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Abstract

Coherent x-ray diffractive imaging is a novel imaging technique that utilizes phase retrieval
and nonlinear optimization methods to image matter at nanometer scales. We explore how
the convergence properties of a popular phase retrieval algorithm, Fienup’s HIO, behave by
introducing a reduced dimensionality problem allowing us to visualize and quantify convergence
to local minima and the globally optimal solution. We then introduce generalizations of HIO
that improve upon the original algorithm’s ability to converge to the globally optimal solution.

Keywords: Phase retrieval algorithms; inverse problems; nonlinear complex-valued optimization

1 Introduction

Coherent x-ray diffractive imaging (CXDI) is a microscopy technique that images a sample
without optics [9]. In the experimental geometry shown in Fig. 1, monochromatic coherent
plane wave x-rays interact with a sample to form an exit wave p(r) € C™*" where r € R =
{(ru,rmp) :u€0,...,n—1,v €0,...,m—1} denotes a length scale that is the spatial resolution
of the microscope and mn € Z is the number of complex variables constituting the measured
exit wave. A detector is placed in the far field so that a quantity proportional to the squared
modulus of the Fourier transform of the exit wave, F [p], is measured. Thus, one obtains the
measured diffraction pattern D o< |F [p] [ € R7*"™, where | - |* denotes the squared modulus
la|?> = @® a, with ~ denoting the complex conjugate and ® denoting the Hadamard (component
wise) product for some a € C™*™.

CXDI attempts to recover the discrete representation of the exit wave, p € C™*"  from
the measurement of its adequately sampled coherent diffraction pattern D € RI'™™ using,
for example, nonlinear optimization techniques. This approach solves the “phase problem,”
which comes from the inability of x-ray area detectors to measure a full complex-valued wave
field. Recovery of the missing phase, tan~! (Im (p) + Re (p)) (with the division taken component

*This material was based upon work supported by the U.S. Department of Energy, Office of Science, Advanced
Scientific Computing Research program under contract number DE-AC02-06CH11357.
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Figure 1: A CXDI experiment: Monochromatic coherent plane-wave x-rays interact with a
sample and a detector is placed in the far field so that what is measured is proportional to the
squared modulus of the Fourier transform of the exit wave p. The measurement is of size m x n,
and is determined by the number of pixels in the area detector used.

wise), starts with an initial exit wave guess and iteratively corrects the current exit wave iterate
by using information known about the experiment. This information includes the measured
diffraction intensities, D, as well as knowledge about the sample, most notably the support
of the sample, which describes a subregion in the space R in whose complement the sample
is known to not exist. CXDI has proved popular in practice, having been extended to many
diverse samples and experimental regimes, and has been shown to yield a unique exit wave in
special cases [1, 3, 11, 9].
In its simplest form, CXDI can be viewed as a feasibility problem [2],

find some p € SNM, (1)

which says that a solution is found when the recovered exit wave p satisfies constraints defined
by the available information (in this case, the measurement and the support). The support
constraint set S is defined by

S={peC™™:p(r)=0Vr=(rym) ¢S},

where S C R is the set of spatial indices corresponding to the support of the sample. The
measurement constraint set M is based on the measured coherent diffraction pattern intensity
D and is defined by

M={pecmm:p=F 1 VDO F ]+ IF |}, (2)

buv

Cu v

where the multiplication ® and division + are component wise: [A ® B =+ Cly» = Gy.»
For each of the sets & and M, we can define the respective projection operators

[WSp]<r>={g(r> s ol mae=F[VDoFWFR]. ©
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One of the simplest algorithms for approximately solving (1) is the alternating projection
algorithm known as “error reduction” (ER) in the phase retrieval community [5]:

p* D = rom i p®), k=0,1,.... (4)

The ER algorithm repeatedly applies the measurement projection 7 and the support projec-
tion wg to iterate between the sample space and the diffraction space; see Fig. 2a. Since ER
can be viewed as projected steepest descent for the problem min,{||D — |F [p] |?||% : p € S},
it can stagnate at stationary points that do not solve (1); see trajectory #1 in Fig. 2b. As
we reaffirm in our numerical results, convergence clearly depends on the initial exit wave guess
p©),

Although several methods have been developed to overcome such stagnation, the current
workhorse of experimentalists remains Fienup’s “hybrid input-output” (HIO) method [5]. HIO
can be viewed as a version of the Douglas-Rachford algorithm for nonconvex problems [2]
through the relaxation parameter 5 € R:

P(kH) = 7T37TMP(k) +7mse(1 — 57TM)P(k)7 k=01..., (5)

where 7ge is a binary operator orthogonal to 7, with S¢ = {p € C"™*" : p ¢ S}U{0} and where
s + mse = 1, with 1 € R™*" denoting the matrix containing all ones. As we illustrate in our
numerical results, HIO is generally more robust than ER in avoiding stagnation at nonglobal
solutions; but as will be shown more robust algorithms exist.

