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ABSTRACT

We describe a novel runtime system that integrates a task
model with RDMA communication and software caching.
For evaluating the runtime system, we design two microbench-
marks and implement three applications: Barnes-Hut, Sparse
triangular linear solver, and Monte Carlo particle tracking.
The resulting codes are simpler, since load balancing across
cores and latency hiding are hidden in the runtime. This
also results in them performing better than state-of-the-art
implementations of the same algorithms by up to 13, 10.8,
and 3 times, respectively.

Categories and Subject Descriptors

D.3 [Programming Language]: D.3.3 Language Constructs
and Features — Frameworks, Concurrent programming struc-
tures; D.3.4 Processors — Runtime environments.

General Terms

Algorithms, Design, Performance.

Keywords

Barnes-Hut, Monte Carlo particle transport, Sparse trian-
gular solver, PGAS, Lightweight task, Qthreads, RDMA.

1. INTRODUCTION

Future supercomputers will soon run hundreds of physical
threads per node. The speed of different nodes and threads
within nodes will exhibit a large variability, due to dynamic
power management and error recovery [2, 37]. Both inter-
and intra-node parallelism must be exploited effectively on
such platforms. Moreover, problems such as load balanc-
ing, latency hiding, and managing communication worsen
at this scale. In order to implement efficient applications,
new techniques are necessary.
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Task libraries using dynamic tasking and work stealing are
often used to handle large-scale shared-memory parallelism,
including systems such as Cilk, Intel TBB, the Qthreads
library, and OpenMP 3 [15, 32, 44, 27]. Several research
projects have considered extending work stealing and dy-
namic tasking beyond the node level [12, 22]. An alternative
that makes sense for many applications is to use a static, al-
gorithmic partition of work among nodes, and schedule tasks
dynamically within nodes. This is the model supported by
MPI4+OpenMP code and for systems such as DaGuE [4].

An obvious problem with such models is the interaction
between the tasking library and the communication library.
The usual approach with MPI+OpenMP, namely of commu-
nicating only within sequential OpenMP sections, is not scal-
able to hundreds of threads, and does not help with latency
hiding and asynchrony. While MPI supports multithreaded
processes, performance diminishes rapidly when the number
of threads increases [40]. The problem can be attributed in
part to implementation issues (coarse-grain locking and inef-
ficient polling), but it is also inherent to MPI semantics: any
thread could, potentially, be the consumer of any arriving
message.

An alternative approach is to enable all threads to com-
municate and use blocking RDMA calls: any thread can ex-
ecute a remote “get” (read) or “put” (write) and the thread
blocks until the remote value is delivered or until the write
is commited; compute resources can be reused by another
thread if the memory access has a high latency. Since there
is no dynamic matching of threads to sends and receives,
incoming messages can be easily associated with the waiting
thread. MPI endpoints [11] is another approach that works
since threads are associated with statically defined channels.

This programming style is very similar to hardware-sup-
ported multithreading, with one exception: it does not pro-
vide caching. Caching reduces the effective memory latency,
because of cache reuse by the same thread, or by other
threads (synergistic caching). By analogy, we will want to
use the node local memory as a cache for remote values,
in order to support reuse by the same thread or by other
threads on the same node.

A long history of research on Distributed Shared Mem-
ory [17] and on caching runtimes [10] clearly indicates that
transparent, coherent caching is not a scalable approach. For
caching to work, the user needs (a) to control what a “cache
line” is: the system cache objects, rather than consecutive
bytes in memory; and (b) the user needs to take care of co-



herence. Both are easy in many HPC applications, since (a)
programmers specify which entities are moved across nodes;
(b) the status of objects (read or written) is changing infre-
quently, in a bulk-synchronous manner; and (c) write con-
flicts are often due to reductions that can be handled as a
special case.

Our paper provides an initial exploration for this style
of programming, using several irregular parallel application
kernels. We have designed and developed PPL, a new C++
runtime library which evolved from our previous work on the
Barnes-Hut algorithm using a PGAS model [47, 48]. Our
runtime library combines a dynamic tasking system with an
RDMA communication library and a caching service. To the
best of our knowledge, this is the first system that combines
these three ingredients. We demonstrate the convenience
and performance of this model by implementing the follow-
ing applications: an n-body simulation using the Barnes-Hut
algorithm, a Monte-Carlo particle tracking algorithm, and a
sparse triangular solver. Our code is simpler and performs
significantly better than other alternative implementations
of the same algorithms. These applications were chosen be-
cause they require irregular computation, stress the memory
and communication subsystems, and require extensive syn-
chronization, respectively.

