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Abstract. Fluorescence tomographic reconstruction, based on the detection of photons
coming from fluorescent emission, can be used for revealing the internal elemental composi-
tion of a sample. On the other hand, conventional X-ray transmission tomography can be
used for reconstructing the spatial distribution of the absorption coefficient inside a sample.
In this work, we integrate both X-ray fluorescence and X-ray transmission data modalities
and formulate a nonlinear optimization-based approach for reconstruction of the elemental
composition of a given object. This model provides a simultaneous reconstruction of both
the quantitative spatial distribution of all elements and the absorption effect in the sample.
Mathematically speaking, we show that compared with the single-modality inversion (i.e., the
X-ray transmission or fluorescence alone), the joint inversion provides a better-posed problem,
which implies a better recovery. Therefore, the challenges in X-ray fluorescence tomography
arising mainly from the effects of self absorption in the sample are partially mitigated. The
use of this technique is demonstrated on the reconstruction of several synthetic samples.

Keywords. Tomographic reconstruction, X-ray fluorescence, X-ray transmission, Joint
inversion, Nonlinear optimization, Truncated-Newton method

1. Introduction. Tomographic imaging refers to the reconstruction of a 3D object from
its 2D projections by sectioning the object, through the use of any kind of penetrating wave,
from many different directions. It has had a revolutionary impact in a number of fields ranging
from physics, chemistry, and biology to astronomy. The technique requires an accurate image
reconstruction, however, and the resulting reconstruction problem typically is ill-posed and
does not have a unique solution because of insufficient measurements. Different modalities
of tomograms have been derived by using different physical phenomena, such as computed
tomography (CT), positron emission tomography (PET), and magnetic resonance imaging
(MRI). The problems associated with these mathematical and experimental implementations
are similar, however. In particular, one of the most popular modalities is X-ray transmission
(XRT) tomography, which measures the intensity of the beam transmitted through the sample.
A complementary tomographic technique, X-ray fluorescence (XRF) tomography, which is a
novel synchrotron-based imaging modality, has also received considerable attention in recent
years because of its ability to trace the elemental content of samples [20, 33, 38]. However,
the reconstruction problem for XRF tomography is much more difficult than it is for XRT
tomography, because of the absorption of the photons along the excitation and detection
paths.

The first reconstruction algorithm used for XRF imaging was filtered backprojection
(FBP) [4]. Alternatively, in order to incorporate more accurate imaging models, iterative

∗Mathematics and Computer Science Division, Argonne National Laboratory. (wendydi@anl.gov,
leyffer@anl.gov, wild@anl.gov.)

1



methods are often preferred for XRF reconstruction since they generally reduce sensitivity to
noise and can reconstruct a high-quality image in the case of incomplete data. In particular,
the algebraic reconstruction technique (ART) [15,29,38,49] and the expectation-maximization
algorithm [16,25, 26, 47] have been widely applied for XRF reconstruction.

One phenomena that limits XRF reconstruction is the self-absorption effect, which refers
to the fact that emission at a particular point in space can be reabsorbed as it travels through
space. As a consequence, another research effort has focused on achieving a more accurate
approach with a correction for attenuation. This effort involves simultaneously estimating
emission and attenuation maps in conventional emission tomography when no XRT scan
is performed. The correction of fluorescent attenuation was first introduced by Hogan et
al. [20]. In [25, 26], La Rivière et al. propose a penalized-likelihood reconstruction for XRF
with an approximate expression for the XRF attenuation map as a linear combination of known
quantities and an element’s unknown distribution. In [27], Miqueles and De Pierro develop
an alternating method for retrieving simultaneously the XRF density and the attenuation
coefficients for XRF reconstruction.

A common characteristic of these XRF reconstruction approaches is that the linear atten-
uation coefficients of the sample either are assumed to be known or are approximated from a
single imaging modality. Recent advances in simultaneous acquisition of different modalities,
however, allow one to better incorporate many types of a priori information via a joint inver-
sion. Joint inversion of two different data sets was formalized by Haber and Oldenburg [18] in
1997. This concept has been widely applied to the geophysical sciences [11,13,14,17,21,23,32]
where different ways of coupling priors have been discussed. Subsequently, Ehrhardt et al. [8]
introduced a joint inversion tomographic framework to simultaneously reconstruct samples
from PET and MRI data.

In this work, we develop a new nonlinear model to correct the self-absorption effect in the
XRF reconstruction, and we propose a novel joint inversion framework in the context of XRF
and XRT that improves the ill-posed nature of tomography problems. Our approach has the
potential to provide the distribution of the heavy elements that emit detectable fluorescent
lines, even in the presence of very light elements.

1.1. Principles of X-Ray Transmission. XRT is an imaging technique that uses X-rays
to view the internal structure of an opaque object and provides the spatial distribution of
the absorption coefficient inside the object. In order to create the image, a beam of X-rays
produced from an X-ray source is projected toward the object. A certain amount of the X-rays
is absorbed by the object, depending on the object’s density and composition. The X-rays
that pass through the object are captured behind the object by a detector (see Figure 1a).
The detector can then provide a 2D representation of the object’s internal structures.

