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Abstract. Analysis and optimization of simulation-generated data have
myriads of scientific and industrial applications. Fuel consumption and
emissions over the entire drive cycle of a large fleet of vehicles is an exam-
ple of such an application and the focus of this study. Temporal variation
of fuel consumption and emissions in an automotive engine are functions
of over twenty variables. Determining relationships between fuel con-
sumption or emissions and the dependent variables plays a crucial role in
designing an automotive engine. This paper describes the development of
ACCOLADES (Advanced Concurrent COmputing for LArge-scale Dy-
namic Engine Simulations), a scalable workflow framework that exploits
the task parallelism inherent in such analyses by using large-scale com-
puting. Excellent weak scaling is observed on 4,096 cores of both an Intel
Sandy Bridge-based cluster and a Blue-Gene/Q supercomputer.

Keywords: Workflow management, industrial simulations, large-scale
vehicle simulations, task parallelism

1 Introduction

Discrete time series occur in many scientific and industrial applications [7,9,
11,13]. Examples of these applications include solar radiation, temporal varia-
tions of the load requirements on a power-grid, temperature variation of power-
generating equipment and variation in the price of a commodity, among others.
An observed value of a time series is typically a function of several variables;
developing an understanding of the effect of the variables on the observed value
is a computationally intensive task. Furthermore, optimization of time-averaged
or integrated values of these functions often requires analyses of large datasets.

Fuel consumption and emissions over the entire drive cycle of a large fleet
of cars is an example of such a problem, and hence the focus of this study.
Temporal variation of fuel consumption and emissions in an automotive engine
can be functions of over twenty independent variables, including engine speed

* This material is based upon work supported by the U.S. Department of Energy,
Office of Science, under Contract DE-AC02-06CH11357.



2 Aithal & Wild

P 194
E 193
; I
[} R
2 182
184 200 400 600 800 1000 1200 1400
Time (s)
7500
27250
-
26500
6250
6000 200 400 600 800 1000 1200 1400
Time (s)
500
E 450
= 400
o
S 350
300 ¢ 200 400 600 800 1000 1200 1400
Time (s)

Fig. 1. Typical time series data for fuel mass (top), NO emissions (middle), and CO
emissions (bottom) as generated by pMODES over a single drive cycle.

(i.e., RPM), torque, type of fuel/additive, air-to-fuel ratio, ambient temperature,
inlet pressure, humidity, ignition and valve timings, and driving conditions (e.g.,
city or highway). Deriving correlations between the observed values (such as fuel
consumption and emissions) and the independent variables plays a crucial role
during the design and development stages of an automotive engine. For instance,
a study on the effect of the inflow air temperature on the fuel consumption
and (NO, CO, soot, and unburned hydrocarbons) emissions might consist of
four different drive cycles and five different temperatures (e.g., expressed as a
percentage of the nominal temperature). Such a study would result in twenty
different time series for fuel consumption and eighty time series for emissions
(i.e., one for each type of emission). A typical drive cycle of an automotive
engine has a duration of 25-30 minutes; for data sampled every second, one
obtains approximately 1,500 data points per drive cycle. Dynamometer testing
and measurements (called “dyno testing”) are usually conducted to obtain data
for engine performance and emissions. Numerical simulations can be used to
complement dyno data or to estimate engine performance and emissions during
the engine design process.

Figure 1 shows an instance of the temporal variation of fuel flow along with
the computed temporal variation of nitric oxide (NO) and carbon monoxide
(CO) emissions. For each sampled data point, which represents one (compression
and expansion) engine cycle, engine state variables (e.g., temperature, pressure,
and fuel-air mixture combination) are computed over 360 crank angle degrees
(CAD) in intervals of roughly 0.5 CAD. These engine state variables are needed
in order to compute the engine performance (e.g., torque and power) and engine-
out emissions (e.g., NO and CO). Hence, each drive cycle requires the evaluation
of over a million engine (&1,500x720) CAD.
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Fig. 2. Block diagram showing the structure of ACCOLADES.

