
Improving Batch Scheduling on Blue Gene/Q by Relaxing 5D Torus Network
Allocation Constraints

Zhou Zhou, Xu Yang, Zhiling Lan

Department of Computer Science
Illinois Institute of Technology

Chicago, IL 60616, USA
{zzhou1, xyang56}@hawk.iit.edu, lan@iit.edu

Paul Rich,∗ Wei Tang,† Vitali Morozov,∗ Narayan Desai,†‡
∗Argonne Leadership Computing Facility

†Mathematics and Computer Science Division
Argonne National Laboratory, Argonne, IL 60439, USA

‡Ericsson Inc.
200 Holger Way, San Jose, CA 95134, USA
∗richp@alcf.anl.gov, †wtang@mcs.anl.gov

∗morozov@anl.gov, ‡narayan.desai@ericsson.com

Abstract—As systems scale toward exascale, many resources
will become increasingly constrained. While some of these
resources have historically been explicitly allocated, many—
such as network bandwidth, I/O bandwidth, or power—have
not. As systems continue to evolve, we expect many such
resources to become explicitly managed. This change will pose
critical challenges to resource management and job scheduling.
In this paper, we explore the potentiality of relaxing network
allocation constraints for Blue Gene systems. Our objective
is to improve the batch scheduling performance, where the
partition-based interconnect architecture provides a unique
opportunity to explicitly allocate network resources to jobs.
This paper makes three major contributions. The first is
substantial benchmarking of parallel applications, focusing on
assessing application sensitivity to communication bandwidth
at large scale. The second is two new scheduling schemes
using relaxed network allocation and targeted at balancing
individual job performance with overall system performance.
The third is a comparative study of our scheduling schemes
versus the existing one under different workloads, using job
traces collected from the 48-rack Mira, an IBM Blue Gene/Q
system at Argonne National Laboratory.

I. INTRODUCTION

The demand for more computing power seems insatiable.

Production systems already contain hundreds of thousands

of processors, and they are headed to millions [1]. These

systems are used to tackle scientific problems of increasing

size and complexity, with diverse requirements for resources.

The systems utilize shared resources, such as the commu-

nication infrastructure. to achieve higher performance while

controlling costs. As high-performance computing continues
to evolve, these shared resources are becoming increasingly
constrained.

In order to harness the full potential of extreme-scale

systems, resource management or job scheduling (i.e., ef-

fectively allocating available resources to applications) is

of paramount importance. Modern resource managers focus

primarily on effective use of job-dedicated resources such as

processors, memory, and accelerators. Because of a variety

of technology trends, the ratio of CPU and memory to shared

resources is increasing. In the near future, management
of shared resources such as network and bandwidth will
become increasingly critical.

Torus-based networks are commonly used in high-end

supercomputers because of their linear scaling on per-node

cost as well as their competitive communication perfor-

mance. The IBM Blue Gene/L, Blue Gene/P [2] [3], and

Cray XT systems [4] use a 3D torus network for node

communication. Blue Gene/Q (BG/Q) has its nodes elec-

trically interconnected in a 5D torus network [5]. The K

computer from Japan uses the “Tofu” system, which is a 6D

mesh/torus topology [6]. On the recent Top500 list, 6 of the

top 10 supercomputers use a high-radix torus-interconnected

network [1]. In order to address the potential performance

issues (e.g., job interference and communication contention)

caused by shared torus networks, Blue Gene systems [2][3]

use a network partitioning mechanism in which the network

interconnect is reconfigured to provide private, per-job net-

works to compute nodes [7][]. Once a network partition is

established, the job running on the partition can benefit from

the dedicated synchronization network where all required

hardware is dedicated to the job. Although a partition-based

system provides jobs with dedicated network resources and

bandwidth; however, the use of partitions introduces a new

problem: resource contention caused by monotonically allo-

cating shared network resources to a single job.

Such contention can cause unusable configurations of

node resources, regardless of node state. For example, even if

some nodes are idle, they still cannot be grouped together to

serve a job because the wirings between them are occupied

by other jobs. This issue can diminish both job response

times and system utilization.

To address the problem, in this paper we investigate the

potential of relaxing network resource allocation by utilizing

application communication features. The partition-based de-

sign in Blue Gene systems provides a unique opportunity to

explicitly allocate network resource (i.e., links or bandwidth)

to jobs in a way that is impossible on other systems. While

this capability is currently rare, we expect it to become more

common. More specifically, this paper makes three major

contributions:

1) Substantial benchmarking of applications, focusing on

assessing application sensitivity to network configura-

tion at large scale. In particular, we evaluate a number

of parallel benchmarks and DOE leadership applica-

tions on the production 48-rack Blue Gene/Q system

Mira at Argonne by analyzing their performance vari-

ation under different network configurations.

2) Design of two new scheduling schemes for Mira.

These two schemes have different characteristics, in-

cluding network configurations and scheduling poli-

cies. In particular, we propose a communication-aware

scheduling policy that selectively allocates network re-

source to users’ jobs according to job communication

characteristics.

3) Comprehensive evaluation of our scheduling schemes

versus the current one used on Mira, through trace-

based simulations using real workloads from Mira.

We have made the following major findings:

1) Not all applications are sensitive to the network

bandwidth variation. Application performance under

different network configurations depends mainly on

their communication patterns and the proportion of

communication over the total application runtime.

2) Our new scheduling schemes can significantly improve

scheduling performance by up to 60% in job response

time and 17% in system utilization.

The remainder of this paper is organized as follows.

Section II introduces background about the Blue Gene/Q

system Mira at Argonne. Section III presents the results

of benchmarking applications on Mira. Section IV presents

our new batch scheduling schemes. Section V presents a

scheduling study. Section VI discusses related work. Section

VII summarizes our conclusions and points out future work.