1.2. Principles of X-Ray Fluorescence. XRF is the emission of characteristic X-rays
from a nonradioactive material that has been excited by bombardment with a pencil beam
of intense, monochromatic synchrotron X-rays of energy greater than the principal binding
energy of the elements of interest. These elements emit certain characteristic fluorescence X-
rays in the form of photons isotropically, which are detected by an energy-dispersive detector.
This detector is placed parallel to the direction of the incident beam (see Figure 2a) in order
to minimize contamination by Compton scattering photons from the incident beam. The
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detector outputs a spectrum comprising multiple peaks [35]. These peaks correspond to the
principal emission lines of the various elements present in the sample, since the number of
detected XRF photons is linearly proportional to the quantity of chemical elements from
which it originated. By measuring the height or area of these peaks, the chemical element
from which it originated can be deduced, and its amount can be quantified.

2. Mathematical Model. The radiation intensity traveling toward a sample is attenuated
along the path of an X-ray beam. Consequently, the Radon transform [34], which in 2D
consists of integration over straight lines, forms the mathematical foundation for tomographic
imaging. In this section, we describe the mathematical models for XRT and XRF.

Notation. We use Greek letters to denote the indices related to the experimental setup; all
other quantities are denoted by roman letters. In particular, we use Θ and T , respectively, to
denote the complete collection of |Θ| angles and |T | beamlets and θ ∈ Θ and τ ∈ T to denote
the index of the X-ray beam angle and discretized beamlet, respectively. The set V denotes
the complete collection of |V| spatial voxel indices, which we use to discretize the sample. By

L = [Lθ,τ
v ], we denote the tensor of intersection lengths (in cm) of beamlet (θ, τ) with the

voxel v ∈ V . We use E to denote the collection of |E| possible element indices and µE
e to

denote the mass attenuation coefficient (in cm2g−1) of element e at beam incident energy E.
Our goal is to recover the tensor W = [Wv,e] denoting the density (in g cm−3) of element

e ∈ E in voxel v ∈ V .
2.1. Discrete XRT Imaging Model. The geometry of the XRT imaging setup is illus-

trated in Figure 1 for the 2D case. A traditional way (see, e.g., [22]) to model the XRT
projection of a sample F̃T

θ,τ (in units of counts per second) from beamlet (θ, τ) is

F̃T
θ,τ (µ) = I0 exp

{
−
∑

v

Lθ,τ
v µE

v

}
,

where I0 is the incident X-ray intensity (in units of counts per second) and µ = [µE
v ] is the

linear attenuation coefficient (in cm−1) at incident energy E.
We note that the coefficients µ depend on W by way of µE

v =
∑
e′
Wv,e′µ

E
e′ for all v ∈ V .

Since the goal is to recover W, the forward model that we use is

(2.1) FT
θ,τ (W) = I0 exp

{
−
∑

v,e

Lθ,τ
v µE

e Wv,e

}
.

Equation 2.1 plays an essential role in our joint inversion method. It not only links the XRF
and XRT with the common variable W, so that the correlation of these two modalities can
be better explored, but also allows a better reconstruction of µ given a better reconstructed
W, which is the goal of joint inversion. Therefore, in principle, joint inversion should also
provide a better reconstructed attenuation coefficients over XRT reconstruction alone.

2.2. Discrete XRF Imaging Model. The discrete model we use to simulate XRF is built
on the one proposed in [26], and the corresponding geometry is illustrated in Figure 2. Two
main features distinguish our model from the one in [24, 26]. First, instead of modeling the
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Figure 1: (a) Illustration of the discrete XRT projection geometry: the sample resides in
space (discretized in 2D for simplicity of illustration), whereas the beam is parameterized
by its angular and translation scan (indexed by θ and τ , respectively); (b) Corresponding
structure of XRT data for all |Θ||T | projections.
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Figure 2: (a) Geometry and notation of XRF setup; (b) Corresponding structure of XRF
data, with each projection (θ, τ) yielding a spectrum indexed by ι ∈ {1, . . . , |I|}.
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XRF process in terms of both the elemental distribution and the attenuation map of XRF
energy, we model the XRF only in terms of the elemental distribution. Second, rather than
modeling the detected XRF photons directly, we follow an elemental approach, whereby we
model the XRF emitted from an element by its corresponding elemental unit spectrum. Then,
the total XRF spectrum detected from the given sample is modeled as a weighted sum of the
unit spectra of the elements being recovered.

To approximate the elemental emission spectrum, we adapt Sherman’s equation [40]. Sher-
man’s equation calculates the net X-ray fluorescence intensities emitted by each element in
a specimen of a known composition when it is irradiated by a polychromatic X-ray beam.
Sherman’s equation is the most fundamental analytical technique to link elemental composi-
tion and intensity in quantitative XRF analysis. Unfortunately, this fundamental equation has
limitations. For example, it does not account for the X-ray tube current, the reflectivity of the
analyzing crystal, and the detector efficiency; it also ignores the contributions due to the scat-
tering of both the incident and the fluorescence X-ray radiations inside the object. However,
the model performs well in practice given an appropriate calibration procedure [37]. Based
on Sherman’s equation, a first-order approximation (i.e., neglecting effects such as Rayleigh
and Compton scattering) of the net XRF intensity corresponding to the characteristic XRF
energy Ee emitted from element e is

Ie,l,s = I0ceωe,l

(
1− 1

re,s

)
µE
e ,

where ce is the total concentration of element e in the sample, ωe,l is the XRF yield of e for
the spectral line l, and re,s is the probability that a shell s electron (rather than other shell
electrons) will be ejected.