The rest of the paper is organized as follows. Sections 2
and 3 describe our programming model and its current im-
plementation. Section 4 describes the three algorithms we
implemented and Section 5 presents the results of our ex-
periments. We end with a description of related work and
conclude in Sections 6 and 7.

2. PPL DESIGN

PPL is designed for abstracting a model of computation
which combines a communication layer using one-sided com-
munication, a threading model supporting task-parallelism,
and a caching service.

2.1 Tasking Model

We do not distinguish in our design between tasks and
threads. The implementation can freely choose a threading
library to realize the idea. However, the full benefit of our
design is achieved with tasks that are scheduled by the run-
time (i.e. a task model). Our tasking interface provides the
following methods:

e spawn: spawn a task to execute a function.

e future: spawn a task, but delay execution until a re-
quirement is met.

e yield: preempt the executing task.

e sync: synchronization primitive for enabling or dis-
abling the execution of a task.

2.2 Communication Layer

The communication layer provides an interface for per-
forming one-sided communication. The three basic methods
are:

e memget: perform a read operation from a local or re-
mote memory address into local memory.

e memput: perform a write operation from local memory
into a local or remote memory address.

e active_msg: perform memput and additionally execute
a registered function at the remote node.

When memget or memput return, they indicate local com-
pletion. A handler (sync) is associated with each execution
of memget and memput which can be used to poll for remote
completion, either by testing or waiting. If an executing
task is required to wait, it will be preempted at least un-
til the communication is finished, providing an opportunity
for other runnable tasks to be executed; an implementa-
tion of the communication layer must provide a mechanism
for preempting any communicating task. The active_msg
operation is useful in data-dependent problems and can be
used together with the sync primitive to provide lightweight
remote synchronization.

2.3 Memory Model

PPL uses a PGAS memory model. Each process has two
distinct heaps: a global heap and a local heap. The local
heap contains locations which can be accessed only by lo-
cally executing threads, while locations on the global heap
can be accessed by any thread. The access to an address
on a remote portion of the global heap is done using global
references.

There are three types of global references described in
PPL: global variables (gvar), global vectors (gvec), and
global pointers (gptr). A gvar is allocated on a single node
and provides read-only access to remote nodes. A gvec is
similar to a Fortran Co-Array [25]. The implementation
must ensure that the local chunks have the same base offset
from the beginning of the heap on each node, enabling a
thread to correctly compute the address of a global vector
location from a remote node. A gptr can be used to refer to
any location in a local heap or remote portion of the global
heap.

Locations in the global heap can be accessed using one-
sided operations, such as put or get. These operations may
result in an access to the global heap on the executing or
a remote node. In the later case, the invocation results in
a communication request which will preempt the executing
thread.

Caching is essential for good shared memory performance.
It becomes increasingly important when nodes run a large
number of threads, because of the increasing opportunities
for synergistic caching: a remote location accessed by one
thread may also be accessed by other threads on the same
node. Many UPC codes perform caching explicitly by copy-
ing data from remote nodes to the local heap. PPL provides
implicit caching, where remote memory is cached in local
memory; however, it does not provide implicit coherence.
Implicit coherence does not scale well and most parallel sci-
entific algorithms proceed by well-defined phases; coherence
operations can be associated with the beginning or end of a
phase.

PPL provides a cache interface for which any caching pol-
icy may be implemented in software. The interface requires
the following operations: adding an object to the cache, ac-
cessing or updating a cache entry, and removing an object
from the cache.

In order to provide an opportunity for optimization with
regards to accessing remote data, PPL specifies three types
of get operations for global pointers: lget, rget, and get.
First, 1get is simply a local get; it is assumed there is a
cached copy of the variable. The corresponding cache entry
is returned, otherwise an exception is thrown. Next, rget
ignores any cached copies of the gptr and always requests a



new copy from the corresponding remote node. This will up-
date the old cached copy and return the new reference once
the request is complete. Finally, get is a fail-safe generic
get operation. If there exists a cached copy of the gptr,
then the reference is returned. Otherwise, a request for a
new copy is sent to the corresponding remote node, updat-
ing and returning the new cached copy once the request is
complete. Currently there are no changes to the cache when
a put operation is performed, for simplicity.

