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Abstract: We analyze the structure of the Euler-Lagrange conditions of a lifted long-horizon
optimal control problem. The analysis reveals that the conditions can be solved by using block
Gauss-Seidel schemes and we prove that such schemes can be implemented by solving sequences
of short-horizon problems. The analysis also reveals that a receding-horizon control scheme is
equivalent to performing a single Gauss-Seidel sweep. We also derive a strategy that uses adjoint
information from a coarse long-horizon problem to correct the receding-horizon scheme and we
observe that this strategy can be interpreted as a hierarchical control architecture in which a
high-level controller transfers long-horizon information to a low-level, short-horizon controller.
Our results bridge the gap between multigrid, hierarchical, and receding-horizon control.
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1. BASIC NOTATION AND SETTING

We consider the following long-horizon optimal control

problem:
T
min [ p(e(r).u(r)ir (13)
s.t.
) = S u(), T 0.T] (1b)
2(0) = z. (1c)

Here, z(-) are the states, u(-) are the controls, and the
mappings ¢(-) and f(-) are assumed to be smooth. We lift
the long-horizon problem by partitioning the horizon T
into n stages. This lifting approach was proposed by Bock
and Plitt (1984) in the context of multiple-shooting. We
define the sets N := {0..n — 1} and N~ := N\ {n — 1};
and we assume the stages to be of equal length h := T'/n.
The partitioning gives rise to the lifted problem,

h
min S [ plar(r)un(r)dr (22)

keN 70

s.t.
2u(1) = f(2k(7),u(7)), k € N, 7 €[0,h] (2b)
2,41(0) = z1(h), k e N7 (2¢)

To simplify our analysis, we transcribe the lifted problem
into a finite-dimensional nonlinear programming problem
by applying an implicit Euler scheme with m inner stages
of equal length 6 := h/m. We define the sets of inner
points M := {0..m — 1}. We thus obtain the discretized
long-horizon problem,
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min Z Z O(Zk 15 Uk j+1) (3a)

Uk, j

keEN jeM
s.t.
(Vk,j+1) Zhj+1 = 2k, + 0 f 2k j+1, Uk j+1), K EN,j € M
(3b)
()\k) 2k,0 = Zk—1,m> keN. (3C)

Here, vj, ; are the dual variables of the inner dynamic
equations (3b), and Ay are the dual variables of the transi-
tion equations between stages (3c). The dual variables are
scaled by the constant 1/§. We use the dummy variable
Z_1,m = Z to simplify notation. We denote the discretized
long-horizon problem (3) as P.

Despite advances in computational methods for optimal
control, the long-horizon problem (3) can be difficult or
impossible to solve in real time (reviews on the topic
are presented by Diehl et al. (2009) and Zavala and
Biegler (2009)). Traditionally, long-horizon complexity is
addressed by using a receding-horizon scheme. In partic-
ular, one can solve the following short-horizon problems
sequentially for k =0,...,N — 1:

min Y o(zk41, Uk j41) (4a)
Uk, j )

JEM
s.t.
(Vkj+1) 2k g1 = 2kj + 0 f (2kjr1, Uk jv1), § € M (4b)
()‘k) Zk,0 = le;—l,m' (4C)

Here, z,f._Lm is fixed and is obtained from the solution of
the problem at k¥ — 1. We will show that this receding-
horizon scheme is a block Gauss-Seidel iteration applied
to the solution of the Euler-Lagrange conditions of (3).
This observation will help us derive strategies to modify
the short-horizon problem (4) so that the receding-horizon
scheme better approximates the solution of (3).