II. BACKGROUND

A. Mira: The IBM Blue Gene/Q at Argonne

Mira is a 10 PFLOPS (peak) Blue Gene/Q system operat-

ed by Argonne National Laboratory for the U.S. Department

of Energy [1]. It is a 48-rack system, arranged in three

rows of sixteen racks. Each rack contains 1,024 sixteen-

core nodes, for a total of 16,384 cores per rack. Mira has

a hierarchical structure: nodes are grouped into midplanes,

each midplane contains 512 nodes in a 4 × 4 × 4 × 4 × 2
structure, and each rack has two such midplanes. Each node

has 16 cores, giving a total of 786,432 cores. Mira was

ranked fifth in the latest Top500 list [1]. Mira uses a 5D

torus-connected network. Each node in the machine has a

unique set of coordinates on the full machine partition. Mira

is a capability system, with single jobs frequently occupying

substantial fractions of the system. The smallest production

job on Mira occupies 512 nodes; 8,192-node and 16,384-

node jobs are common on the system; larger jobs also occur

frequently. Jobs up to the full size of Mira run without

administrator assistance. Time on Mira is awarded primarily

through the Innovative and Novel Computational Impact on

theory and Experiment (INCITE) program [8] and the ASCR

Leadership Computing Challenge (ALCC) program [9].

B. Partitioning on Mira

Mira uses network partitioning for job scheduling, and

partitions can be constructed only in a limited set of ways.

A partition must be a uniform length in each of the dimen-

sions. Midplanes used to build partitions must be connected

through a single dimension and form a roughly rectangular

prism in five dimensions. Because the final dimension is used

only to connect nodes within a single midplane, all partitions

are length 1 in the E dimension. Additionally, the creation

of a partition uses network resources in a dedicated fashion,

preventing their use in other partitions. For a partition size

to be valid, there must be a set of partition lengths in each

dimension that results in a properly sized 5D prism of nodes.

Partitions also require use of complete midplanes, so all

partitions on the system are multiples of 512 nodes. For a

given size, several partition variants may exist with different

shapes.

Figure 1 illustrates the flat view of the network topology

of Mira with two halves and three rows. Each square labeled

with “RXX” represents a rack. Each rack contains two ver-

tical midplanes (not shown in the figure). As we can see, the

whole machine is split into six 8-rack sections. Each node

in Mira has a unique logical coordinate (A,B,C,D,E).
Given the logical coordinate of a node, we can translate the

logical address of a node to the midplane location. The A
coordinate decides which half of the machine the node is

on. The B coordinate decides which row of the machine

the node is on. The C coordinate refers to a set of four

midplanes in two neighboring racks. The blue lines represent

the cables that link racks together. Since the coordinate is

based on a logical location and follows the midplane cable,

this coordinate appears to jump around the 8-rack segment as

illustrated in the figure. The D coordinate refers to a single

midplane in two neighboring racks. Since the cable makes a

loop around two racks, the coordinate loops in a clockwise

direction.

C. Network Resource Contention

One unique feature of the Blue Gene/Q architecture is

the ability to explicitly allocate network performance to

jobs. When building a partition, a shared pool of network

resources is allocated to a single partition at a time. If

sufficient resources are dedicated to a partition, it will have a

torus network. Alternatively, if fewer resources are allocated,

the partition will have only a mesh network, in which the

outside faces of the mesh are not connected except where

��� ��� ��� ��� ��� ��� ��	 ��

��� ��� ��� ��� ��� ��� ��	 ��

��� ��� ��� ��� ��� ��� ��	 ��

�

��� ��� ��
 ��� ��� ��� ��� ���

��� ��� ��
 ��� ��� ��� ��� ���

��� ��� ��
 ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��	 ��

������������������

�����������������

�
��

��
��

��
��

��
��

��
��

��������������������� �!�"�����#�$�%&�
�#�%�����!�'�$�"#��'�$�"�$�%('

)�����������������������"�$����"�����#���� ����&���"��#�%��

Figure 1. Flat view of Mira’s network topology

�� �� �� ���������	�
�����

��
��������
��

���������

(a) M0 and M1 as a partition

�� �� �� ��

��
��������
��

�������	�
�����

���������

(b) M1 and M2 as a partition

Figure 2. Wire contention between midplanes. The figure is a schematic
representation of a four-midplane-long dimension showing a two-midplane
torus and two single midplane tori. Because of the wiring of the 2-midplane
torus (blue) and the exclusivity of partitioning on Mira, this wiring prevents
the formation of a torus or a mesh with the remaining two midplanes in
this dimension. As shown, once two midplanes (M0 and M1 in (a), M1 and
M2 in (b)) are linked together to form a 1K partition, they will consume
all the wire resources along this four-midplane-long dimension. This is
representative of both the C and D dimensions on Mira.

the internal midplane faces connect to one another. The

performance of the torus partition is considerably better than

that of the mesh; the worst case and average hop counts

between nodes are reduced, and more bandwidth is available

to applications. This difference in performance will affect

application performance, particularly for communication-

intensive applications.

Network contention is a substantial challenge for resource

allocation on Blue Gene/Q systems. For example, it is

possible that idle midplanes cannot be wired together to

satisfy a job’s resource request, because of a lack of wiring

resources, as shown in Figure 2. This situation can occur

even when midplane positions meet all geometric constraints

for partition creation.

D. Current Job Scheduling on Mira

Batch scheduling on a partition-based system comprises

two parts: network configuration and scheduling policy.

For network configuration, Mira uses a configuration in

which all partitions are fully torus-connected. The partition

size ranges from 512 nodes (single midplane) to the whole

machine (48 racks). The scheduling policy has two phases.