The above example represents a simplified case wherein the effect of variation
of a single parameter on the engine performance and emissions is studied. Typ-
ical fleet studies require the simultaneous variation of multiple design variables
over specified ranges for a larger number of drive cycles, resulting in a large set
of input configurations. For instance, if one were to consider the effect of varia-
tion of four design parameters (e.g., inlet pressure, inlet temperature, humidity,
and engine RPM) with four different values for each of these design parameters
over sixteen different drive cycles, one would need (4* x 16 =) 4,096 different
independent cases. Each of these 4,096 cases would require 1,500 engine-cycle
evaluations. Conducting large parametric sweeps on the drive cycles of a fleet of
cars with varying combinations of operating conditions places stringent demands
on the required computational resources. Furthermore, analyses of the results of
these large-scale simulations present significant challenges from a data-analytics
standpoint. Transient multidimensional numerical simulation of a single engine
cycle (360 CAD) running on 24 to 48 cores (approaching the strong scaling limit
for physically meaningful grid sizes) can take several hours to days, depending
on the complexity of the physical models used. Hence, conducting multi-cycle
simulations for the scenario described above would require enormous computa-
tional resources, and thus precluding their use for initial design/development
studies or analyses of large transients.

Physics-based reduced-order models, which capture the temporal variation,
for example, of average engine temperature, pressure, and mixture composition,
are ideally suited for such large-scale studies. Given the wide range of operating
conditions (engine speed, load, equivalence ratio, etc.) the reduced-order models
have to be robust and fast in order to compute emissions and performance at
real-time speeds. Real-time analysis would require a typical data point in any
given drive cycle to be computed in approximately 250-300 milliseconds.

This paper describes the development of ACCOLADES (Advanced Con-
current COmputing for LArge-scale Dynamic Engine Simulations), a scalable
workflow management framework that enables automotive design engineers to
exploit the task parallelism inherent in the study of such systems using large-
scale computing (e.g., GPGPUs, multicore architectures, or the cloud). As shown
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in Fig. 2 and detailed in Sec. 2, ACCOLADES consists of two main compo-
nents, pMODES (parallel Multi-fuel Otto Diesel Engine Simulator) and TADA
(Toolkit for Advanced Data Analytics). pMODES is a fast, robust, physics-based
reduced-order engine simulator that can concurrently compute the performance
and emissions of the various parametric cases required for a vehicle fleet simula-
tion. TADA is a data analytics toolbox used to post-process the results generated
by pMODES or directly from dyno data.

Although large-scale system-level optimization has been performed for mili-
tary vehicles [5, 10], to the author’s knowledge, this work is the first to implement
physics-based engine models for large-scale analysis of a fleet of cars. As illus-
trated by our results in Sec. 3, ACCOLADES can be used in the design and
conceptual analyses phase of new engine systems and can streamline workflow
management in the analyses of large amounts of data obtained in dyno tests for
various engine operating conditions.

2 Main Components of ACCOLADES

ACCOLADES consists of the reduced-order engine simulator p-MODES and the
data analytics toolbox TADA.

2.1 pMODES

pMODES is used to compute the temporal variation of various engine parame-
ters such as pressure, temperature and mixture composition for each CAD over
an entire drive cycle. The energy equation shown in Eqn. (1) describes the rela-
tionship between the engine crank-angle 6 and pressure.

dP(6) ~y—1 P(0) dV
0 Vo) V0 a0

Solution of this equation yields the temporal variation of cylinder pressure for a
given set of operating conditions (such as load, combustion duration, fuel type,
engine RPM, etc). The instantaneous values of temperature and composition
of the burned and unburned gas zones can be obtained from the instantaneous
value of computed pressure. Knowing the instantaneous temperature, pressure
and composition of the burned zone enables the computation of emissions such
as NO, CO, soot, and unburned hydrocarbons using simplified reduced chem-
istry models. Details of these models and the solution procedure are discussed
in Ref. [2]. Instantaneous values of equilibrium concentrations of the combus-
tion products are needed to compute various emissions. Computation of these
equilibrium concentrations pose serious numerical challenges on account of the
stiffness of the system of nonlinear equations describing the formation of com-
bustion products. Refs. [1,3] discuss the details of the computation procedure
and steps taken to ensure a fast, robust solution. Following the solution pro-
cedure discussed above enables one to obtain temporal variation of emissions
such as NO and CO for a given fuel input profile. Fig. 1 shows the NO and CO
emissions for a single-cylinder gasoline engine obtained using pMODES.