2. STRUCTURE OF EULER-LAGRANGE
CONDITIONS

We group variables by stages by defining the vectors
z = (26,05 Zkm)s Uk = (Ug1, .y Uk m), and vy =
(Vk,15 s Vie,m). We thus obtain the block form of P,

min > bz, up) (5a)
keN
s.t.
() 0= x(zx,uk), k€N (5b)
()\k) ﬁkzk = Ek Zi—1, ke N, (5C)

where the structure of the mappings ¢(-) and x(-) are given
by:
S(zr,u) == Y 2k 541, Uk 41)
JEM
Zk,21 — Zk,0 — 5f(zk,17 Uk,l)

(6a)

x(zk,ug) == (6b)

Zkm — Rkm—1 — 5f(zk,ma uk,m)
The coefficient matrices Il and II, satisfy Iz = 2,0
and II;z;_1 = zx—1,m- To enable compact notation, we

also define the fixed dummy vector z_; satisfying Il z_; =
Z—1,m = zZ.

The Lagrange function of P is given by
E(Zka Uy, Vg, >\k) =
> blzku) — v x(zh, w) = A (TMezy, — Mz 1), (7)
keN
and its first-order optimality conditions are
0=V.tr — VaxFok — Ty A + 02 Ay, k€N (3a)
0= Vzgsnfl - vzngll/nfl - ﬁ:q)\nfl (Sb)
0= Vudr — Vuxive, k€N (8¢)
0=x(zk,ux), kEN (8d)
0= ﬁkzk — ﬂkzk,l, ke N. (86)
Here, vz(bk = Vzk¢()7 Vu¢k: = Vuk¢(')7 VZXk? =
V. X(+), and Vi, x := Vyu, X(+). System (8) is the discrete-
time version of the Euler-Lagrange conditions of the lifted
problem (2). Moreover, the dual variables v ;, \; can
be tied together to form discrete-time profiles of the

adjoint variables of the lifted problem. These properties
are discussed in the book of Biegler (2010).

We consider the following compact form of the Euler-
Lagrange conditions (8),

Fk(zk._Lm, Zk,m, Ak, )‘k-‘rl) =0, ke N~ (9&)

Fn—l(zn—Z,my >\n—1) =0. (Qb)

Here, we have dropped the dependence on the non-

coupling variables between stages from the notation. We

can see that coupling between stages k — 1, k, and k+1 is

introduced only through zy_1,, and Ap41. For clarity, we
write Fj(2k—1,m: Zk,m» Mes Met1) = 0 explicitly:

0=V.ép — VoxZok — T A + 02 Mg =0 (10a)
0= Vudr — VuXi vk (10b)
0 = x(2k, ur) (10c)
0= ﬁkzk — Ekzk,1 (10(1)

for k € N=. For Fy,_1(2n—2,m, An—1) = 0 we have
=T

0= Vz(bnfl - VzXZLanA - Hn71>\n71 = ( )

0= Vu¢n—1 - VuXZ_anq (11b)

0= X(zn—la un—l) ( )

(11d)

0=1I,_12Zpn_1 — En_lznfl

The block structure of the Euler-Lagrange conditions is
not affected by the presence of inequality constraints and
algebraic states and equations. The concepts presented
next apply to this more general setting as well.

3. BLOCK GAUSS-SEIDEL SCHEMES

Our key observation is that we can solve the Euler-
Lagrange conditions (9) (or equivalently (8)) of the
long-horizon problem using block, nonlinear Gauss-Seidel
schemes.

Assume that the adjoints \j, are fixed to A{, = 0 for k € N.

At k = 0 and with fixed 2*; = z we solve the following
optimal control problem:

,min > e(zkjensurjrn) + 6Ny ) 2km  (12a)
k,j s Uk,j ]EM

s.t.

(Vk,j) 241 = 2,5 + 0 f (Zhj+1, ukj+1), J €M (12b)

(M) 2k0 = Zho1m- (12c)

We refer to this problem as Py, and introduce the notation
(zﬁﬁrll,)\f;ﬂ) — Pk(zi_l’m,)\f;ﬂ) to indicate the inputs
and outputs of problem Pj. The primal-dual solution of
Py solves block k of the Euler-Lagrange conditions (10)
for fixed initial state z_, ,, and adjoint Agy1 = Aj ;.