3. PPL IMPLEMENTATION
3.1 Tasking Model

In most cases, supporting a large number of threads can be
expensive, especially when context-switching is performed
regularly. Although the PPL threading model supports any
threading library, it is expected that using a lightweight
task model will be more efficient than a standard system-
level threading model (i.e. POSIX threads). By using light-
weight tasks, spawning and context-switching latencies are
reduced. Further, applications and libraries are unable to
explicitly wake system-level threads, since the scheduler is
completely dependent on the operating system. Lightweight
task libraries typically implement their own scheduler, which
includes a load-balancer and mechanisms for preempting and
enabling tasks. For these reasons, our first threading model
implementation uses a lightweight task library, specifically
the Qthreads library [44].

Qthreads provides a synchronization primitive which al-
lows tasks to wait on the status of a single bit in memory
(i.e. a full/empty bit). This method was originally seen in
the Denelcor HEP system for guaranteeing correct order-
ing of memory operations [39] and is still seen in the Cray
XMT architecture as a form of low-overhead synchroniza-
tion for simple parallel programming models [23]. In order
to efficiently couple communication completion with thread
scheduling, PPL implements sync using the full/empty-bit
primitive provided by Qthreads. This ensures that a task
waiting for communication completion is preempted and ef-
ficiently rescheduled when it can continue execution.

Qthreads supports controlling the number of execution
units (workers) and associating them with task queues (shep-
herds); workers are typically implemented as POSIX threads.
It also provides automatic load-balancing via task stealing
between shepherds. In PPL, we fix the number of shepherds
and assign one worker per shepherd.

3.2 Communication Layer

In order to efficiently support a large number of tasks
performing communication, it is necessary to avoid polling
on the workers. Hence, we dedicate polling to a different
thread. Our implementation splits the execution of commu-
nication calls between the calling task and a communication
engine (CE). The CE is defined as a dedicated service worker
that executes parts of the communication code which must
be atomic. This avoids the need for locking and mutual
exclusion, which is an important reason why thrashing ex-
ists when many tasks communicate simultaneously. Further,
this design facilitates leveraging more intelligent NICs, since
functions can shift between the NIC and CE without affect-
ing other components. We expect that, on future systems,
an intelligent NIC will be able to completely replace the CE
worker.
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Figure 1: PPL Implementation using Qthreads for
the threading model and two threads for the com-
munication engine. Sync Container is the Qthreads
scheduler.
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We implement the communication layer assuming that a
NIC is serviced by a single CE. As modern NICs provide
multiple independent virtual interfaces, this assumption is
not too restrictive. Larger systems may require multiple
CEs, but a suitable partition of traffic can ensure that there
is no synchronization between multiple CEs.

Communicating tasks submit requests to the CE through
a request container (RC). When a task performs communi-
cation, the request is submitted to the RC and the task could
wait on the associated flag for completion. When a commu-
nication request is complete, the CE notifies the scheduler
by changing the state of the flag to re-enable the task.

Since communication is completely offloaded to the CE,
the scheduler is able to better manage tasks which are wait-
ing for communication requests. Progress on a request con-
tinues even if a task is preempted. Therefore, in the general
case, it is most efficient to yield a task once it submits a re-
quest to the RC, provided that there are other tasks waiting
to be scheduled. Likewise, it is ideal to attempt to resched-
ule a task once notified by the CE that a communication
request is complete. The communication library we use ini-
tially for PPL is GASNet [3], in order to simplify develop-
ment and provide portability. We also have an experimental
communicator based upon the ibverbs Infiniband library.

Through empirical results, we find that compared to the
latency of communication, the overhead of preempting and
re-enabling tasks is substantial. Hence, we use two pthreads
to implement the CE: one is dedicated to executing the
RDMA calls associated with the communication requests
(Comm Worker); the second is dedicated to managing syn-
chronization (Sync Worker). When a request is submitted
to the RC, it is labelled with the corresponding RDMA op-
eration. Once the Comm Worker performs the operation, it
relabels the request as waiting and places it back into the RC
to be tested at later time. Periodically, the Comm Worker
will test for any completed requests. When a request is
complete, it is placed in a secondary queue so that the Sync
Worker can wake the requesting task. This design overlaps
submitting and polling communication requests with waking
preempted Qthreads tasks and also improves locality. The
RC is implemented using a lock-free MPSC queue [21] while
an SPSC queue is sufficient for the secondary queue.