(Qm - Qloss) - (1)
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Fig. 3. Cumulative distributions of NO (left) and CO (right) emissions for different
initial cylinder pressure conditions. Each curve shows the percentage of drive cycle runs
for which the NO/CO is at or below the value given on the horizontal axis.

2.2 TADA

The Toolkit for Advanced Data Analytics (TADA) provides a framework for
post-processing of experimental- and simulation-generated time series data. Here
we overview some of the operations possible with TADA.

Whether from physical experiment or numerical simulation, TADA takes as
input time series data {f,(z;t;0:(x)) : 0o = 1,...,0;t = 1,...,T}, where o
indexes O different dependent variable outputs, ¢ indexes T time periods 71 <
Ty < --- < 1p, x € R™ parameterizes the independent design and operational
variables, and 6;(z) € R™ denotes the state variables at time 73 with input z.

Typical data analysis operations on these sets of time series data include

Filtering to extract basic statistics and identify input configurations of interest.
For example, one can determine peak temperatures and pressures in order to
characterize engine damage; peaks can be computed for each configuration,
or all peaks above a threshold can be extracted.

Empirical distribution characterization to provide cross-configuration in-
formation. Such distributions can be used, for example, to determine fleet-
wide fuel economy [12] or to characterize emissions as a function of ambient
pressure as is done in Fig. 3 for the case study in Sec. 3.

Sensitivity analysis to analyze how operating conditions or other independent
variables effect observables of interest. Sensitivity analysis can be used, for
example to determine fleet-wide implications for performance and emissions
of increased adoption of novel fuel types or additives.

Tradeoff visualization and analysis can be used to flag a configuration that
is worse in all metrics of interest than some other configuration. Such anal-
yses can also be used, for example, to identify vehicle configurations that
sacrifice little in terms of performance while providing substantial gains in
fuel economy.
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We expect that the capabilities in TADA will be fully used as one “closes the
loop” between the pMODES simulation and analysis for purposes of simulation-
based design optimization [4] or optimal experimental design to determine con-
figurations that should be tested on a dyno. In this view, TADA can be used
to generate input configurations and/or in order to optimize a design objective
of interest. Distributional information can be used to generate scenarios (e.g.,
ambient or operating conditions, drive cycle variations) for use in sample average
approximation for optimization under uncertainty [8]. Similarly, tradeoff analy-
sis forms the basis for simultaneously optimizing multiple conflicting objectives
[6,14], such as performance and engine lifetime/reliability.