Sources for values of ωe,l, µE
e , and re,s include the tabulated data [41] and the online

database xraylib [39], which provides library functions that can be easily included in software
applications with a focus on quantitative X-ray fluorescence applications. The database is
a compilation of data sets from different published works including the NIST and EPDL
databases. In our calculations, we use the XRF cross sections from xraylib to obtain the

quantity ωe,l

(
1− 1

re,s

)
µE
e .

For an energy-dispersive detector used for detecting XRF, let I denote the set of the
complete collection of its |I| energy channel indices, let ι ∈ I denote the index of the energy
channel, and let x = [xι] be the |I|-dimensional vector denoting its energy channels. Let 1xEe

be the |I|-dimensional unit indicator vector with its ith component defined by

[1xEe
]i =

{
1 if |xi − Ee| = min

ι
(|xι − Ee|) and xi 6= 2Ee − xi−1

0 otherwise,

where we choose to break ties between neighboring channels (ι, ι − 1) lexicographically. We
then obtain the perfect spectral line Ix = Ie,l,s1

x
Ee
. However, the fluctuations in the number of

excitations and ionizations in the detector material mean that one usually observes a Gaussian-
like peak rather than an ideal, delta-function peak for a monoenergetic particle beam. This
forms the basis of the detector response principle [41]. The width of this Gaussian-like peak
determines the capability to distinguish particles with different energies. The energy resolution
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∆E is given by the full width at half maximum (FWHM) of the single peak. For a Gaussian
distribution with standard deviation σ, we have FWHM ≈ 2.35σ. Therefore, the final unit
spectrum obtained by convolving the perfect spectral line Ix with a Gaussian distribution can
be obtained via the convolution theorem as

M e,l,s = F−1

(
F(Ix) ∗ F

(
1√
2πσ

exp

{−x2

2σ2

}))
,

where ∗ denotes pointwise multiplication (Hadamard product) and F (F−1) is the (inverse)
Fourier transform. In our simulation, we assume ∆E to be constant for a given detector. In the
case of unequally distributed energy channels, ∆E and σ can be modeled separately as vectors
with the same size as the energy channels. Furthermore, we consider only Kα,Kβ , Lα, and Lβ

lines (see [41]), which result in the final unit spectrum of element e given by M e =
∑
l,s

M e,l,s.

For given elemental unit spectra, we model the total XRF spectrum of a sample with
multiple elements by considering the attenuation of the beam energy and self-absorption effect
of the XRF energy. We let AE,θ,τ

v represent the attenuation experienced by beamlet (θ, τ) (at
incident beam energy E) as it travels toward voxel v ∈ V :

AE,θ,τ
v (W) = exp

{
−∑

v′
µE
v′L

θ,τ
v′ Iv′∈Uθ,τ

v

}
= exp

{
−∑

v′

∑
e′
Wv′,e′µ

E
e′L

θ,τ
v′ Iv′∈Uθ,τ

v

}
,

where IX is the indicator (Dirac delta) function for the event X and Uθ,τ
v ⊂ V is the set of

voxels that are intersected by beamlet (θ, τ) before it enters voxel v.
We model the self-absorption effect, i.e.,the attenuation of XRF energy emitted for beamlet

(θ, τ) from element e ∈ E at voxel v ∈ V before it reaches the detector, and denote it by

F θ,τ
v,e (W). Note that the energy-dispersive detectors typically used to detect XRF spectra are

nonimaging detectors that record only the count of photons within specific energy levels but
do not record the initial spatial information of the detected photons. In order to provide the
spatial restriction necessary for tomographic reconstruction, a pencil beam illuminating only
a single line is used to scan through the object while the object is rotating. Therefore, we need
to track the history of the emitted photons only along the corresponding beam line rather
than the whole sample space. Also, instead of considering all possible traveling paths of the
emitted photons isotropically, we restrict their traveling paths to the solid angle area between
the emitting source and the XRF detector. By numerically subdividing the fluorescence
detector into nd detectorlets, we approximate the self-absorbed XRF energy by

(2.2) F θ,τ
v,e (W) =

1

nd

nd∑

d=1

exp

{
−
∑

v′

∑

e′
Wv′,e′µ

Ee
e′ P

θ,τ
v,v′,d

}
,

where P = [P θ,τ
v,v′,d] denotes a tensor containing the intersection length (in cm) of the XRF

detectorlet path d (originating from voxel v and beamlet (θ, τ)) with the voxel v′ and µEe
e′ is

the linear attenuation coefficient of element e′ at the XRF energy Ee of element e. In the case
of no self-absorption correction, we set

(2.3) F θ,τ
v,e (W) = 1.
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Accordingly, the fluorescence spectrum FR
θ,τ (in units of counts per second) of the object

resulting from beamlet (θ, τ) is the |I|-dimensional vector

(2.4)

FR
θ,τ (W) =

∑

e

(∑

v

Lθ,τ
v AE,θ,τ

v (W)F θ,τ
v,e (W)Wv,e

)
M e

=
∑

v,e,d

Lθ,τ
v Wv,eM e

nd
exp



−

∑

v′,e′
Wv′,e′

(
µE
e′L

θ,τ
v′ Iv′∈Uθ,τ

v
+ µEe

e′ P
θ,τ
v,v′,d

)


 .