From the solution of P, we obtain the terminal state
Zﬁti and we use this as initial state for Py41 to compute

‘ ¢ 041 4 .
(%4 1m0 Akr1) € Pr(z)ns Ak1o). We continue the recur-

sion until reaching the last stage, K = n — 1. At this stage
we solve problem P,,_1:

e jezj\; (Zn—1,j4+1, Un—1,j+1) (13a)
s.t.
(Vn—l,j) Zn—1,j41 = Zn—1,5

+0f(Zn=1,j4+1,Un-1,j+1), J €M (13b)
An-1) 2010 = Zn_2m- (13¢)

The primal-dual solution of P,_; solves the optimality
system (11) for fixed initial state z}_,,, obtained from
the solution of P,,_o. With this step we have updated all
the state (primal) z;"' and adjoint A{™' variables. We
return to the first stage k& = 0 and repeat the recursion
to obtain z£+2, Ai”. We repeat this procedure ngg times.

We summarize the Gauss-Seidel scheme below.
Gauss-Seidel Scheme A

I) GIVEN Z, set counter ¢ < 0, set zf_l’m < Z, and set
A <0 for k=0,..,n—1. FOR £ =0,...,ngs DO:
II) FOR k=0,...,n—2 SOLVE
(Zoms M) = Pr(25 00 Ay)-

1) FOR k = n — 1 SOLVE
(20 s M) 4= P (2,10 0).

n—1m>



IV) SET ¢+ £+ 1 and RETURN TO Step II).

A key observation that we make is that the Gauss-
Seidel scheme can be implemented by using off-the-shelf
optimization tools. This is because all that is needed is the
ability to solve the nonlinear programming problems Py.
In particular, no internal linear algebra manipulations are
needed.

The structure of the block Gauss-Seidel scheme also re-
veals that a receding-horizon control scheme is equivalent
to performing a single Gauss-Seidel sweep (iteration) with
adjoints A, = 0, k € . The adjoints Af,, encode impor-
tant global information of the future horizon beyond h for
problem Py. In particular, the adjoints can be interpreted
as terminal costs and the term (A} ;)" zx,m can be seen as
a cost-to-go. This information is neglected by the receding-
horizon scheme and this can lead to a poor approximation
of the long-horizon solution. A key insight that we gain
from our analysis is that we can correct the receding-
horizon scheme to better approximate the long-horizon
solution if we are capable of obtaining estimates of the
adjoints )\i. Moreover, in the ideal case where our ad-
joint estimates are optimal, the corrected receding-horizon
scheme (a Gauss-Seidel sweep) will deliver the optimal
long-horizon state profiles.

We can obtain refined estimates of the adjoints A% by
performing multiple Gauss-Seidel iterations of the scheme
previously discussed. This can be seen as a self-correcting
receding-horizon scheme. Gauss-Seidel updates can be per-
formed in different ways so we have some degree of flex-
ibility. For instance, Borz1 (2003) proposed the following
forward-backward scheme:

Gauss-Seidel Scheme B

I) GIVEN z, set counter £ < 0, set Zé1,m < z, and set
)\i +~0fork=0,....,n—1. FOR £ =0,...,ngs DO:
Forward Sweep

II) FOR k =0,...,n — 2 SOLVE

041 041
(Zk.fm7 )+ Pk(zktl,mv )‘f;+1)~

III) FOR k =n — 1 SOLVE
(Zf;tll,m’ )\flt11> — ,Pnfl(zfzf2,m7

Backward Sweep

IV) FOR k=n—2,n—3,...,0 SOLVE
(A = Pr(5 ) s M-

V) SET ¢ < ¢+ 1 and RETURN TO Step II).

0).

In Gauss-Seidel Scheme B, the forward sweep updates the
states while the backward sweep updates the adjoints. In
Gauss-Seidel Scheme A the states and adjoints are up-
dated simultaneously. Forward-backward schemes are also
typically used in the solution of continuous-time Euler-
Lagrange conditions. For a description of these approaches
the reader is referred to the book of Bryson and Ho (1975).