3 Results and Discussions

As an illustrative example, we discuss the simulation of a single-cylinder gasoline
engine operating at 1,100 RPM, wherein the inlet gas temperature, air humidity,
initial cylinder pressure, and exhaust gas recirculation (EGR) fraction are varied
for realistic engine operating conditions. Each of the parameters have four values
and for each configuration sixteen different drive cycles are considered, leading to
4,096 individual configurations (or parametric cases). The inlet gas temperature
is varied from 28 to 31°C in steps of 1°C, the initial cylinder pressure is varied
from 0.88 atm to 1.0 atm, the relative humidity is varied from 0 to 100%, and the
EGR fraction is varied from 0 to 3%. These 4,096 parametric cases, each with
1,500 temporal data points in the drive cycle, were run on IBM Blue Gene/Q
(BG/Q) and Sandy Bridge clusters at Argonne National Laboratory. The BG/Q
supercomputer (called “Mira”) is equipped with 786,432 cores, 768 terabytes of
memory and has a peak performance of 10 petaflops. Each compute node has
a PowerPC A2 1600 MHz processor containing 16 cores, each with 4 hardware
threads, running at 1.6 GHz, and 16 GB of DDR3 memory. The Sandy Bridge
cluster (called “Blues”) is a 2.6 GHz, 4960 processors system with 16 cores per
compute node and 4 GB memory per core. These systems were chosen to ensure
portability of the code on different architectures (and compilers) and also to
compare and contrast the relative performance of ACCOLADES on these ma-
chines. Each of the cases considered in the study was assigned to one MPI rank
on the machine. Each MPI rank read its input data (i.e., operating conditions
such as initial pressure, humidity, inlet air temperature, and EGR fraction) from
a separate input file and wrote two different files: (a) the computed solution (e.g.,
emissions, maximum temperature, pressure, exhaust temperature and pressure,
peak ion current, location of peak ion current) and (b) operating conditions to
its own uniquely named file. This methodology was chosen to ensure no commu-
nication between different case configurations (thus ensuring task parallelism),
and also to facilitate data analytics by TADA. A typical case’s solution file was
306 kB while the file containing information about each of 1,500 data points was
351 kB. Since each of the parametric cases are independent of the others, in-
creasing the number of cases directly proportional to the number of cores yields
a weak scaling study. The study was run both with no optimization and with
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Fig. 4. Weak scaling results on the BlueGene/Q machine Mira (left) and the Sandy
Bridge-based machine Blues (right).
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Fig.5. Case timings on Sandy Bridge-based machine Blues: (left) Global sensitivity
analysis (outliers removed) demonstrating effect of humidity input on per case timing;
(right) Case timings as a function of rank number show a cyclic pattern associated
with varying humidity input.

’0O3’ optimization option on both machines. The Intel 13.1 compiler was used
on Blues whereas the xl.legacy.ndebug (libraries with MPICH compiled with the
XL compilers) was used on Mira.

Figure 4 shows the scaling for Blues and Mira (with and without optimiza-
tion). Excellent weak scaling is seen on both machines. It was seen that the
optimization level did not change the overall compute time on Blues (hence it is
not shown in Fig. 4), whereas using -O3 level optimization on Mira reduced the
computational time by a factor of nearly 2.7. We attribute the slight increase
in overall computational time as the number of cores (and thus cases) increases
primarily to imbalances in individual case solution times and to increased con-
tention for the I/O operations. Furthermore, we see greater imbalances across
cases for Blues than for Mira.
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Deeper analysis of the timings associated with the 4,096 cases provides insight
to the scaling behavior seen. For the Sandy Bridge-based system, Fig. 5 shows
that the input value of humidity (for this study, selected from {1%, 3%, 10%, 15%})
has a significant effect on the timing of a run. This information can be used to
perform application-informed load balancing in ACCOLADES, whereby the pop-
ulation of tasks is partitioned and scheduled based on their input values. For the
study presented in Fig. 4, the cases were selected as ordered in Fig. 5 (right).
As a result of this ordering, the results using fewer than 512 ranks benefit from
the fact that they only involve low input humidity values, which result in lower
time per case.

4 Conclusions

In this work, we discuss the development of a parallel design and data analysis
tool, named ACCOLADES, for conducting large-scale parametric studies of a
fleet of cars. A parallel, fast robust physics-based engine model used to compute
performance and emissions of automotive engines was coupled to a data-analytics
module to enable a wide range of operations in support of design- and decision-
makers as well as vehicle experimentalists.

An illustrative example consisting of 4,096 parametric cases was run on a
Sandy Bridge cluster and an IBM BG/Q supercomputer. It was shown that the
emission and performance characteristics of a 25-minute-long synthetic drive cy-
cle can be obtained numerically in acceptable computing time (= 4-20 minutes,
depending on the machine). Excellent weak scaling was observed on both ma-
chines as expected in such inherently task parallel problems. Although no serious
I/O bottlenecks were observed for the simulations considered in this work, we
expect that additional care will need to be taken when performing I/O opera-
tions for massively parallel studies (e.g., involving a million cases) in order avoid
overloading a parallel file system.

Acknowledgments. We gratefully acknowledge the computing resources pro-
vided by the Argonne Leadership Computing Facility and the Laboratory Com-
puting Resource Center at Argonne National Laboratory.
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