The contributions of this paper are as follows. We explore generalized formulations of HIO
as a saddle-point optimization problem and present optimization-based strategies for making
HIO more efficient and robust in its ability to escape from nonglobal solutions. We propose a
visualization mechanism for a low-dimensional problem that allows one to gain intuition about
the saddle-point objective and an algorithm’s traversal of this space. We then examine the HIO
variants developed with this mechanism.

[]

— Constraint Set S
F
T S TTM
Sample F—1| Measurement
Constraint ¢ Constraint
Trajectory #1

Trajectory #2

Figure 2: (a) Typical CXDI algorithms alternate between sample and diffraction-space repre-
sentations using constraints on each representation and the Fourier and inverse Fourier trans-
forms. (b) The performance of CXDI algorithms depends on the initialization p(®); different
trajectories result using different initializations.
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2 HIO and Saddle-Point Optimization

The HIO algorithm in (5) can be viewed as a heuristic for finding a Nash equilibrium (see, e.g.,
[4]) of the two-person game
minpses ‘C(ps + p§) (6)
maXy ese 5(,05 + p§)a

where ps = mgp and ps = wsep = (1 — ws)p represent an orthogonal decomposition of C™*"
and the objective function £ : C™*"™ — R is given by

L(p) = eu(p) = 5(p) = llmap = plf — Imsp — pll - (7)
In this game, one player seeks to minimize the objective by controlling p inside the support, while
the second player seeks to maximize the objective by controlling p outside the support. Nash
equilibiria for (6) correspond to particular saddle points of the function f(ps, ps) = L(ps + ps)-
This fact motivates algorithmic approaches that solve related saddle-point problems [7].

2.1 Two-Dimensional Search and HIO Generalizations

Using Wirtinger calculus (where V; = 8% = %(%@) + im%@); see [10]), we compute the
gradient of (7) with respect to p as V;L(p) = (ms — maq)p. This (complex-valued) gradient can

be decomposed into parts inside and outside the support, respectively:
ds = sV ;L(p) = (7s — TsTM)P and 0y = mseV5L(p) = —Tse TP, (8)

where we have used the fact that msenrs = 0, nsms = 7s, and where 0 € R™*"™ is the matrix
containing all zeros.

Taking a step along the steepest descent direction inside the support and a step along the
steepest ascent direction outside the support would thus correspond to the combined direction
(=05, 05). If we allow for unequal steplengths («, /5) along these respective orthogonal directions,
we obtain the first-order update

P+ = pB) a5k 4 Béék) = (1—a)p® + a(rsmr)p® + mse (0l — Brag) p¥,  (9)

where we have used the fact that 7s + wsc = 1. The special case where o = 1 then corresponds
to the HIO algorithm of (5).

A generalization of the HIO algorithm can be obtained by looking beyond the o = 1 case
and considering more general values for (3, rather than using a fixed value taken from the
typical range of 8 € [0.5, 1] as is enforced by practical HIO implementations [5, 7]. One way of
obtaining («, 8) values in each iteration of the form (9) is to solve the two-dimensional version
of (6) with the common objective ¥y (c, 3) = L(p*) — ast® 4 ﬁéék)).

Using the notation % = 0, and a‘z—zb = Oup, we desire (a, ) such that d,vp(a, ) =
Opr(a, ) = 0 and Opatr(a, 8) > 0 > 9pptr(a, B). One approach is to use a modified
Newton method for the problem min, g ®x(«, 5):

{%’H} _ {%} _ Paaawk(aj’ﬁj” Dap¥r(aj, B;) }1 {304%(04]'75]')] (10)
Biv| — 18] M| Osaton(as, B;) = |8pstnla, By Ipbw(ay, By)|’

where @ (a, B) = ||V (o, B)||? = |0tk (v, B)|> + 195k (cr, B)|?. The form of the second-order
matrix in (10) is chosen to obtain the proper inertia for a minimization with respect to o and
a maximization with respect to 5. The step length p along the Newton-like direction in (10)
can be determined by a line search (e.g., using the strong Wolfe conditions) for the objective
D (a, 8); a similar approach is taken in [7]. An example of this process in shown in Fig. 3.