4. COARSENING-BASED CORRECTION

Gauss-Seidel (receding-horizon) schemes provide the com-
putational advantage that they need to solve only short-
horizon problems in order to approximate the solution of
the long-horizon problem. However, Gauss-Seidel schemes
are well known for exhibiting slow convergence or no
convergence at all. We propose to aid convergence by

k

Fig. 1. Transfer of adjoint information from coarse long-
horizon problem to short-horizon problems.

using adjoint estimates /\i obtained from the solution of
a coarsened long-horizon problem to correct the short-
horizon problems. Coarsening is a standard concept used
in multigrid optimal control of partial differential equa-
tions (PDEs). Such concepts are discussed extensively
by Borzil and Schulz (2009). To perform coarsening, we
consider a coarse grid with m, elements and m. < m
(thus reducing computational complexity). We define the
coarse set as M, := {0..m. — 1} and the corresponding
coarsened long-horizon problem P.. We use the notation
(A6, ., AE 1) < P°(2) to indicate the inputs and outputs
of P.. We consider the following scheme:

Corrected Gauss-Seidel Scheme A

I) GIVEN z, set counter £ - 0, set 2%, <+ z. FOR
{= O, < NGS DO:
I1) SOLVE (AJ, ..., \._,) « Pu(2).
1) FOR &k = 0,...,n — 2 SOLVE
(Zifrn}ﬂ Ai+1) < Pk (Zf:tll,nz? )\i—&-l)‘
IV) FOR k =n — 1 SOLVE
(%01 Anth) € Paa (22 0)-

n—1,m>

V) SET ¢ < ¢+ 1 and RETURN TO Step III).

In this scheme, P, transfers global (long-horizon) infor-
mation of problem P to the local (short-horizon) prob-
lems Pj,. This is depicted in Figure 1. This approach can
be seen as a hierarchical control scheme where a coarse-
grained high-level controller supervises a fine-grained low-
level controller. In other words, the coarse long-horizon
problem provides terminal costs to the receding-horizon
controller so that this better approximates the solution of
the long-horizon problem. In this hierarchical controller
dual information is transferred; as opposed to traditional
hierarchical control schemes that transfer state informa-
tion. For a review on hierarchical control see the paper
by Scattolini (2009). The lifting approach proposed in this
work avoids the need to perform interpolation of state and
adjoint profiles in order to move from a coarse grid to a fine
grid (as is typically done in multigrid control for PDEs). In
our approach, all that is needed from the coarse problem
are the adjoints )\f; at the stage transition points.

While our analysis borrows concepts of multigrid control
of PDEs such as Gauss-Seidel recursions and coarsening,
our contributions are the following:

e We demonstrate how to use multigrid concepts in a
more general setting that might involve constraints
and sets of differential and algebraic equations.



e We establish a connection between receding-horizon
control and Gauss-Seidel schemes.

o We demonstrate that coarsening schemes can be used
to construct hierarchical control schemes.

e We demonstrate how to implement multigrid con-
cepts by using off-the-shelf optimization tools.

5. NUMERICAL STUDY

We illustrate the concepts using the well-studied nonlinear
CSTR reactor problem:

T
/0 ae(e(T) — &) + ay(t(t) — 1) + au(u(r) — @)%dr
(14a)

s.t.
¢= 1_TE(T) — Pk - €Xp (—ZZ;) -c(T) (14b)
1= S o (415

— Do - u(T) - (#(7) — t) (14c¢)
0<ec(r)<1,0<t(r)<1, 200 <wu(r)<500 (14d)
c(0)=c¢, t(0)=¢t (14e)

The system states are the concentration of reactant ¢(-)
and the temperature of reacting mixture ¢(-). The control
is the cooling water flow u(-). After lifting, we denote
the adjoint associated with (14b) as A, and the adjoint
associated with (14c) as A;. The model parameters are
given by ac, ay, Qy, Do, PE, tf, e, and py and can be found
in the work of Zavala and Anitescu (2010). The objective
function is of Bolza type with the desired targets ¢t
and 4. We highlight the nonlinearity of the system and
the presence of bounds. All optimization problems were
implemented on AMPL and solved with IPOPT.