First, the resource manager uses a policy called WFP to

order the jobs in the queue [10] [11] [12]. WFP favors

large and old jobs, adjusting their priorities based on the

ratio of their wait times to their requested runtimes. Upon

each scheduling, the job at the head of the wait queue is

selected and allocated to a partition. Then, a least-blocking

(LB) scheme is used to choose the partition that causes the

minimum network contention out of all candidates [11].

III. APPLICATION BENCHMARKING

We first investigate the impact of partition configuration

on application performance. We choose four parallel bench-

marks and three DOE leadership applications for bench-

marking. To quantify performance difference, we define

runtime slowdown =
Tmesh − Ttorus

Ttorus
, (1)

where Tmesh is the application runtime on a mesh partition

and Ttorus is the application runtime on a torus partition.

A. Parallel Benchmarks and Applications

In this paper, we use the NAS Parallel Benchmarks, in

particular NPB3, which has a larger problem size (class E)

[13]. We choose three kernel benchmarks: LU, FT, and MG.

LU solves synthetic systems of nonlinear partial differential

equations. FT solves a three-dimensional partial differential

equation using a fast Fourier transform (FFT). MG solves

a three-dimensional discrete Poisson equation using the V-

cycle multigrid method.

We also study four scientific applications: Nek5000,

FLASH, DNS3D, and LAMMPS. The applications are used

routinely by a number of INCITE projects.

Nek5000 [14] is a spectral element CFD code devel-

oped at Argonne National Laboratory. It features spectral

element multigrid solvers coupled with a highly scalable,

parallel coarse-grid solver. It was recognized in 1999 with

a Gordon Bell prize and is used by more than two dozen

research institutions worldwide for projects including ocean

current modeling, thermal hydraulics of reactor cores, and

spatiotemporal chaos.

FLASH 4.0 [15] is the lastest FLASH release from the

ASC Center at the University of Chicago. The FLASH code

[16] is a multiphysics simulation code written in Fortran90

and C using MPI with OpenMP. The driven turbulence setup

is run using the split-PPM hydrodynamics solver and the

uniform grid module, in a weak-scaling mode. This problem

was run at a large scale on the BG/L at Lawrence Livermore

National Laboratory [17] and is known to be highly scalable.

DNS3D is a direct numerical simulation code that solves

viscous fluid dynamics equations in a periodic rectangu-

lar 3-D domain with a pseudo-spectral method of fourth-

order finite differences and with the standard Runge-Kutta

fourth-order time-stepping scheme [18]. DNS3D is highly

dependent on network performance, since during each time

step it executes three Fourier transforms for three 3-D scalar

variables. This approach can effectively be transformed into

all-to-all–type computations.

LAMMPS (“Large-scale Atomic/Molecular Massively

Parallel Simulator”) [19] is a general-purpose molecular dy-

namics software package for massively parallel computers.

Developed at Sandia National Laboratories, it is written in

an exceptionally clean style that makes it one of the most

popular codes for users to extend, and it currently has dozens

of user-developed extensions.

B. Benchmarking Results

Each of these benchmarks and applications was executed

on the partitions of sizes 2K, 4K, and 8K nodes, using both

torus and mesh partitions.

Table I
APPLICATION RUNTIME SLOWDOWN

Name Runtime Slowdown
2K 4K 8K

NPB:LU 3.25% 0.01% 0.03%
NPB:FT 22.44% 23.26% 21.69%
NPB:MG 0.00% 11.61% 19.77%
Nek5000 0.95% 0.02% 0.44%
FLASH 0.83% 5.48% 4.89%
DNS3D 39.10% 34.51% 31.29%
LAMMPS 0.02% 0.87% 0.97%

Table I presents application slowdowns of NPB bench-

marks. Obviously, LU is not sensitive to the switching from

torus to mesh. It appears to have less than 4% slowdown at

size 2K and close to zero slowdown when the computing

scale is increased to 4K and 8K. The algorithm of LU is

not highly parallelized, and most of its MPI routines are

blocking communication. This leads to no performance loss

when the network topology configuration is changed from

torus to mesh.

MG shows no slowdown at size 2K. When the computing

scale is increased, however, we observe a 12% slowdown

at size 4K and nearly 20% slowdown at size 8K. MG

has unique communication patterns. In particular, it in-

volves both near-neighbor communication and long-distance

communication, so its performance is sensitive to network

topology changes.

FT also is sensitive to network topology. At all three

sizes, its slowdown is more than 20%. The code performs

global data communication for its FFTs [20]. This is the

main reason that the performance drops significantly when

using mesh partitions with reduced bisection bandwidth.

The slowdown results of the leadership applications also

are presented in Table I. For LAMMPS and Nek5000,

the use of mesh partitions has minimal impact on their

performance: the slowdowns are always less than 1%.

In Nek5000, every process is communicating to 50 to

300 geometrically neighbor processes, which in practice

means about 2 to 3 hops away from the source. For a

torus, the process on the “border” node does not notice any

difference because, in some sense, there are no borders in

torus topology. For a mesh, the process will have half of

the neighbors located in the same semi-plane, as in torus

partition, but half the others will need to reuse the path of

the semi-plane. The slowdown really depends on the level

of mutligrid refinement and the placement of the processes

relative to each other.

In FLASH, the slowdown is no more than 5% on the

4K and 8K partition. FLASH’s runtime is dominated by

computation, not communication, and at the larger sizes

takes up on the order of 14% of the runtime. The reason

is that the communication algorithm is largely point to

point and generally fairly local. Because of the periodic

boundary conditions of the physics in the problem, we do get

a small but significant amount of off-node communication

on the wraparound links. For example, for 8K partitions,

the torus spent only 14% of its time in communication,

whereas the mesh partition had communication for 17%

of the runtime. We saw 23% slowdown in communication,

which was translated into about 5% slowdown of runtime.

