180

priority to emissions, 25% give full priority to cost, 25% give full priority to land use, and 25% give181

equal priority to all objectives. The fourth poll correspond to the special case in which all stakehold-182

ers give equal priority to minimize all objectives. In other words, in the fourth poll we have perfect183

agreement among stakeholders.184

From the first three polls we can see that the robust strategy achieves the same worst-case dis-185

satisfaction for all technologies. In other words, the three technologies are optimal regardless of the186
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polls. Under perfect agreement (fourth poll), on the other hand, technology II is optimal and the187

worst-case dissatisfaction is zero. From the first poll, we can see that the average strategy predicts188

that technologies I and II are equally optimal. This is expected because we have the same number of189

stakeholders giving priority to emissions and cost; consequently, the solutions are indistinguishable.190

For the second poll, technology II is optimal because the number of stakeholders giving priority to191

cost is larger (by one vote) than those giving priority to emissions. For the third poll we have the less192

obvious result that technology II is optimal.193

By comparing the results for the robust and average strategies we can obtain some important194

insights. First note that in the fourth poll with perfect agreement the robust and the average solutions195

are equal, as expected. From the rest of the polls we can see that the robust solution is insensitive196

to the statistics of the polls. While this feature might seem desirable at a first sight, it is not likely197

to be accepted by stakeholders because it implies that their opinions do not influence the solution198

(even if there is a majority of stakeholders). In fact, in this example, even a poll with a distribution of199

{1%, 99%, 0%, 0%} will give the same robust solution. The average strategy, on the other hand, does200

account for the statistics of the stakeholder polls but it cannot guarantee minimization of the worst201

dissatisfaction, as the robust strategy does.202

Table 2: Compromise solutions under different polls.

Poll Strategy Compromise Solution

{50%,50%,0%,0%}
Average yI , yII

Robust yI , yII , yIII

{49%,51%,0%,0%}
Average yI

Robust yI , yII , yIII

{25%,25%,25%,25%}
Average yII

Robust yI , yII , yIII

{0%,0%,0%,100%}
Average yII

Robust yII

3.2 Energy-Comfort Management in Buildings203

One of the objectives of an energy management system is to minimize energy subject to thermal204

comfort constraints of a population of occupants (stakeholders) [6, 14]. Thermal comfort is difficult to205
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enforce because perceptions vary significantly from individual to individual as a result of variations206

in factors such as metabolic rate (e.g., activity, gender, race, age), building location (e.g., next to air207

damper, next to window), and clothing level. To address this disagreement, we can poll the opinion208

of occupants about their temperature preferences.209

Consider thus the following stakeholder problem in which we seek to minimize energy demand210

while satisfying the stakeholder j temperature constraint:211

min E(T ) (3.11a)

s.t. T ≤ Ts, (λs). (3.11b)

Here, E(·) is the building energy that is a function of occupant’s s temperature requirement Ts212

and λs is the Lagrnage multiplier of the comfort constraint (3.11b). For simplicity, we assume that213

energy is a quadratic function of the difference between the building temperature and the ambient214

temperature,215

E(T ) := (T − Tamb)2. (3.12)

We set the ambient temperature to 35 oC and we assume that Ts ≤ Tamb. Clearly, λs = ∂E
∂Ts

and216

λs < 0 if the objective and the comfort constraint are in conflict (i.e., energy increases as we decrease217

the temperature requirement Ts). In other words, an occupant with a lower temperature requirement218

requires more cooling energy. Consequently, λs can be interpreted as a comfort price. We can thus219

formulate the weighted multi-objective problem,220

min ws,1E(T ) + ws,2T, (3.13)

with ws,1 := 1
1−λs and ws,2 := −λs

1−λs . This problem is equivalent to (3.11).221

We consider a poll of temperature preferences for S = 1, 000 occupants in a building. The average222

preference is 22 oC, the minimum temperature preference is 15 oC, and the maximum preference is223

29 oC. All temperatures are below ambient temperature and we thus simulate a situation in which224

energy is used for cooling. Because of this, if comfort is not a concern, the energy required will be225

zero and the building will be set to ambient temperature. This also implies that, as Ts is increased, the226

comfort price λs will decrease and will be zero at Tamb. We thus have that the weight ws,2 will tend to227

zero and ws,1 will tend to one, reflecting the fact that a larger Ts implies a lower priority on comfort.228
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Consequently, polling temperature preferences can be interpreted as polling priorities of energy and229

comfort among occupants.230

In Figure 1 we present the corresponding comfort weights wT (ws,2) for the occupants while in231