3. Optimization-Based Reconstruction Formulations and Algorithms. We now describe
the optimization-based approach for solving inverse problems involving the models FT

θ,τ (W)

and FR
θ,τ (W). We assume that, for a set of (θ, τ) values, the respective data for these models

are given by

• DT
θ,τ ∈ R, the measurement data of XRT detected at angle θ from light beam τ , and

• DR
θ,τ ∈ RnE , the measurement data of XRF detected at angle θ from light beam τ .

Each of the approaches follows a constrained least-squares formulation [10, 48],

min
x∈X

φ(x) =
1

2
‖r(x)‖2 = 1

2
r(x)⊤r(x),

where x denotes the n ≤ m parameters, r : Rn 7→ Rm denotes the residual mapping, and
X ⊆ Rn denotes a feasible region for the parameters.

3.1. Joint Reconstruction Technique. In this section, we describe our formulation of
multimodal imaging as a joint inversion problem. The inverse problem we solve for the mass
tensor W is

(3.1)

min
W≥0

φ(W) = φR(W) + βφT (W)

=
1

2

∥∥FR(W)−DR
∥∥2 + β

2

∥∥FT (W)−DT
∥∥2

=
1

2

∑

θ,τ

(∥∥FR
θ,τ (W)−DR

θ,τ

∥∥2 + β
∥∥FT

θ,τ (W)−DT
θ,τ

∥∥2
)
,

where the constraint W ≥ 0 is due to the physical nature of mass and β > 0 is the scaling
between the two modalities that plays an important role in the inversion process because it
balances the experimental errors of the two modalities. In this work, in the context of XRF
and XRT reconstruction, β is chosen from the perspective of physics so that the magnitudes
of the two data modalities are comparable; from a maximum-likelihood-estimate point-of-
view, this is equivalent to balancing the modeling and measuring variability of each modality.
In general, and especially when the iterates are far from optimal, the selection of β can be
accomplished by techniques summarized in [44], such as the generalized cross-validation and
the L-curve method. Here we focus on techniques for solving (3.1) for a given value of β that
can be naturally extended to provide efficient solutions for a variety of other β values.

We note that nonlinear transformations of the residuals is also possible. For example, one
could consider a log-transformation of φT to obtain a linear term that might induce a problem
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that is easier to solve. However, in order to make the joint inversion formula consistent between
the modalities and natural in terms of physics, here we keep φT in its original form.

The first-order derivative of the objective function in (3.1) with respect to W is

∇φ(W) = JR(W)⊤
(
FR(W)−DR

)
+ βJT (W)⊤

(
FT (W)−DT

)
.

The first-order derivatives of the XRT and XRF forward models are provided in Ap-
pendix A. For |Θ| angular and |T | translation scans, JT is the |Θ||T | × |V||E| Jacobian

matrix of φT whose components are given by
[
JT (W)

]
i,j

=
∂FT

i (W)
∂Wj

, where i and j index

the vectorizations of the indices (θ, τ) and (v, e), respectively. Similarly, we let JR denote
the |Θ||T ||I| × |V||E| Jacobian matrix of φR whose components are given by

[
JR(W)

]
i,j

=

∂FR
i (W)
∂Wj

, where i and j index the vectorizations of the indices (θ, τ, ι) and (v, e), respec-

tively. Consequently, the master Jacobian matrix and master residual vector of (3.1) are

J(W) =

[
JR(W)

βJT (W)

]
and r(W) =

[
FR(W)−DR

β(FT (W)−DT )

]
, respectively.

3.2. Optimality Conditions. We now consider the optimality conditions corresponding to
problem (3.1). We define the set of binding constraints by B(W) = {i : Wi = 0, ∂

∂Wi
φ(W) ≥

0} and the strongly binding set by Bs(W) = B(W) ∩ {i : ∂
∂Wi

φ(W) > 0}.
Therefore, the first-order necessary condition for W∗ ≥ 0 to be a local minimizer of (3.1)

is
∂φ(W∗)
∂Wi

=
[
J(W∗)⊤r(W∗)

]
i
= 0 ∀i /∈ B(W∗).

The second-order sufficient condition additionally requires that

(3.2) z⊤∇2φ(W∗)z > 0

for all vectors z 6= 0 with zi = 0, i ∈ Bs(W
∗).