DNS3D exhibits substantial slowdown when switching

from a torus to a mesh partition. Among the three parti-

tion sizes from 2K to 8K, the slowdown is always above

30%. In some cases (e.g., 2K), the slowdown is close to

40%. Our MPI profiling shows that DNS3D spends 60%

of its runtime in MPI Alltoall(). MPI Alltoall() is scaling

proportional to the bisection bandwidth of a partition. If one

of the partition dimensions becomes a mesh, the bisection

bandwidth of the partition is reduced by half. Therefore,

it takes two times longer for MPI Alltoall() to complete.

That is why we observe 30% performance degradation here.

Clearly, certain applications are sensitive to communication

bandwidth, especially those heavily using MPI collective

calls.

Our benchmarking results demonstrate that application

communication pattern is a key factor influencing applica-

tion runtime under different network configurations. Appli-

cations dominated by local communications are not sensitive

to the network topology changing from torus to mesh,

whereas applications having a substantial amount of long-

distance or global communications are prone to performance

loss when running on mesh partitions.

IV. NEW BATCH SCHEDULING

In this section we present two new scheduling schemes

to improve batch scheduling. While this work targets Mira,

these new scheduling designs are applicable to all Blue

Gene/Q systems and other 5D torus-connected systems.

A. Contention-Free Partition

Based on the Mira’s flexible controlling of switches and

wiring, we build a new partition configured with mixed torus

and mesh dimensions. In this paper, we call it “contention-

free” partition. This type of partition has some dimensions

as torus-connected with wrap-around links and other di-

mensions as mesh-connected. By building such partitions,

we can ensure that the wiring contention does not happen

uniformly on all dimensions. For example, we turn the D
dimension of 1K partition into mesh, while still having the

other four dimensions torus-connected. This contention-free

1K partition does not consume any extra wiring resources

compared with a mesh partition, and it can provide better

communication performance. Similar to a mesh partition,

this new 1K partition also does not cause any wiring

contention on its torus-connected dimension. On Mira, we

build such partitions at sizes of 1K, 4K, and 32K. Compared

with full mesh partitions, these contention-free partitions

cause less performance degradation on application runtime.

This is due to the fact that an application can still benefit

from the torus links on dimensions A, B, C, and E.

B. Scheduling Using Relaxed Allocation Constraints

Using mesh and contention-free partitions requires fewer

links than full torus partitions. According to the bench-

marking results presented in Section III, we can observe

that for a majority of applications, the performance loss

caused by mesh configuration is not substantial. Hence, we

propose two scheduling schemes using such partitions to

relax resource allocation constraints and improve system

scheduling performance.

1) MeshSched: We propose a mesh-based scheduling

policy that uses a full mesh network configuration. This

configuration is generated from the current one on Mira by

turning every torus partition into a mesh partition except

the 512-node partition, which must be a torus. This means

wrap-around torus links are turned off in each dimension,

consequently reducing the potential link contention between

neighboring partitions. Resources can be more freely allocat-

ed without the constraint of wrap-around links. Obviously,

runtime slowdown may occur for some communication-

intensive applications since mesh partitions reduce the bi-

section bandwidth between two nodes.

2) Contention-free and Communication-aware (CFCA) :
We also propose a new scheduling scheme using contention-

free partitions and a scheduling policy that takes an appli-

cation’s communication intensity into account. Compared

with mesh partitions, the new contention-free partitions can

preserve the application performance as much as possible

without causing resource contention. We built a new net-

work configuration on Mira by adding these contention-

free partitions to the current configuration on Mira. We

also develop a communication-aware scheduling policy as

shown in Figure 3. The new scheduling scheme allocates

communication-sensitive jobs to torus partitions and allo-

cates non-communication-sensitive jobs to contention-free

partitions. By doing so, this scheduler seeks to balance

user requirements and system performance. Note that the

single 512-node midplane must always be a torus. Any

jobs requiring no more than 512 nodes should directly be

routed to a single midplane. Further, with the performance

monitoring support on Mira, an application’s sensitivity to

network topology can be determined empirically.

��	
��

�

�������

����
��

����
������
��

 ���������

�����
���������

��� ��
�

����
 ��

�� �	
�
��� ���
�

������������������
�
������

���������������
������

Figure 3. Communication-aware job scheduling using contention-free
partitions

V. EXPERIMENTS

In this section, we compare our new scheduling methods

under a variety of workloads using trace-based simulation.

The goal is to investigate the benefit of our design compared

with the current one used on Mira.

A. QSim Simulator

Qsim is an event-driven scheduling simulator for Cobalt,

the resource management and job scheduling package used

on the 48-rack Mira. Taking the historical job trace as input,

Qsim quickly replays the job scheduling and resource allo-

cation behavior and generates a new sequence of scheduling

events as an output log. Qsim uses the same scheduling and

resource allocation code that is used by Cobalt and thus

will provide accurate resource management and scheduling

simulation. Qsim is open source and available along with

the Cobalt code releases [10]. It was used in our previous

work [11][21][7].

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

Month 1 Month 2 Month 3

N
um

be
r o

f j
ob

s

512
1K

2K
4K

8K
16K+

Figure 4. Job size distribution

B. Job Trace

We use a three-month workload trace collected from Mira.

Figure 4 summarizes the jobs in these months. As we can

see, the 512-node, 1K, and 4K jobs are the majority. For

months 2 and 3, 512-node jobs account for half of the jobs.

While the number of large-sized jobs (more than 8K nodes)

is relatively low, these jobs consume a considerable amount

of node-hours because of their sizes.

C. Evaluation Metrics

Four metrics are used for scheduling evaluation:

• Average job wait time. This metric denotes the average

time elapsed between the moment a job is submitted

and the moment it is allocated to run. It is commonly

used to reflect the “efficiency” of a scheduling policy.

• Average response time. This metric denotes the average

time elapsed between the moment a job is submitted

and the moment it is completed. Similar to the above

metric, it is often used to measure scheduling perfor-

mance from the user’s perspective.