The benefits of using two pthreads for the CE are shown
using a simple latency test for put and get operations. Fig-
ure 2 shows the speed up of using two pthreads versus one
pthread in the approach described above. For data sizes
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Figure 2: Speedup for using two threads for CEs in
comparison to one thread in a put and get latency
experiment.

up to 8 KB, it improves performance by up to 48% for get
and 53% for put. For larger data sizes, the performance is
the similar due to the synchronization latency being much
smaller than the overall communication latency.

The importance of using two pthreads for implementing
the CE does not necessarily come from the improved per-
formance for small messages. For many applications, there
may be no benefits. We instead focus our analysis on the
benefits with respect to future hardware. Considering an im-
plementation of PPL which places the CE on an intelligent
NIC, the latency of notifying the scheduler of a completed
communication request should be negligible. By using two
pthreads to implement the CE, we can better understand
the behavior of future implementations of PPL which use
intelligent NICs.

Figure 1 illustrates the interaction between the communi-
cation layer and threading model in the current PPL imple-
mentation.

3.3 Memory Model

At the initialization of PPL, a segment of memory is pre-
allocated for one-sided communication and registered to the
RDMA device. The preallocated memory is split into two
equal segments for the local and global heaps. umalloc [31],
a memory manager that dynamically allocates space for ob-
jects on custom memory addresses, is used for allocating
global references to the custom heaps.

A gptr is the basic global reference used for interacting
with the memory model. It is a class which contains a sin-
gle structure holding the remote memory address and the
associated node id. Coupled with gptr is a software cache
engine. We currently implement several different cache poli-
cies that applications may use: no caching at all, caching
without eviction, and least-recently used (LRU) caching. In-
ternally, these caches use a concurrent hash table to store
gptr data on the local heap. Depending upon the accessor,
a query to the cache will determine if the entry is present
and perform the appropriate operations.

4. APPLICATIONS
4.1 Barnes-Hut Algorithm

An n-body simulation is the problem of modelling the evo-
lution of a system of n bodies interacting with each other
through forces. A direct approach to this problem com-
putes the force of one body with respect to all other bodies,

yielding ©(n?) time complexity. This is impractical for a
simulation involving a very large number of bodies.

The Barnes-Hut (BH) algorithm is an approximation al-
gorithm to the n-body problem. BH approximates the in-
teraction of a body with a collection of other bodies (cell)
deemed far enough by considering the collection as a single
body, using the center of mass of the collection as its loca-
tion [35]. The BH algorithm partitions and organizes the
3D space of bodies into an octree. Each cell is recursively
divided into child cells that contain the bodies in one octant
of the parent cell. The recursion stops when the number of
bodies in a cell is below a fixed threshold. Once the tree is
built, the center of mass of a group of bodies in a cell can
be computed bottom-up. When computing the force of a
body, the tree is traversed and the center of mass is used
once the cell is deemed far enough. By using this hierar-
chical partitioning strategy and approximation, BH reduces
the complexity of the simulation to O(nlogn).

Our BH implementation uses the algorithm implemented
and described in [48] (UPCR-BH), with the exception of
the force computation phase being implemented using PPL.
After the tree generation phase, it becomes feasible to spawn
a task for each body.

Algorithm 1 BH Force Computation with PPL
Require:
node.handler : future(Localized(node))

procedure BH-FORCE
for all body € list of local bodies do
spawn(ComputeForce(root, b)).sync()
end for
end procedure

procedure COMPUTEFORCE(node, body)
if NeedOpen(node) then
if Inode.local then node.handler.sync()
end if
OpenCell(node, body)
else
BodyCellUpdate(node, body)
end if
end procedure

procedure LOCALIZE(node)
if node.local then return
end if
for child € node.childs do
node.local = &child.gptr.get()
end for
end procedure

Pseudo-code for the new force computation phase can be
seen in Algorithm 1. BH-Force is the main procedure of the
algorithm and is executed each step for each compute node.
ComputeForce computes the interaction of a single body on
a cell. Localize is used to localize children of unlocalized
cells. Each execution of ComputeForce is done by a single
spawned task using spawn, whilst future is used for spawn-
ing cell localization tasks. NeedOpen checks a body against
the current cell and decides if it should be opened. Depend-
ing on the decision, OpenCell computes the appropriate cal-
culation on the cell and recursively performs ComputeForce



on child nodes, while BodyCellUpdate updates the body po-
sition. The use of futures, gptrs, and the caching subsys-
tem ensure that redundant communication is prevented.