3.3. A Motivating Example. In practical experimental settings, the projection data are
known to be incomplete and are typically corrupted by noise. Hence, small perturbations of
the projection data will result in the solution being unstable. For this reason, the generalized
tomography problem is ill-conditioned [5]. The most commonly used remedy for this ill-
posed nature is to add a regularization term (e.g., Tikhonov regularization [1, 45, 46]). An
appropriately chosen regularization can facilitate direct numerical solution; however, choosing
a good regularizer is difficult [19,31]. In this section, we examine the Jacobian of the nonlinear
least-squares formulations involving FR and FT , and we provide an example motivating the
use of joint inversion to improve the solvability of such inverse problems.

Where an exact solution exists, the residual vector r(W∗) vanishes, and the Hessian is
therefore given by ∇2φ(W∗) = J(W∗)⊤J(W∗). For the second-order sufficient condition (3.2)
to hold strictly, a reduction of this matrix must be positive definite. In particular, this
condition requires J(W∗)N to be full column rank, where N = {i /∈ Bs(W

∗)} is used to
denote the columns of J(W∗) not belonging to the strongly binding set. Analogously, we
can say that the bound-constrained (W ≥ 0) system of nonlinear equations is well-posed;
that is, the solution manifold consists of an isolated local minimum. Otherwise, if J(W∗)N
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is rank-deficient, the system is ill-posed and can have infinitely many solutions. Even when
no exact solution exists, a rank-deficient reduced Jacobian can indicate the existence of many
local minima that are not isolated [9]. This case arises often in traditional tomographic
reconstructions because the data is often insufficient and noisy.

The following example identifies a simple joint inversion case with an improved Jacobian
(in terms of its rank) relative to the Jacobian from either of the single-modality formulations.

Example 3.1. Consider a 2D (3× 3 discretized) sample composed of the single element Ca.
It is imaged by using |I| = 2 energy channels, one angular (θ = 0o), and three translation
scans, for which W ∗

v,e = 1, v ∈ [1, . . . , 9], and e = 1. The Jacobian at W∗,

J =

[
JR

βJT

]
,

decomposed into parts corresponding to φR and βφT , is given by



173 −16 −17 171 −23 −23 179 −16 −17
2730 −252 −268 2706 −361 −361 2825 −260 −270
173 177 −31 171 170 −53 179 173 −36
2730 2806 −497 2706 2696 −834 2825 2728 −575
173 177 179 171 170 156 179 173 175
2730 2806 2830 2706 2696 2466 2825 2728 2770

0.12β 0 0 0.12β 0 0 0.12β 0 0
0 0.12β 0 0 0.12β 0 0 0.12β 0
0 0 0.12β 0 0 0.12β 0 0 0.12β




.

We note that
• Bs(W

∗) = ∅;
• rank(JR) = 6;
• rank(JT ) = 3; and
• rank(J ) = 9, which returns a full-column-rank, well-determined system of equations.

Hence, W∗ is an isolated minimizer of the joint inversion problem for all β > 0. On the other
hand, the single modality inversions XRT and XRF are underdetermined and have many
connected local minima.

Similarly, if we increase the number of angular scans to two (i.e., |Θ| = 2), then XRF
results in an overdetermined system with the corresponding JR of size 12× 9 and JT of size
6×9. However, since rank(JR) = 6 and rank(JT ) = 6, the XRF system is still rank-deficient.
This example shows that it is not always sufficient to capture more measurements, and the
overall number of measurements can be reduced by a joint reconstruction technique (JRT).

Regarding the overdetermined case, Figure 3 illustrates the local behavior of three different
objectives in the neighborhood of the local minimum W∗ given β = 108. Figure 3a corresponds
to perturbations in the null space of the XRT system and Figure 3b corresponds to perturbations
in the null space of the XRF system. Taking both scenarios into account, W ∗ is the isolated
solution of JRT, while there are other, connected solutions for XRF and XRT.

We mention that in practice JRT may not result in a (numerically) full-rank Jacobian but
that the (numerical) rank is often improved. Therefore, the area of the solution manifold of
JRT is often smaller than the one from a single-modality inversion; as we will demonstrate in
Section 5, this translates into better convergence performance of JRT.
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Figure 3: Residual objectives in a neighborhood of W∗ for the overdetermined system in
Example 3.1: Local behavior of different objectives in (a) the null space of the XRT system
and (b) the null space of the XRF system.

The benefit of joint inversion can also be seen from a physical point of view. The XRF
and XRT modalities considered here are based on different physical phenomena, which gener-
ate complementary morphological, structural, and chemical information. Consequently, their
combination can naturally provide richer information about an imaged sample than is possible
with only one of these modalities. Furthermore, hardware technology has dramatically im-
proved, so that simultaneous detection of correlative multimodality data is now experimentally
possible [7, 43].

4. Optimization Complexity and Computational Expense. Throughout the remainder
of this paper, for ease of visualization, we consider only 2D samples and we fix the number
of energy channels to |I| = 2000, the number of detectorlets to nd = 5, and the number of
beamlets to |T | =

√
2|V|, where |V| denotes the number of voxels to be recovered.

If computed elementwise, the XRF forward model (2.4) requires about |V|2|E|2|I|nd flops;
accordingly, its elementwise derivative (A.1) requires about |V|3|E|3|I|nd flops; hence, the
overall cost of elementwise function and derivative evaluations for XRF is O(|V|3) flops. Simi-
larly, the overall cost of function and gradient evaluations for XRT is O(|V|2) flops. Therefore,
the XRF term dominates the computational cost of the joint inversion objective function (3.1).