• System utilization. System utilization rate is measured

by the ratio of busy node-hours to the total node-hours

during a given period of time [22] [23]. The utilization

rate at the stabilized system status (excluding warm-up

and cool-down phases of a workload) is an important

metric of how well a system is utilized.

• Loss of capacity (LoC) This metric measures system

fragmentation [7]. A system incurs LoC when it has

jobs waiting in the queue to execute and when it

has sufficient idle nodes but still cannot execute those

waiting jobs because of fragmentation. A scheduling

event takes place whenever a new job arrives or an

executing job terminates. Let us assume the system has

N nodes and m scheduling events, which occur when

a new job arrives or a running job terminates, indicated

by monotonically nondecreasing times ti, for i = 1...m.

Let ni be the number of nodes left idle between the

scheduling event i and i + 1. Let δi be 1 if any jobs

are waiting in the queue after scheduling event i and at

least one is smaller than the number of idle nodes ni

and 0 otherwise. Then LoC is defined as follows.

LoC =

∑m−1
i=1 ni(ti+1 − ti)δi
N × (tm − t1)

(2)

Table II
SCHEDULING SCHEMES USED IN THE EXPERIMENTS

Name Network Configuration Scheduling Policy

Mira Current config used on Mira
WFP and LB
(see Section II)

MeshSched
All possible mesh partitions
and 512-node torus

WFP and LB

CFCA

Current config used
on Mira and additional
contention-free partitions
(1K, 2K, and 32K)

Communication-aware
policy described in Figure 3

D. Results

In our experiments, we compare our new scheduling

methods (termed MeshSched and CFCA) with the one cur-

rently used on Mira. Table II summarizes these scheduling

methods.

We categorize jobs into communication-sensitive and non-

communication-sensitive jobs. For each simulation, we set

five slowdown levels for applications running on mesh

partitions: 10%, 20%, 30%, 40%, and 50%. We also tune the

percentage of communication-sensitive jobs in the workload.

Similarly, five ratios are used: 10%, 20%, 30%, 40%, and

50%. We conduct experiments using the workload on a

monthly base (3 months). In total we have 225 (3×3×5×5)

sets of experiments.

Because of space limitations, we present only a few

representative results. To improve the figure readability, we

present the results when the percentage of communication-

sensitive jobs is 10%, 30%, or 50%. For system utilization,

we present the relative improvement of MeshSched and

CFCA over Mira.

Figure 5 shows the scheduling performance when runtime

slowdown is set to 10%. First, we observe that both the

MeshSched and CFCA schemes can have a striking effect

on job wait times and response times for all three months.

The largest wait time reduction is more than 50% for month

1 when there are 10% communication-sensitive jobs. The

response time is also reduced substantially because of the

reduction in job wait time. The relative improvement in

job response time is smaller than that achieved in job wait

time. It indicates that for most jobs their runtimes dominate

the total response time. Second, we notice that MeshSched
outperforms CFCA regarding wait time and response time

for month 1. With a relatively low slowdown of 10%,

 0

 10

 20

 30

 40

 50

 60

 70

 80

10% 30% 50%

Ti
m

e
(m

in
ut

es
)

Percentage of communication-sensitive jobs

Average Wait Time
Mira

MeshSched
CFCA

(a) Month 1

 0

 10

 20

 30

 40

 50

 60

 70

10% 30% 50%

Ti
m

e
(m

in
ut

es
)

Percentage of communication-sensitive jobs

Average Wait Time
Mira

MeshSched
CFCA

(b) Month 2

 0

 50

 100

 150

 200

 250

10% 30% 50%

Ti
m

e
(m

in
ut

es
)

Percentage of communication-sensitive jobs

Average Wait Time
Mira

MeshSched
CFCA

(c) Month 3

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

10% 30% 50%

Ti
m

e
(m

in
ut

es
)

Percentage of communication-sensitive jobs

Average Response Time
Mira

MeshSched
CFCA

(d) Month 1

 0

 20

 40

 60

 80

 100

 120

 140

 160

10% 30% 50%

Ti
m

e
(m

in
ut

es
)

Percentage of communication-sensitive jobs

Average Response Time
Mira

MeshSched
CFCA

(e) Month 2

 0

 50

 100

 150

 200

 250

 300

 350

10% 30% 50%

Ti
m

e
(m

in
ut

es
)

Percentage of communication-sensitive jobs

Average Response Time
Mira

MeshSched
CFCA

(f) Month 3

 0%

 5%

10%

15%

20%

25%

30%

10% 30% 50%

Percentage of communication-sensitive jobs

Loss of Capacity
Mira

MeshSched
CFCA

(g) Month 1

 0%

 5%

10%

15%

20%

25%

30%

10% 30% 50%

Percentage of communication-sensitive jobs

Loss of Capacity
Mira

MeshSched
CFCA

(h) Month 2

 0%

 5%

10%

15%

20%

25%

30%

10% 30% 50%

Percentage of communication-sensitive jobs

Loss of Capacity
Mira

MeshSched
CFCA

(i) Month 3

 0%

 5%

 10%

 15%

 20%

10% 20% 30% 40% 50%

Percentage of communication-sensitive jobs

Improvement on System Utilization
MeshSched

CFCA

(j) Month 1

 0%

 5%

 10%

 15%

 20%

10% 20% 30% 40% 50%

Percentage of communication-sensitive jobs

Improvement on System Utilization
MeshSched

CFCA

(k) Month 2

 0%

 5%

 10%

 15%

 20%

10% 20% 30% 40% 50%

Percentage of communication-sensitive jobs

Improvement on System Utilization
MeshSched

CFCA

(l) Month 3

Figure 5. Comparison of scheduling performance using different scheduling policies, where runtime slowdown is set to 10% for communication-sensitive
jobs