4
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Figure 3: Simultaneous optimization of o and 8 by finding a particular saddle point of ¥ («, ).
Contours of (a) the function ¢ (a, 8) and (b) the function ®(«, 3). The trajectory using the
modified Newton step in (10) is overlaid on both plots, with the green circle the initial (ayg, 5o)
and the magenta circle the final (as, 85) (after 5 iterations).

2.2 Quasi-Newton and Conjugate Gradient Update Directions

The bidirectional approach described above includes HIO as a special case, but one can also
consider more general approaches to solving (6). We now propose two such approaches —
based on L-BFGS and conjugate gradient (CG) direction steps, respectively — that use general
directions dj in the update

p*D = p®) o d® 4+ gd®,  k=0,1,..., (11)

instead of the gradient directions prescribed by (8) and (9). In all the results that follow, we
initialize dgo) = fégo) and déo) = 5§0).

The dimensionality of phase retrieval problems in typical experimental settings is on the
order of mn = 10% complex-valued variables. Therefore, computing an approximation of the
dense Hessian (with 10'? complex-valued variables) for use in quasi-Newton methods is pro-
hibitively expensive in terms of storage. Instead, we look to limited-memory methods such as
L-BFGS [8]. Our L-BFGS method follows the developments of [10] and is given in Algorithm 1.
We note, for ease of exposition, that this algorithm works on the vectorized version, p € C™",
and thus each of the quantities s;_1, yx_1, and g are column vectors. Algorithm 1 can be
used both inside (A = &) and outside (A = S§°) the support, with appropriate projection (7s
or mse) providing the required input. In our implementation, we keep the past p = 5 updates.

Algorithm 1 returns an approximate Newton step with the inertia of the quasi-Newton
Hessian By, determining whether one seeks a minimum or a maximum. We achieve the correct
direction by an appropriate scaling of the initial quasi-Newton matrix (the identity matrix is
used in our experiments). If the term

(Yk—1:8k—1) _ Re[ yi 1sp—1 |
[yr—1l? Re[ v yr-1]

(12)
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Algorithm 1 L-BFGS method (see, e.g., [10]) for complex-valued, vectorized variables.
j=k—1
j=max{0,k—p}’

Input: g, = mAV,L(p"), {(y; = gj+1— ;. sj =malpVUT) = pl)))} p>1

Output: d¥) = —d = - B, 'V,L(p")

d gL
for j=k—1,..., max{0,k — p} do
05 < ((y5,8:)) vj < 0j(sj, d); d «d—vy;
end for
de <Yk—1vsk;1>
[yr—1ll

for j = max{0,k —p},...,k—1do
§ <+ 0j(yj,d); d+d+ (v —¢)s;
end for

in Algorithm 1 is positive, where - is the Hermitian transpose, then we are returning the

quasi-Newton step in a downhill direction, whereas if (12) is negative, then we are returning
the quasi-Newton step in an uphill direction.
We also consider nonlinear CG directions, which have the form

dFHD = D L AN GR)and @D = gD AR g =0,1,..., (13)

S S

with &5 and d, defined from (8). Several alternatives for the CG parameter « exist (see, e.g.,

[6]), and we consider the seven variants listed in Table 1. We employ separate updates for the
. (k) (. (k)

variables ps and pg, so that 75 (s

s ) is determined by using g = s (gr = 75&)) and
d; = dgk) (dg = dék)). These two sets of choices are made based on whether we are updating

in § (minimizing) or in §¢ (maximizing).

3 Numerical Experiments with HIO Variants

We now examine the effectiveness of the methods described in Sec. 2 in terms of their robustness
for solving the low-dimensional problem whose exit wave p € R'*16 and diffraction pattern
De lex 16 are shown in Figs. 4a and 4b, respectively. The exit wave is real-valued and consists
of three pixels, p(r,) = 0.05, p(rp) = 0.8, and p(r.) = 0.125, arranged in an upside-down-L
shape. The remaining pixels are zero, and the correct support S = {r,, 74,7} is assumed given.

2
Fletcher-Reeves (FR): = M Polak-Ribiere (PR): y = M
I el
; (8k+1,¥%) . (&, Vi)
Hestenes-Stiefel (HS): =228 Tin-Storey (LS): _ \Bk+1,¥Yk/
e (di, y) v 7T Cdign)
Dai-Yuan (DY): Y= M Conjugate Descent (CD): = M
(di yk) a2 (—dk, 8k)
Vi — 2dj, 7 ,gk+1>
Hager-Zhang (HZ): = <d]id;Z;>

Table 1: CG parameter expressions for the algorithms considered. We define y, = gr4+1 — 8k,
llal|? = (a,a), and the inner product {(a,b) = eI Re[ @® b Je, where e is a generic vector of ones.