In our implementation, however, we utilize the precalculated terms Lθ,τ
v µE

e and µ′Ee
e P θ,τ

v,v′,d
for every possible combination in order to avoid duplicated calculation. We also code in a
tensor-product fashion for the summations in (2.4) and (A.1). Based on these strategies,
Figure 4 shows the computational time of one (φR,∇φR) evaluation for increased numbers of
angular projections. In particular, with a model fit to the time shown, we observe that the
actual time complexity is on the order of

(4.1) |V|1.5|Θ|.
10
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input sizes (number of angular projections and voxels): Actual computational time and the
model in Equation (4.1).

This shows that our approach is more feasible for larger-scale problems than the elementwise
complexity analysis suggests. In Appendix B we examine the performance of our calculation
of the gradient ∇φR relative to an automatic differentiation-based calculation.

Because we are targeting large problems (with at least |V| nonzeros), having a fast and
memory-efficient algorithm to solve (3.1) is highly desirable. Therefore, in all the numerical
experiments, we use an inexact truncated-Newton (TN) method with preconditioned projected
conjugate gradient (PPCG) providing the search direction [30].

We also estimate the complexity of TN. Each outer iteration of the inexact TN performs
the following computations (to “vectors” of dimension |V||E|):

• 1 infinity-norm calculation, 1 vector addition, and 2 (function, gradient) evaluations;
and

• a number of PPCG iterations, with cost per PPCG iteration given by: 1 (func-
tion, gradient) evaluation, 1 diagonal matrix-vector product, 4 inner products, and
5 “vector+constant·vector” operations.

For the synthetic problems examined in the next section, 5 PPCG iterations are re-
quired on average per outer TN iteration. Based on the above estimate, one outer TN it-
eration requires 1 infinity norm, 5 diagonal matrix-vector products, 20 inner products, 25
“vector+constant·vector”, 1 vector add calculation, and 7 (function, gradient) evaluations.
The overall cost of one TN iteration amounts to |V||E|(1 + 5 + 20 + 25 + 1) = 52|V||E| flops,
plus 7 (function, gradient) evaluations, whose time empirically grows like |V|1.5 (see (4.1)).

5. Numerical Results. In this section, we examine the performance of the joint recon-
struction algorithm on two synthetic samples. All numerical experiments are performed on a
platform with 32 GB of RAM and two Intel E5430 Xeon CPUs.

The primary goal of our tests with the first sample is to measure the performance of

11
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Figure 5: Chemical composition of the (top) Shepp Logan phantom and (bottom) phase 50×50
synthetic samples; color indicates the mass of the elements present.

JRT with respect to different problem sizes and levels of noise in the measurement data. By
testing the performance of different approaches for different size problems, we also show that
the performance of our joint inversion method is independent of the mathematical numerical
resolution; furthermore, it allows us to approximate the convergence factor of the underlying
optimization solver.

For the second sample, we test the independence of JRT’s performance with respect to
the given sample, and we demonstrate the benefit of our XRF forward model in correcting the
attenuation coefficient by including the self-absorption effect (modeled by Equation (2.2)).

5.1. Synthetic Samples. We present results for two synthetic samples: a “phantom”
sample and a “phase” sample. The chemical compositions of both samples are shown in
Figure 5. For the phantom sample, the chemical elements are potassium (K), gallium (Ga),
and iron (Fe), each of which results in a significant amount of fluorescent radiation. The
phase sample is adapted from [15, 26] and is typically used to explore the self-absorption
effect in XRF imaging. First, we demonstrate the experiment on the phase sample containing
additionally palladium (Pd) and tin (Sn). Then, we demonstrate the joint inversion using
a phase sample comprising lighter elements including carbon (C), oxygen (O), silicon (Si),
calcium (Ca), and iron (Fe).

We denote these samples by W∗ and run each through our forward simulation to obtain
XRF and XRT output. For all forward simulations in these tests, the simulated incident beam
is monochromatic, with 20 keV energy and 0.2× 0.2µm transverse size. A 2.4 mm-diameter
XRT detector is placed at 90◦ to the incident beam at a distance 1.6 cm from the sample. An
XRF detector is placed parallel to the incident beam at a distance of 1.6 cm from the sample.

12
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Figure 6: Optimization starting from W0
bad for the 3×3 phantom sample: (a) Reconstruction

error with respect to the number of (function, gradient) evaluations; (b) XRF and XRT
residuals for the three reconstruction approaches.

Given a numerical resolution of the sample image, we vary the translation and angular scan
steps to get different-sized measurement data, which allows us to study the dependence of the
reconstruction algorithms on the measurement data size.

5.2. Performance Metrics. The known chemical composition of the synthetic samples
facilitates our quantitative evaluation of the reconstruction algorithms. We compare JRT
with the existing single XRT and XRF reconstruction approaches based on two metrics.