using mesh partitions provides shorter turnaround time with

affordable performance loss. Third, with respect to LoC,

both MeshSched and CFCA perform better than Mira. For

month 1, LoC decreases more than 10% when there are 10%

communication-sensitive jobs. This decrease is significant

when we consider the machine scale. For Mira in a single

month, approximately 2,538,944 (= 0.1×30×24×49152)
node-hours are saved, enabling the system to run 72 hours

at full load. MeshSched reduces more LoC than CFCA
does. The reason is that MeshSched contains only mesh

partitions except for 512 nodes, whereas CFCA still uses

some torus partitions, inevitably causing more resource

contention than does MeshSched. Clearly, both MeshSched

and CFCA improve the overall system utilization. Mesh-
Sched can improve the utilization by more than 10% in

month 2 with 40% communication-sensitive jobs. Although

CFCA does not improve the utilization as much as the

MeshSched does, the average improvement is about 5%,

with the biggest improvement in month 3 when there are

10% communication-sensitive jobs. The reason is similar to

the case of LoC; that is, MeshSched has much less network

resource contention.

Figure 6 presents scheduling performance when runtime

slowdown is set to 40%. With respect to job wait time, the

CFCA scheme always outperforms the other two scheduling

policies. For example, in month 1 with 10% communication-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

10% 30% 50%

Ti
m

e
(m

in
ut

es
)

Percentage of communication-sensitive jobs

Average Wait Time
Mira

MeshSched
CFCA

(a) Month 1

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

10% 30% 50%

Ti
m

e
(m

in
ut

es
)

Percentage of communication-sensitive jobs

Average Wait Time
Mira

MeshSched
CFCA

(b) Month 2

 0

 50

 100

 150

 200

 250

 300

 350

 400

10% 30% 50%

Ti
m

e
(m

in
ut

es
)

Percentage of communication-sensitive jobs

Average Wait Time
Mira

MeshSched
CFCA

(c) Month 3

 0

 50

 100

 150

 200

 250

10% 30% 50%

Ti
m

e
(m

in
ut

es
)

Percentage of communication-sensitive jobs

Average Response Time
Mira

MeshSched
CFCA

(d) Month 1

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

10% 30% 50%

Ti
m

e
(m

in
ut

es
)

Percentage of communication-sensitive jobs

Average Response Time
Mira

MeshSched
CFCA

(e) Month 2

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

10% 30% 50%

Ti
m

e
(m

in
ut

es
)

Percentage of communication-sensitive jobs

Average Response Time
Mira

MeshSched
CFCA

(f) Month 3

 0%

 5%

10%

15%

20%

25%

30%

10% 30% 50%

Percentage of communication-sensitive jobs

Loss of Capacity
Mira

MeshSched
CFCA

(g) Month 1

 0%

 5%

10%

15%

20%

25%

30%

10% 30% 50%

Percentage of communication-sensitive jobs

Loss of Capacity
Mira

MeshSched
CFCA

(h) Month 2

 0%

 5%

10%

15%

20%

25%

30%

10% 30% 50%

Percentage of communication-sensitive jobs

Loss of Capacity
Mira

MeshSched
CFCA

(i) Month 3

 0%

 5%

 10%

 15%

 20%

10% 20% 30% 40% 50%

Percentage of communication-sensitive jobs

Improvement on System Utilization
MeshSched

CFCA

(j) Month 1

 0%

 5%

 10%

 15%

 20%

10% 20% 30% 40% 50%

Percentage of communication-sensitive jobs

Improvement on System Utilization
MeshSched

CFCA

(k) Month 2

 0%

 5%

 10%

 15%

 20%

10% 20% 30% 40% 50%

Percentage of communication-sensitive jobs

Improvement on System Utilization
MeshSched

CFCA

(l) Month 3

Figure 6. Comparison of scheduling performance using different scheduling policies, where runtime slowdown is set to 40% for communication-sensitive
jobs

sensitive jobs, CFCA reduces the wait time by more than

50%. Similar performance improvement is achieved for job

response time by using CFCA. As in the previous case,

MeshSched generally results in a worse job performance than

Mira does when there are more than 10% communication-

sensitive jobs. In months 2 and 3, the job wait time is

increased by 100%. The reason is that although the resource

contention is reduced by using MeshSched, user jobs suffer

from the substantial runtime expansion caused by using

mesh partitions. Similar to Figure 5, both MeshSched and

CFCA improve LoC. Especially in month 1, CFCA can

greatly reduce LoC, much more than that achieved by using

MeshSched. With respect to system utilization, MeshSched

achieves more than 15% increase in some cases. Similar to

Figure 5, MeshSched improves utilization more than CFCA
does.

In summary, our main observations are as follows:

• CFCA outperforms the current scheduler used on Mira

under various workload configurations.

• MeshSched outperforms the current scheduler

used on Mira when a small portion of jobs are

communication-sensitive. When a large portion of jobs

are communication-sensitive (e.g., 40%), MeshSched
reduces system fragmentation and increases system

utilization at the cost of increasing job wait time and

response time.

• Since not all applications are sensitive to communica-

tion bandwidth, we find that the existing scheduling

design on Mira has much room for improvement. We

believe the use of the new scheduling methods can

improve the overall system performance.

• In general, when a small portion of communication-

sensitive jobs (e.g., no more than 10%), we encourage

the use of MeshSched; otherwise, the use of CFCA is

a good choise.