4.2 Monte Carlo Particle Transport

Monte Carlo particle transport uses a random sampling
process to approximate the diffusion of particles through a
structure — e.g., the diffusion of neutrons through a nuclear
reactor. Such codes are widely used and typically involve
frequent lookups of very large, static cross-section data that
cannot be stored on each node.

Algorithm 2 The EBMS tracking algorithm.
while nalive < npars do

> until all particles absorbed
for 0 < n < nbands do > for each energy band
retrieve Fy, > get energy band n
for p do € particles, > for each particle in band n
repeat > until absorbed or leaves band
randomly sample interaction
update particle
until absorbed(p) or p ¢ particles,
end for
end for
end while

A current state-of-the-art approach in the case of neu-
tron transport is the energy band memory server (EBMS)
algorithm [14]. This algorithm advances all particles in a
loosely bulk synchronous fashion. The neutrons begin at
high energy and tend to gradually lose energy until they are
absorbed. Thus, if the cross-section data is decomposed into
energy bands, accesses will be concentrated in one or a few
bands at a time. The energy bands are distributed across
a set of memory servers, from which processors tracking
particles can request data as needed. In the implementa-
tion described, there is a separation between tracking nodes
that compute interactions of neutrons and memory nodes
that store and provide access to cross section information: a
memory node runs a single-threaded server process whereas
as many tracking processes as possible are placed on the
tracking nodes.

The basic EBMS tracking algorithm is presented in Algo-
rithm 2. Tracking processors retrieve an energy band then
iterate over the contained particles until they leave the band.
In practice, it takes two to three iterations over the energy
bands to complete the algorithm [14].

PPL is suited to this problem due to its ability to naturally
manage and cache the cross-section data and interleave the
communication and computation to minimize latency. This
allows us to have hybrid memory/tracking servers for no
additional effort, and thus make better use of available com-
putational power. Cross-section data is accessed via global
pointers, allowing easy remote retrieval and taking advan-
tage of the LRU cache policy to manage the memory on each
node.

We have implemented two versions of this tracking algo-
rithm. The first approach is a simple adaptation of the origi-
nal EBMS algorithm, incorporating hybrid memory /tracking
servers. The primary difference is that a lightweight task is
spawned for each particle to handle the computations of the
inner loop.

The second approach implements “prefetching” of energy
bands and restructures the algorithm. A lightweight task is

spawned for each particle that persists until it is absorbed.
These tasks now request cross-section data as needed, and
are managed appropriately to avoid unnecessary duplica-
tion. This enables data to be retrieved in parallel based
upon memory constraints.

4.3 Sparse Triangular Linear System Solver

We have implemented a multi-threaded sparse triangular
linear solver application. Solutions of such systems are often
the kernel for many numerical applications that arise in sci-
ence and engineering simulations. However, due to the lack
of concurrency from structural dependencies in the matrix
and the small computation per non-zero entry, it is difficult
to parallelize and achieve high efficiency.

The problem is fomulated as follows. Given a sparse lin-
ear system Lx = b such that L is an n x n lower triangular
matrix, solution vector z is computed using forward substi-
tution by the recurrence:

i—1
T; = bz‘ — Zlijxj/liiyi = 1,2...,71.
j=1

From the formula, each solution variable z; depends on
all previous z;; however due to the sparseness of L, most
of l;; are zero and x; only depends on a small number of
previously computed variables.

In a recent paper, Ehsan et al. [41] present an algorithm
implemented in Charm++ which shows significant improve-
ment over tranditional solvers such as SuperLU [18] on a
BlueGene/P. The method ultilizes different levels of paral-
lelism by partitioning the matrix and choosing the order in
which non-zero entries are computed. It does so after an
initialization phase to determine the dependencies and then
dynamically generates working blocks (namely chares) for
each process. The ordering in a chare is for computing the
entries that satisfy the most dependencies, enabling more
parallelism. A simple round-robin load-balancing is used to
map chares to nodes. A process begins executing a chare
when all of its dependencies are satisfied. These dependen-
cies include the rows on the blocks to the left that need
to be accumulated and the diagonal blocks at the same set
columns. The Charm++ implemention uses a busy-waiting
style such that when a process has no work, it waits for in-
coming data until receiving indication that dependencies are
satisfied. Figure 3 shows an example of a triangular matrix
and the dependencies between its entries.