First, the conventional way to compare the performance of different reconstruction meth-
ods in the tomography community is to compare the recovered samples directly with the
synthetic sample. In other words, we measure the “reconstruction error”

(5.1) dw(W) = ‖W −W∗‖F ,

where W∗ is the synthetic sample.
The second metric that we use is based on the forward residuals. We examine both the

XRF residual φR and the XRT residual φT . Since the three approaches we consider are based
on minimizing the residuals φR, φT , and φR+βφT , one might expect that each approach would
perform best for its respective residual. In a noise-free setting, we have that, by construction,
φR(W∗) = φT (W∗) = 0, and hence W∗ is a global minimizer of all three residuals.

5.3. Phantom Sample Results. First, we compare the performance of single-modality
reconstruction (i.e., only XRF or XRT) with JRT for problems of different resolution. To
show the insensitivity of JRT to the starting point, we consider both W0

good, generated by

adding to W∗ uniform noise with support [0, 0.1]|V|×|E|, and W0
bad, generated uniformly in

[0, 0.1]|V|×|E| (and therefore independently of W∗).
Given W0

bad, Figure 6 illustrates the performance of different algorithms in reconstructing
a 3 × 3 phantom sample with only 3 translation and 4 angular scans. To be more specific,
Figure 6a shows the reduction of reconstruction error as defined in Equation (5.1) from three
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different algorithms with respect to the number of (function, gradient) evaluations. We observe
that JRT produces an error that is an order of magnitude smaller than XRT or XRF.

Moreover, owing to the ill-posed nature of both XRF and XRT, the solution manifold of
XRF does not agree with that of XRT in general; that is, minimizing φR and φT separately is
unlikely to return a common solution. Since global solutions are unlikely to be obtained, this
situation can have severe effects in practice. For example, Figure 6b illustrates that the single-
modality inversion approaches get stuck at poor local minima of their respective objectives.
In contrast, not only does joint inversion converge much faster than the two single-modality
inversions, but the local minimum found also achieves a much better reconstruction result in
terms of both the XRT and XRF residual objectives. Therefore, JRT improves not only the
XRF reconstruction but also the XRT reconstruction. The corresponding reconstructed ele-
mental maps, along with the resulting summed reconstruction errors, are shown in Figure 7.
Since the performance of XRT is poor for XRF tomography, for the remainder of our experi-
ments we report only the reconstruction qualities of JRT and XRF, the approach mostly used
in practice.

We now examine the performance of JRT on phantom in the case of limited angular
scans (i.e., |Θ| = 2). As we increase the size of sample resolution, the performance of JRT
compared with XRF is measured, respectively, in terms of convergence factor, reconstruction
error/residual, and time elapsed. For k ≥ 1, the convergence factor (given the same stopping
criteria) is

Ck =

(
φ(Wk)− φ(W∗)
φ(W0)− φ(W∗)

) 1
k

,

where, given a synthetic solution W∗, Wk is the corresponding TN-reconstructed solution at
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Figure 8: Performance of JRT and XRF starting from W0
good on the phantom sample (with

|E| = 3 elements and |Θ| = 2 angular projections) as a function of the resolution size.

the kth iteration. Figure 8 assembles the corresponding results. As we increase the problem
resolution (i.e., increase the number of voxels |V| following the pattern [3×3, 5×5, 9×9, 17×
17, 33 × 33]), the convergence factor and the XRF objective residual are always better with
JRT than with XRF. We thus observe that, in the case of limited data, JRT is obtaining better
reconstruction results than is XRF and doing so with computational time that is comparable
to XRF.

Next, starting from W0
good, we increase the resolution of the phantom sample to 20× 20

pixels with |Θ| = 10 angular scans and consider data contaminated by adding 0.1% standard
Gaussian noise to the simulated measurements. Figure 9 demonstrates that JRT converges
faster than single XRF and XRT, in addition to providing an improved residual and error.
The corresponding reconstructed elemental maps are given in Figure 10. As with the other,
noise-free tests, we see that, with roughly the same computational cost, JRT consistently
returns results with better accuracy than does XRF.

5.4. Phase Sample Results. Now we examine the performance of JRT on a sample (see
Figure 5) typically used to explore the self-absorption effect in XRF imaging. Tests on this
sample further illustrate the performance of JRT and highlight the advantage of our XRF
forward model by including the self-absorption effect approximated by Equation (2.2). In cases
where no self-absorption correction is computed in the inversion, we use (2.3) in problem (3.1).

First, analogous to the previous experiments, we compare the performance of JRT with
XRF- and XRT-only reconstruction on a 20 × 20 phase sample with 20 translation and 12
angular scans. Again, JRT bests XRF and XRT in reducing both the objective function
residuals and reconstruction error as shown in Figure 11. The resulting elemental maps are
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shown in Figure 12.

In Figure 12, we can see that with the self-absorption correction, the reconstructed JRT
result is much more accurate. In particular, without the self-absorption correction, the mass
in the inner region of the shapes is underestimated because of the self-absorption effect.