VI. RELATED WORK

Many researchers have investigated resource allocation

strategies on supercomputers and their impact on system per-

formance. Evans et al. studied the variability of performance

on clusters and claimed that tightly allocated jobs had better

performance sparse ones [24]. Kramer and Ryan found that

variability introduced by different job allocation strategies

can be mitigated by periodically migrating application tasks

to create larger contiguous chunks [25]. Bhateke ad Kale

evaluated the positive impact of locality-aware allocation-

s on applications performance [26]. Skinner and Kramer

showed that 2–3 times of improvement of MPI Allreduce

is observed by eliminating network contention from oth-

er jobs [27]. Wright et al. quantified network contention

between jobs [28]. While existing studies focus mainly

on performance variation caused by job interference, our

work investigates application sensitivity to communication

bandwidth caused by network configuration change. More-

over, our work examines a suite of parallel benchmarks and

leadership applications at large scale. The results provide

a foundation for the design of a communication-aware

resource management system.

A number of studies have been presented to improve

resources management and scheduling on large-scale sys-

tems from various aspects. In [29], Feitelson et al. provided

a detailed analysis of different scheduling strategies. Zhao

et al. [30] proposed network-aware caching mechanisms

on large-scale systems such as IBM’s Blue Gene super-

computers. Desai et al. assessed application performance

degradation on shared network and studied how to improve

application performance while efficiently utilizing the avail-

able torus network [31]. Pedretti et al. showed that one can

use an existing large-scale parallel computer Cray XT5 to

emulate the expected imbalance of future exascale systems

[32]. Their results indicate that some applications experience

sudden drops in performance at certain network injection

bandwidth thresholds. Yang et al. [33] and Zhou et al.

[34] proposed power-aware job scheduling frameworks for

supercomputer systems as a 0-1 knapsack model.

To the best of our knowledge, we are among the first

to systematically investigate communication awareness for

resource management and job scheduling. Furthermore, we

have conducted extensive trace-based simulations to quantify

the benefit of communication-aware scheduling over the

existing scheduling design.

VII. CONCLUSION

In this paper, we have presented a detailed experimental

study of a suite of parallel benchmarks and applications

on the Mira system at Argonne. Our results show sub-

stantial variation in sensitivity to communication bandwidth

across production applications as well as microbenchmarks.

Based on these benchmark efforts, we have designed two

scheduling schemes, MeshSched and CFCA, for Mira by

using partitions that require fewer link resources. Our ex-

periments prove the performance benefit obtained by these

new scheduling methods. While this study targets Mira, our

design is generally applicable to all Blue Gene/Q systems

as well as other 5D torus connected machines. This paper

demonstrates how traditional scheduling processes can be

extended to efficiently manage a new resource type (e.g.,

network).

Several avenues are open for future work. One is to build a

model to predict whether a job is sensitive to communication

bandwidth based on its historical data. We also plan to

implement the proposed communication-aware policy into

the production scheduler used on Mira. In addition, we are

expanding this work with the aim of developing a smart

resource management framework for better managing non-

traditional resources including I/O and power consumption.

ACKNOWLEDGMENTS

The work at Illinois Institute of Technology is supported

in part by U.S. National Science Foundation grants CNS-

1320125 and CCF-1422009. The FLASH software used in

this work was in part developed by the DOE NNSA-ASC

OASCR Flash Center at the University of Chicago. This

material is based in part upon work supported by the U.S.

Department of Energy, Office of Science, under contract DE-

AC02-06CH11357.

REFERENCES

[1] “Top500 supercomputing web site.” [Online]. Available:
http://www.top500.org

[2] “Overview of the IBM Blue Gene/P project,” IBM J. Res.
Dev., vol. 52, no. 1/2, pp. 199–220, Jan. 2008.

[3] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus,
M. E. Giampapa, R. A. Haring, P. Heidelberger, D. Hoenick-
e, G. V. Kopcsay, T. A. Liebsch, M. Ohmacht, B. D.
Steinmacher-Burow, T. Takken, and P. Vranas, “Overview
of the Blue Gene/L system architecture,” IBM J. Res. Dev.,
vol. 49, no. 2, pp. 195–212, Mar. 2005.

[4] “Managing system software for Cray XE and Cray
XT systems. Cray document.” [Online]. Available:
http://docs.cray.com/books/S-2393-31/

[5] C. Dong, N. Eisley, P. Heidelberger, R. Senger, Y. Sugawara,
S. Kumar, V. Salapura, D. Satterfield, B. Steinmacher-Burow,
and J. Parker, “The IBM Blue Gene/Q interconnection fabric,”
Micro, IEEE, vol. 32, no. 1, pp. 32–43, 2012.

[6] Y. Ajima, Y. Takagi, T. Inoue, S. Hiramoto, and T. Shimizu,
“The Tofu Interconnect,” in 2011 IEEE 19th Annual Sympo-
sium on High Performance Interconnects (HOTI), 2011, pp.
87–94.

[7] W. Tang, Z. Lan, N. Desai, D. Buettner, and Y. Yu, “Reducing
fragmentation on torus-connected supercomputers,” in Paral-
lel Distributed Processing Symposium (IPDPS), 2011 IEEE
International, 2011, pp. 828–839.

[8] “Innovative and Novel Computational Impact on Theory
and Experiment (INCITE) program.” [Online]. Available:
https://www.alcf.anl.gov/incite-program

[9] “ASCR Lleadership Computing Challenge (ALCC).” [On-
line]. Available: http://science.energy.gov/ascr/facilities/alcc/

[10] “Cobalt resource manager.” [Online]. Available: http-
s://trac.mcs.anl.gov/projects/cobalt

[11] W. Tang, Z. Lan, N. Desai, and D. Buettner, “Fault-aware,
utility-based job scheduling on Blue Gene/P systems,” in
IEEE International Conference on Cluster Computing and
Workshops, 2009, CLUSTER ’09., 2009, pp. 1–10.

[12] Z. Zhou, X. Yang, Z. Lan, P. Rich, W. Tang, V. Morozov,
and N. Desai, “Bandwidth-aware resource management for
extreme scale systems,” in International Conference for High
Performance Computing, Networking, Storage and Analysis
(SC ’14), poster session, 2014.