In PPL, the data dependency problem is simplified, thus
producing a simpler algorithm. Each node is assigned a
stripe of contiguous columns. Within each node, the stripe is
divided into sections of contiguous rows, where each section
has a similar number of non-zeroes; each section is assigned
to a task. This simple partitioning mechanism is shown to be
efficient enough in the later evaluation section. A task thus
has dependencies from tasks processing diagonal entries as
well as from remote nodes having the same assigned rows. It
is worth noting that sparse triangular solver performance is
heavily dependent on the locality of memory accesses, since
the solver has a low computation intensity. Hence a task is
started when all of its dependencies are satisfied and exe-
cutes until completion. This also reduces the overhead due
to task preemption. For this purpose, we use a counter im-
plementation of the sync which enables a task only when
certain number of synchronizations are completed. A pro-



Figure 3: Example of a triangular matrix of size 6 x6.
The arrows represent the dataflow when partitioning
the matrix for 3 processes.

cess which computes the entry at diagonal /;; holds the result
for solution component x;, while the partial results need to
be sent in a fashion as shown in Figure 3 using the PPL ac-
tive message feature. = and the partial results are accessed
using global pointers.

5. EVALUATION

We conducted evaluations on two systems. The first is
Taub, a cluster at the University of Illinois at Urbana-Cham-
paign [26]. Each compute node has at least 24 GB of RAM
and two six-core processors. The network uses a QDR In-
finiBand interconnect. On Taub, PPL was run with 10 shep-
herds.

The second system is the Stampede supercomputer, lo-
cated in the Texas Advanced Computing Center [6]. It con-
sists of 6400 compute nodes each with 32 GB of memory and
two eight-core processors. Nodes are interconnected with a
56 GB/s FDR InfiniBand interconnect. Each node also has
at least one Intel Xeon Phi co-processor, but these were not
used in our evaluation. On Stampede, PPL was run with 12
shepherds.

On both systems, the C/C++ compiler was GCC 4.7.1,
the GASNet version was 1.22.4, and the MVAPICH2 version
was 2.0

5.1 Microbenchmarks

We conducted two microbenchmark experiments to eval-
uate the performance of PPL’s one-sided communication
in comparison with MPI4+Pthreads and GASNet+Pthreads.
The experiments perform large amounts of remote put op-
erations for varying size data transfers in a multi-threading
environment. The experiments were run on the Taub system
and averaged over five runs.

The first benchmark is designed to run on two nodes,
spawning threads on each node. The threads are then paired
and one performs put operations. The second benchmark is
designed to run on two or more nodes. A designated node
spawns one thread for each other node. Each thread then
performs put operations to it’s associated node.

For the MPI+Pthreads benchmarks, an MPI memory win-
dow is used for each thread. The synchronization is done on
each window after each remote put to ensure remote comple-
tion. There is no explicit synchronization for GASNet since
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Figure 4: Put latencies for data sizes ranging from
1 byte to 4 MB for the two microbenchmarks.

we use the blocking put procedure; GASNet’s specification
ensures remote completion when this function returns.

Figures 4a and 4b show the results of the first and second
microbenchmarks, respectively. For message sizes smaller
than 4 KB, PPL averages 34% and 48% smaller latency
than GASNet+Pthreads, averaging 8% and 9% higher la-
tency thereafter, respectively. Further, for message sizes up
to 16 KB, PPL averages 2.7 and 3 times lower latency than
MPI+Pthreads, respectively.

Since PPL uses GASNet as the underlying communication
layer, it is reasonable that GASNet+Pthreads performs bet-
ter than PPL for large messages. Communication latency
can be split into two categories: submission time latency
and network time latency (i.e. actual communication la-
tency). The later is measured through the amount of polling
performed until communication is complete. For small mes-
sages, the dominating factor is submission latency. However,
at larger messages, it is typically necessary to poll more
than once before communication completion. Since polling
in PPL requires traversing the RC and polling for each indi-
vidual request, the network time latency is larger compared
to GASNet. It is presumed that this occurs for message sizes
greater than 4 KB because the message transfer unit of the
Infiniband device is 4 KB.