We also experiment on material containing the relatively light elements carbon and oxygen.
For each element, Figures 13 and 15 plot the cumulative distribution of the reconstruction
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error across all voxels for discretization sizes 20× 20 and 50× 50, respectively. For example,
for a given error shown on the x-axis, the corresponding y-value is the fraction of the voxels
whose reconstruction error is strictly smaller than this given error. Therefore, the uniformly
distributed initial error in [0, 0.1]|V|×|E| is shown as a diagonal line. We see that, for the
relatively high fluorescing elements Si, Ca, and Fe, JRT dramatically reduces the error since
the majority of the points is scrunched into a small fraction of the plots on the far left. The light
elements C and O are not recovered as well, which is not surprising. A limitation of absorption-
contrast imaging is that XRT usually cannot be used for observing low X-ray absorption
materials (e.g., thin organic materials) [28]. Hard X-ray fluorescence is typically used to
quantify heavy elements with atomic numbers greater than 14 [6], and thus we also cannot
obtain strong enough characteristic emission data of light elements from XRF. Therefore, we
do not expect any of the tested approaches to successfully recover C and O in this test; instead,
we view the presence of C and O as adding systematic noise to the reconstruction, and prove
again the benefit of JRT to recover the elements of interest in the presence of lighter elements.

Second, we test our XRF forward model with and without the self-absorption correction
on the 20 × 20 phase sample. The corresponding result is shown in Figure 14. In partic-
ular, without the self-absorption correction, the highly fluorescing elements Ca and Fe are
underestimated in the interior region of the sample.

6. Summary and Discussion. We briefly summarize our results and discuss future exten-
sions of our work.

6.1. Summary. This paper addresses a joint inversion framework to solve tomography
problems by using data from multiple imaging modalities in order to improve the ill-conditioned
nature of such problems. We model the XRF and XRT phenomena separately as nonlinear
equations in terms of the chemical element composition of a given sample. We also formulate
an optimization-based joint inversion problem that utilizes data from XRF and XRT tomog-
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Figure 12: Reconstruction results starting from W0
good for the 20 × 20 phase sample (with

and without self-absorption correction for JRT).
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Figure 13: Reconstruction error starting from W0
good for the 20× 20 phase sample with light

elements. Each line corresponds to the cumulative distribution (across all 400 voxels) of the
error obtained by a particular algorithm.

raphy modalities. The resulting optimization problem requires us to minimize the errors
between the measured data and our forward models, which we achieve with the truncated-
Newton method.

The numerical results presented in the paper show that, when limited scans are available,
significant improvements are achieved by performing joint inversion. Given a properly chosen
weighting factor β, these improvements are in terms of both convergence speed and accuracy
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of the reconstruction.

6.2. Discussion. The joint inversion method we present in this work can be naturally
extended to 3D by approximating the emission and attenuation of X-ray fluorescence isotrop-
ically. Experimental enhancements that facilitate such 3D extensions include collimating the
XRF detector so that it will count only the X-ray fluorescence emitted from a particular
slice [48]. Another approach is to adopt simpler forward models, such as the model proposed
by La Rivière [24].

A limitation of our work is the expensive computational complexity associated with the
self-absorption correction. To obtain run time improvements beyond what a compiled code
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could provide, we would need to consider a parallel implementation. Such an implementation
could benefit from both the parallelized version of TN and parallelizing the individual beamlet
calculations, for example, by using so-called in-slice parallelization [2]. A multilevel framework
[42] could also provide computational acceleration.

In practice, we could also extend the applicability of our forward model. In this work, we
ignore the modification of measured intensities caused by the scattering of both the incident
and the fluorescence X-ray radiations inside the specimen. One solution to compensate for
this effect is a calibration procedure [36]. Furthermore, to expand the usage of joint inversion
to soft tissue with light elements (i.e., atomic numbers smaller than 10), we can employ phase
contrast imaging [12, 28] to increase the sensitivity of the signal to the light elements.

Overall, our framework is general since it does not depend on specific experiments or
samples, but instead exploits complementary information from different imaging modalities.
Joint inversion is more appealing theoretically, and it can incorporate modalities, such as
ptychographic data [43], beyond those considered here. As long as the different modalities of
data are acquired from the same sample and complement each other, joint inversion has the
potential to provide better reconstruction results.

Appendices

A. Derivatives of the XRT and XRF Forward Models. For e ∈ E and v ∈ V , the first-
order derivative of (2.1) with respect to Wv,e is

∂

∂Wv,e
FT
θ,τ (W) = −I0 exp



−

∑

v′,e′
Lθ,τ
v′ µ

E
e′Wv′,e′



Lθ,τ

v µE
e .

Similarly, one can show that the first-order derivative of (2.4) with respect to Wv,e is given
by
(A.1)
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B. Efficiency of the Different Derivative Calculations. We use the AdiMat tool [3], which
is a software package for automatic differentiation (AD) of programs written in MATLAB, to
perform derivative calculations. If W is a 2D matrix (i.e., |E| = 1), then AD is performed in
reverse mode; otherwise, if W is a 3D tensor with |E| > 1, then AD is performed in forward
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mode. Figure 16 shows a comparison between the AD codes and our hand-coded derivatives.
We observe that using the reverse mode, the cost of AD is approximately 6 times greater
than that of our implementation of the tensor-based analytical derivative; furthermore, with
the forward mode, the AD derivative is roughly 30 times more expensive than our tensor-
based analytical derivative. Therefore, we use our tensor-based analytical derivative in all the
numerical experiments.
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