Robust Phase Retreival Algorithms Tripathi, Leyffer, Munson, & Wild

For visualization purposes, we treat p(r.) as known; this leaves us with a 255-complex-variable-
dimensional problem, with the only two nonzeros being p(r,) and p(rp), a setting inspired by a
similar synthetic problem in [7].

This problem allows us to visualize the solution in the two-dimensional subspace (p(r4), p(75),
p(r.) = 0.125,p; = 0) where L(p) reduces to the the modulus objective function €%,(p) =
[Tamp — pll% as a function of p(ry) and p(ry); see Fig. 4c. The minimum labeled m¢ is the
global minimum of this metric and corresponds to the input exit wave (with p(r,) = 0.05 and
p(rp) = 0.8). The nonglobal minimum labeled m; arises because phase retrieval is in general

insensitive to global phase shifts in the exit wave (i.e., |F[p]| = |F [pe?]| for a constant
phase shift ¢y € R). For the m; minimum, we have a phase shift of ¢y = 7, which corresponds
to the negative of the input exit wave (p(r,) = —0.05 and p(r,) = —0.8). However, such

global phase shifts are not equivalent in our problem, since the value of p(r.) is known. The
nonglobal minima labeled my and m3 arise because of Fourier transform symmetries, whereby
|[Fp]| = |F[x]| when x is p rotated by 180°. The minimum labeled msy corresponds to the
exit wave p rotated by 180°, while the minimum labeled mg corresponds to the exit wave —p
rotated by 180°. Similar to my, the ms and mg3 minima are not global minima because of the
Fourier transform symmetry-breaking effects of our knowledge of the value of p(r.).

Using this problem setup, we now propose a means of visualizing the exit wave recovered
as a function of a methods starting values (p(¥ (r,), p(?) (1,)). For a given method, we consider
441 starting points (p(9(ry), p®(ry)) taken in steps of 0.15 from the box [~1.5,1.5]2. We
then examine which of the 83\/[ minima (mg, my, mag, or ms) in the two-dimensional space
(p(ra), p(rp)) the method converges to from the selected starting point. An example of this
visualization is provided in Fig. 4d for the ER method from (4). Since the ER method is
projected steepest descent, we expect to arrive at the minima closest to the starting point.
This result is indeed seen in Fig. 4d, with the obtained minimum indicated by a color coding
of the starting point.

We repeat these 441 runs using an implementation of each of the presented methods, with
care taken to ensure consistent experimental conditions. We start with a p(©) of zeros, except for
the prescribed (p(® (1), p{® (1)) values and the fixed p(®)(r.) value. Each of the new variants
uses initial search directions dso) = 75590) and d:(qo) = 5:(90) and in the first iteration determines
optimal (g, o) using the method discussed in Sec. 2.1 to update p*) as in (11). For subsequent
iterations, we compute Vﬁﬁ(p(k)) and use the L-BFGS or CG update to compute the new search
directions d®). Once this update is done, we determine optimal (ag, Br) and update pktD)
After computing d*) each iteration, we check the sign on the directional derivatives in S and
S¢ by computing Re[Y", [0 @ d®](r)]; if when updating in S we have a positive directional
derivative (are going uphill when we should be going down) or if updating in S¢ we have
a negative directional derivative (are going downhill when we should be going up), we reset
the offending update to be the standard HIO update in (8), i.e. steepest descent in S and
steepest ascent in S°. When determining optimal (ag, i), we allow only five iterations for the
saddle-point optimization process in (10).

Our visualization in Fig. 4e shows that the HIO method from (9) with optimal («, 5) and
search directions inside and outside the support given in (8) can avoid the local minima ms and
mg, but the results also show that this HIO variant is susceptible to stagnation in the nonglobal
minimum m;. HIO with optimal (a, 8) can find the global minimum m¢g about 75% of the
time out of all 441 starting points explored. In Fig. 4f-i, we show results for some representative
combinations of using CG and L-BFGS inside and outside the support together with optimal
(a, ). For example, in Fig. 4f we use CG search directions with the DY update (see Table 1)
inside the support while using the FR update outside the support; clearly some combinations