There are a few reasons which could explain why MPI+P-
threads performs better at larger sizes. First, for message
sizes larger than a certain threshold, many MPI implementa-
tions, including MVAPICH, split messages and change com-
munication modes, resulting in smaller overall latency for
transfer setup and improved scalability on clusters with In-
finiBand interconnects [19]. Second, the polling method for
communication completion is performed in nearly every MPI
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Figure 5: PPL BH strong scaling results.

function invocation. Conversely, PPL only supports polling
specific communication requests due to GASNet’s network
polling specification. It is expected that the advantage of
MVAPICH over PPL for large messages will reduce if PPL
uses the same communication layer used by MVAPICH.

5.2 Barnes-Hut Results
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Figure 6: PPL BH weak scaling results.

For our evaluation, input bodies were generated with the
Plummer model [1]. We ran four time steps and excluded
the first two, averaging the remainder. All computations
involved a time step of 0.025 seconds, a tolerance of 0.5,
and were done in double precision. We performed weak and
strong scaling tests on Stampede, and compared our imple-
mentation with UPCR-BH on Taub.

Figure 5a shows the strong scaling results for PPL on
Stampede, using one node as a baseline. For 4096k bodies,
we achieve nearly linear speedup until we reach 2° cores (8k
atoms per core), after which we drop slightly below the ideal
speedup. However, as can be seen in Figure 5b, we continue
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Figure 7: Speedup in total execution time of PPL
BH relative to UPCR-BH implementation.

to achieve reasonable speedup in total execution time at any
combination of bodies and cores.

Our weak scaling results for 512k bodies per node (32k
per core) and 2048k bodies per node (128k per core) are
presented in Figure 6. In both cases, we see that PPL con-
tinues to scale well as the problem size and core count in-
crease. Computation time grows roughly logarithmically, as
expected.

Finally, we compare PPL with UPCR-BH in Figure 7 us-
ing total execution time. Both implementations were run
for problem sizes with total body counts ranging from 64k
to 4096k on two to sixteen nodes on the Taub system. We
find that PPL outperforms UPCR-BH for all body counts
once we reach four nodes or more; at sixteen nodes, PPL is
between 2 and 13 times faster than UPCR-BH, depending
upon the problem size. Our performance increase primarily
comes from improvements in the force computation phase.
This is mainly due to the use of lightweight threads to over-
lap computation more efficiently, and hence make better use
of the available processor resources.

5.3 Particle transport results

| Reference Simple Prefetch
Total runtime 301.2 117.5 103.8

Speedup 1.0 2.56 2.9
Communication 290.6 117.0 n/a
Tracking 10.6 0.53 1.40

Table 1: Monte Carlo particle transport results: av-
erage running, communication, and tracking times,
in seconds. Speedup is relative to the reference.

We compare our Monte Carlo particle transport imple-
mentation with a reference implementation in MPI from [14]
on a benchmark representative of typical problems. The
benchmark is for 100 processes, 10 memory servers and 90
tracking. There are 10 energy bands, each 10 GB in size
and 900,000 particles distributed evenly among the tracking
processes. The comparison was performed on the Stam-
pede system. We used our experimental PPL implementa-
tion atop ibverbs due to problems with GASNet supporting
the memory requirements.

Due to memory requirements, the reference implementa-
tion was run with two tracking processes per physical node,
requiring a total of 45 nodes for the tracking processes. Our
implementation is able to make better use of the memory



on each node, and thus requires only six nodes. Considering
the memory processors—which in our implementations are
hybrid—brings the node counts required for the MPI and
PPL versions to 55 and 16, respectively.

The benchmark was run five times and total running, com-
munication, and tracking times were recorded and averaged.
Total running time is the time required for all particles to
be absorbed; communication time is the time spent waiting
to receive cross-section data; and tracking time is the time
spent performing tracking computations. These results are
presented in Table 1. We do not report the communication
time for the prefetch algorithm, since it may be retrieving
multiple energy bands in parallel.

The prefetch version is 2.9 times faster than the reference
implementation. Much of this improvement is a result of
reduced communication time. The tracking time is signifi-
cantly reduced due to the combination of employing hybrid
memory/tracking servers and the lightweight tasking being
better able to take advantage of available resources. The
prefetch version spends significantly more time in tracking
than the simple version—although still 7.5 times less than
the reference version—due to the increased overhead of syn-
chronization related to the prefetching. Note that with the
simple version, we see a 2.5 times performance improvement
with modest implementation effort.