[13] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski,
H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga, “The
NAS parallel benchmarks,” Tech. Rep., 1991.

[14] P. Fischer, J. Lottes, D. Pointer, and A. Siegel, “Petascale
algorithms for reactor hydrodynamics,” Journal of Physics:
Conference Series, vol. 125, no. 1, 2008.

[15] “The FLASH code.” [Online]. Available:
http://www.flash.uchicago.edu/site/flashcode/

[16] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale,
D. Q. Lamb, P. MacNeice, R. Rosner, J. W. Truran, and
H. Tufo, “FLASH: An adaptive mesh hydrodynamics code
for modeling astrophysical thermonuclear flashes,” The As-
trophysical Journal Supplement Series, vol. 131, no. 1, p.
273, 2000.

[17] R. T. Fisher, L. Kadanoff, D. Q. Lamb, A. Dubey, T. Plewa,
A. C. Calder, F. Cattaneo, P. Constantin, I. T. Foster, M. E.
Papka, S. I. Abarzhi, S. M. Asida, P. M. Rich, C. C. Glen-
denin, K. Antypas, D. J. Sheeler, L. B. Reid, B. Gallagher,
and S. G. Needham, “Terascale turbulence computation on
BG/L using the FLASH3 code,” IBM Journal of Research
and Development, vol. 52, pp. 127–136, 12/2007 2007.

[18] M. Taylor, S. Kurien, and G. Eyink, “Recovering isotropic
statistics in turbulence simulations: The Kolmogorov 4/5th-
law,” Physical Review E, vol. 68, 2003.

[19] S. Plimpton, “Fast parallel algorithms for short-range molec-
ular dynamics,” Journal of Computational Physics, vol. 117,
no. 1, pp. 1–19, 1995.

[20] D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart,
A. Woo, and M. Yarrow, “The NAS parallel benchmarks 2.0,”
Tech. Rep., 1995.

[21] W. Tang, N. Desai, D. Buettner, and Z. Lan, “Analyzing and
adjusting user runtime estimates to improve job scheduling
on the Blue Gene/P,” in 2010 IEEE International Symposium
on Parallel Distributed Processing (IPDPS), April 2010, pp.
1–11.

[22] J. Jones and B. Nitzberg, “Scheduling for parallel supercom-

puting: A historical perspective of achievable utilization,” in
Job Scheduling Strategies for Parallel Processing, ser. Lecture
Notes in Computer Science, 1999, vol. 1659, pp. 1–16.

[23] Y. Xu, Z. Zhou, W. Tang, X. Zheng, J. Wang, and Z. Lan,
“Balancing job performance with system performance via
locality-aware scheduling on torus-connected systems,” in
Cluster Computing (CLUSTER), 2014 IEEE International
Conference on, Sept 2014, pp. 140–148.

[24] J. Evans, W. Groop, and C. Hood, “Exploring the rela-
tionship between parallel application run-time and network
performance in clusters,” in 28th Annual IEEE International
Conference on Local Computer Networks, 2003. LCN ’03
Proceedings, Oct. 2003, pp. 538–547.

[25] W. T. C. Kramer and C. Ryan, “Performance variability of
highly parallel architectures,” in Proceedings of the 2003
International Conference on Computational Science: PartIII,
ser. ICCS’03. Berlin, Heidelberg: Springer-Verlag, 2003, pp.
560–569.

[26] A. Bhatele and L. Kale, “Application-specific topology-aware
mapping for three dimensional topologies,” in IEEE Inter-
national Symposium on Parallel and Distributed Processing,
2008. IPDPS 2008, April 2008, pp. 1–8.

[27] D. Skinner and W. Kramer, “Understanding the causes of
performance variability in HPC workloads,” in Workload
Characterization Symposium, 2005. Proceedings of the IEEE
International, Oct 2005, pp. 137–149.

[28] N. Wright, S. Smallen, C. Olschanowsky, J. Hayes, and
A. Snavely, “Measuring and understanding variation in bench-
mark performance,” in DoD High Performance Computing
Modernization Program Users Group Conference (HPCMP-
UGC), 2009, June 2009, pp. 438–443.

[29] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, “Par-
allel job scheduling strategies for parallel processing,” in
Proceedings of the 10th International Conference on Job
Scheduling Strategies for Parallel Processing, ser. JSSPP’04.
Berlin, Heidelberg: Springer-Verlag, 2005, pp. 1–16.

[30] D. Zhao, K. Qiao, and I. Raicu, “HyCache+: Towards scal-
able high-performance caching middleware for parallel file
systems,” in 2014 14th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), 2014, pp.
267–276.

[31] N. Desai, D. Buntinas, D. Buettner, P. Balaji, and A. Chan,
“Improving resource availability by relaxing network alloca-
tion constraints on Blue Gene/P,” in International Conference
on Parallel Processing, 2009. ICPP ’09, 2009, pp. 333–339.

[32] K. Pedretti, R. Brightwell, D. Doerfler, K. Hemmert, and
I. Laros, JamesH., “The impact of injection bandwidth per-
formance on application scalability,” in Recent Advances in
the Message Passing Interface, 2011, vol. 6960, pp. 237–246.

[33] X. Yang, Z. Zhou, S. Wallace, Z. Lan, W. Tang, S. Coghlan,
and M. E. Papka, “Integrating dynamic pricing of electricity
into energy aware scheduling for HPC systems,” in Proceed-
ings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’13.
New York, NY, USA: ACM, 2013, pp. 60:1–60:11.

[34] Z. Zhou, Z. Lan, W. Tang, and N. Desai, “Reducing energy
costs for IBM Blue Gene/P via power-aware job scheduling,”
in Job Scheduling Strategies for Parallel Processing, ser.
Lecture Notes in Computer Science, 2014, pp. 96–115.

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