7
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Figure 4: (a) The exit wave p(r) € R6*16 ysed. The top two pixels p(r,) and p(r}) are
assumed unknown while the bottom pixel p(r.) is assumed known. (b) The diffraction pattern
corresponding to the exit wave in (a). (c) As we have only two unknowns (p(r,), p(15)), we can
use brute force to compute what the modulus objective function €%,(p) = ||Tpmp — pH% looks
like, and this is shown here. (d) Use of the local minimizer ER (projected steepest descent)
to attempt to solve the phase problem; depending on the starting point, we will end up in
the closest of one of the four minima mg, my, me, or ms. (e-i) Convergence to these minima
using saddle-point optimization to find optimal («, ) and (e) standard HIO directions (8).
Sometimes using CG update directions can make things worse: use of (f) Dai-Yuan in S and
Fletcher-Reeves in 8¢, and (g) Liu-Storey in & and Dai-Yuan in §¢. (h) Use of Hager-Zhang
in S and Polak Ribiere in 8¢ vastly improves the result in (e). (i) Use of L-BFGS in S and
Hestenes-Steifel in S¢ allow us to find m¢ over virtually all starting points (99% success rate).
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Figure 5: The fraction of starting points the global minimum mg is recovered for combinations
of normal HIO directions (9), CG direction updates (Table 1), and L-BFGS direction updates
(Algorithm 1). (a) Use of normal HIO direction updates from (9) inside the support versus
direction update method outside the support together with optimal (a, ). (b-i) Inside the
support, use of (b) Fletcher-Reeves (FR), (¢) Polak-Ribiere (PR), (d) Hestenes-Steifel (HS), (e)
Liu-Storey (LS), (f) Dai-Yuan (DY), (g) Conjugate Descent (CD), (h) Hager-Zhang (HZ), and
(i) L-BFGS direction updates versus direction update methods used outside the support. For
comparison, the red dotted line is the fraction of times the global minimum was found by using
normal HIO both inside and outside the support together with the optimal (o, 3).

of CG updates inside and outside of the support have significant adverse effects. In Fig. 4g we
use the LS update inside the support and the DY update outside the support; while the use of
these CG update parameters still has significant adverse effects, they are less severe than that
in Fig. 4f. In Fig. 4h, we use the HZ update inside the support and the PR update outside the
support, while in Fig. 4i we use the L-BFGS direction update from (1) inside the support and
the HS update from Table 1 outside the support; these are representatives of CG and L-BFGS
update combinations that significantly improve the algorithm’s beneficial ability to converge to
the global solution.

In Fig. 5 we summarize the results for the 81 variants obtained by coupling different ap-
proaches for the updates inside and outside the support. The plots show the fraction of the
441 starting points in the interval where the global minimum mg is obtained. From these
results we can determine whether mixing L-BFGS and CG direction updates in S and S¢ is an
effective way of obtaining more robust performance. The CG methods of PR, LS, and DY in
Figs. bc, e, and f, respectively, appear to have similar to slightly worse behavior when compared
with the normal HIO update in Fig. 5a. The CG method of FR in Fig. 5b appears to have
only harmful effects on convergence to mg when used in § and generally harmful effects when
used in §¢. The CG method of CD in Fig. 5g generally has harmful effects when used in & and
indifferent effects when used in S¢. The CG methods of HZ and HS in Fig. 5d and Fig. 5h,
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respectively, and the L-BFGS method in Fig. 5i all have beneficial effects, with L-BFGS being
the most effective. In some cases these variants converge to the global minimum from almost
all the 441 starting points.

4 QOutlook

We have explored how a popular phase retrieval algorithm, Fienup’s HIO, behaves when updates
to an exit wave inside and outside the support are generalized by using nonlinear conjugate
gradient and limited-memory quasi-Newton updates along with an optimal weighting of these
updates. We have examined the robustness of these methods by studying a low-dimensional,
synthetic problem in order to visualize how these generalized updates can improve or harm
convergence to an optimal solution. Our study has shown that certain combinations of CG and
L-BFGS updates dramatically improve the ability of an algorithm to recover the prescribed exit
wave. We also have shown that some combinations should be avoided because of limitations of
their robustness.

A standard procedure of experimentalists using HIO is to use many different starting guesses
for the exit wave, to run many different independent trials, and then to compare the exit waves
recovered from these runs. Solutions obtained in this way are invariably different, and what
are considered “good” solutions is sometimes left to more subjective, qualitative criteria. We
anticipate that application of the generalized updates presented here will increase the confidence
of experimentalists to reduce the number of starting points considered.
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