Figure 2 we present the Pareto curve of temperature against energy demand. Each point along the232

front is obtained by solving problem (3.11) for each stakeholder s. Note that these points represent233

the ideal (non-achievable) situation in which each stakeholder can reach their desired temperature234

preference without having to compromise with the rest of the stakeholders. In Figure 2 we also235

present the solution of different compromise decisions. The vertical line indicate the solution in236

which the stakeholders compromise naively by averaging their temperature preferences (average is237

22 oC). This solution corresponds to solving the energy minimization problem,238

min E(T ) (3.14a)

s.t. T ≥ 1

|S|
∑
s∈S

Ts. (3.14b)
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Figure 1: Occupants weights for temperature-energy trade-off.

Note that this naive approach does not capture energy in the stakeholders opinions. The black dot239

next to the naive solution represents the compromise solution obtained by minimizing the average240

dissatisfaction given by (2.2). The solutions obtained by averaging preferences and minimizing the241
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Figure 2: Pareto front and compromise decisions. Vertical line is naive approach.

average dissatisfaction do not coincide. The reason is that averaging temperatures is not equivalent242

to averaging dissatisfactions (dissatisfactions factor in energy and not only temperature).243

The compromise solutions located on the right-most end of the Pareto front represent are those244

obtained by minimizing CVaR for α = 95% given by (2.7); and the decision obtained by minimizing245

the worst dissatisfaction among the stakeholders given by (2.4). Note that the compromise decisions246

move toward the maximum temperature preference (warmer building) as robustness is increased.247

Consequently, the CVaR and robust approaches yield much lower energy demands than do the naive248

and average approaches. From the naive approach perspective (without factoring in energy in the249

opinions) this result is counterintuitive because one would expect that at a higher temperature more250

people would be dissatisfied. From a dissatisfaction perspective as defined, however, a colder build-251

ing yields much larger dissatisfactions because some occupants actually care about energy. This252

illustrates how a more systematic management of stakeholder opinions can yield more efficient (and253

nonintuitive) solutions.254

In Figure 3 we present histograms for the dissatisfactions of all the stakeholders. In the top graph255

we present the dissatisfactions when the stakeholders compromise by minimizing the average dis-256

satisfaction. Note the pronounced tail of large dissatisfactions. In the middle graph we present the257

dissatisfactions when the stakeholders compromise by minimizing CVaR and in the lower graph we258

present the dissatisfactions when the stakeholders compromise by minimizing the worst dissatis-259
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faction. Note that the tail of the distribution of dissatisfactions is reduced by CVaR and the robust260

approach reduces the tail further by penalizing the largest dissatisfaction. We can thus see that, in261

this application, the robust approach provides important benefits compared to the average approach.262

Moreover, the CVaR approach provides a mechanism to relax the worst-case solution.263

Arguably, the need to choose among average, CVaR, and worst case metrics introduces some264

ambiguity in the decision-making process in the sense that the stakeholders must also agree that such265

a metric is the appropriate one. The level of ambiguity, however, is significantly reduced compared266

with standard multi-objective approaches that assume a single decision-maker picking an arbitrary267

point on the Pareto front. Moreover, the proposed approach has the additional advantage that it can268

manage many opinions and objective functions in a systematic manner.269
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Figure 3: Dissatisfaction of stakeholders under different compromise decisions.

4 Conclusions and Future Work270

We have presented a framework to manage conflicts among multiple decision-makers. The frame-271

work enables the computation of compromise solutions in the presence of many objectives and stake-272

holders preferences without having to compute the Pareto set. The framework also provides a sys-273
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tematic procedure to manage conflicts by using quantifiable metrics of disagreement among stake-274

holders.275

We highlight that the framework proposed can manage objective functions in either deterministic276

or stochastic settings. For instance, one can trade-off mean profit and profit variance. Our framework,277

however, does not account for situations in which stakeholders can change their preferences based278

on possible scenarios, as discussed in [9]. We will extend our framework to consider this possibility279

in future work. It is also necessary to consider formulations under which the stakeholders not only280

provide their preferences in terms of weights but also in terms of goals. This will give rise to interest-281

ing goal-oriented multi-objective formulations. We are also interested in understanding under what282

conditions the CVaR compromise solution gives a Pareto solution. This is motivated from the fact283

that the average and robust metrics have utopia-tracking interpretations (under different norms). We284

will look for a similar definition in the CVaR case.285
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