5.4 Sparse Triangular Linear Solver results
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Figure 8: Performance comparison between PPL
and Charm++ sparse triangular solver implemen-
tations.

We conducted experiments on the Taub cluster using the
same set of matrices as [41] which come from an incomplete

LU factorization of matrices from various problems. The
comparison between PPL and Charm++ implementations
are shown in Figure 8. For Charm++, since its granularity
is at a processing unit, we specified 1 to 192 processes with
one process per core (i.e. 12 processes per node). The results
are averaged over 5 runs of the same experiment. In Fig-
ure 8a, we observe that when the number of nodes increases,
PPL speedup increases for all matrices; the average speedup
at 16 nodes is 10.8. In Figure 8b, we compare the runtime
for a few matrices with the same magnitude of runtime. For
matrices that are identified as having high parallelism, such
as nlpkkt120, PPL makes better use of overlapping synchro-
nization and thus has better performance and scaling. The
overhead of synchronization and communication in Char-
m++ is quickly worse, as can be seen in other matrices. Al-
though the results shown in [41] are better on BlueGene/P
for Charm++, which we suspect that is mainly due to bet-
ter communication bandwidth. Based on our experiments,
we expect PPL to perform with similar or better results.

6. RELATED WORK

On large scale systems, hybrid programming models have
become part of mainstream research in recent years. A very
common approach is to incorporate an MPI implementation
with a threading library such as OpenMP [29], Habanero-
C [9], and SMPSs [20]. MPI implementers are also look-
ing to improve MPI performance by integrating threading
libraries with the communication layer [38]. The hybrid
MPI+Pthread library approach has shown improvements for
several algorithms on multi-core distributed memory clus-
ters. n-body simulations are among those studied, as shown
in [13, 30]. These implementations, however, are based on
the locally essential tree initially proposed in [35], which does
not allow overlapping computation and communication very
effectively. Several comparisons to different BH implementa-
tions on other programming models such as Charm++ [16]
and PEPC [45] have been investigated in [48, 47].

The idea of “bringing the data to the particle” is sug-
gested in [5]. PGAS has been employed to achieve this
in the context of quantum Monte Carlo applications [24].
Similarly, decomposing cross-section data is seen in [33] for
Monte Carlo particle transport. PPL’s key achievement in
this respect is to apply these with lightweight tasking to
better interleave communication and computation, and eas-
ily implement hybrid memory /tracking processors.

It is shown by Michael et al. [46] that synchronization
such as barrier is among the most important factors that af-
fect performance of hybrid MPI+Pthread sparse triangular
solvers. Using PPL, we have efficient lightweight synchro-
nization. Other research on locality improvement through
better partitioning, such as in [34, 36], are complementary
optimizations which could be applied on top of a PPL im-
plementation.

PGAS programming languages such as Chapel [7] and X10
[8] have dedicated threading mechanisms, while UPC [42]
and CAF [25] have added multi-threading support through
language extensions. Chapel and X10 do not provide light-
weight threading support; however, several efforts have been
made to add lightweight threading support, such as in [43,
28]. Since lightweight thread features are added later to the
design, they are still adhoc and not widely adopted. The
PPL library natively supports lightweight threads and can
be easily extended to any threading library through class



inheritance.

7. CONCLUSION

We have presented the design and an implementation of

PPL, a new C++ parallel runtime system that combines

RDMA technology, caching, and asynchronous tasks.

have demonstrated how PPL can reduce communication over-

We

head for high task counts. We have implemented in PPL
three applications of different types, achieving better per-
formance with simpler code. The performance comes from
better utilization of multi-tasking to more efficiently inter-
leave communication and computation, while avoiding con-
tention overheads. We simplify the code by using tasks to
represent a natural unit of work without any explicit load-
balancing and hand-tuned optimization for synchronization
and locality. These are handled internally by the PPL run-
time with workstealing, cache management, and one-sided

communication.

As supercomputers advance toward exascale, future par-
allel applications will need to make greater use of inter- and
intra-node parallelism in the face of increasing communica-
tion delays. The use of C++ allows extending and reim-
plementing features of PPL easily through class inheritance
and polymorphism. This makes it an attractive platform for
experimenting with different combinations of programming
models. We plan to continue to improve PPL, extending it
to support different underlying communication and thread-
ing mediums, while evaluating its performance on a wide

range of problems.
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