We partition the time horizon in n = 10 stages and
discretize each stage using an implicit Euler scheme with
m = 10 grid points. In Figures 2 and 3 we present the
control and temperature profiles for Gauss-Seidel Scheme
A. As can be seen, the profiles obtained with a stan-
dard receding-horizon scheme (first iteration of Gauss-
Seidel scheme) severely deviates from the optimal ones.
The Gauss-Seidel scheme approximates the long-horizon
solution well after three iterations.

In Figure 4 we plot the error of the Gauss-Seidel Schemes
A and B. The error is defined as the Euclidean norm of
the error profiles for the states and controls. As can be
seen, both schemes have similar performance and converge
to error levels of 10~*. This result is surprising since
one would expect that performing an additional backward
sweep in Scheme B would be beneficial. Despite the nonlin-
earity and presence of bounds, both Gauss-Seidel Schemes
converge to the optimal profiles.

In Figure 5 we present the optimal and approximate ad-
joint profiles obtained from coarsening. The coarse profiles
are obtained by discretizing the stage using m. = 2 points
(compared to the m = 10 points used for the optimal pro-
file). As can be seen, the adjoint profiles have exhibit some
errors but the overall structure is preserved. We use the
coarse adjoint profiles to correct the Gauss-Seidel scheme
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Fig. 2. Gauss-Seidel A convergence for control. First iter-
ation (top) and third iteration (bottom).

0.9

0.85

0.8

0.75

0.7

0 20 40 60 80 100

0.9

0.85

0.8

0.75 —<O)— Gauss-Seidel
Optimal
0.7 : ‘ ‘ ‘
0 20 40 60 80 100

Time

Fig. 3. Gauss-Seidel A convergence for temperature. First
iteration (top) and third iteration (bottom).
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Fig. 4. Convergence of Gauss-Seidel schemes A and B.
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Fig. 5. Optimal and coarsened adjoint profiles.

A. In Figure 6 we present the convergence of Gauss-Seidel
with and without correction. The top graph presents the
profiles after one iteration and the bottom graph after two
iterations. As can be seen, correction dramatically aids
convergence. In Figure 7 we present the convergence of the
corrected and uncorrected Gauss-Seidel Scheme A. For the
corrected case we consider an additional case in which we
refine the coarse grid by using m. = 4 points. As can be
seen, the initial error is reduced by two orders of magnitude
in both cases.

6. CONCLUSIONS AND FUTURE WORK

We presented an analysis of the Euler-Lagrange conditions
for a lifted optimal control problem. This enabled us
to derive block Gauss-Seidel schemes that enable the
solution of long-horizon problems by solving sequences
of short-horizon problems. Our analysis revealed that
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Fig. 6. Convergence of Gauss-Seidel Scheme A with and
without correction. First iteration (top) and second
iteration (bottom).
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Fig. 7. Convergence of Gauss-Seidel Scheme A with and
without correction.

a receding-horizon scheme is equivalent to performing
a Gauss-Seidel sweep of the Euler-Lagrange conditions.
We have also used our analysis to derive strategies to
correct adjoint profiles by using coarsening. This approach
enabled us to accelerate Gauss-Seidel convergence and
can be interpreted as a hierarchical control structure in
which a coarse high-level controller transfers long-horizon
information to a low-level, short-horizon controller. Our
results thus bridge the gap between multigrid, hierarchical,
and receding-horizon control. As part of future work,
we would like to gain additional insight on conditions
guaranteeing convergence of Gauss-Seidel schemes and we
will use multigrid control concepts to design alternative
control architectures.
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