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ABSTRACT
The modern parallel I/O software stack is complex due to
the number of configurations for tuning I/O performance.
Without proper configuration, I/O becomes a performance
bottleneck. As high-performance computing (HPC) is mov-
ing towards exascale, poor I/O performance has a significant
impact on the runtime of large-scale simulations producing
massive amounts of data. In this paper, we focus on de-
veloping a framework for tuning parallel I/O configurations
automatically. This autotuning framework first traces high-
level I/O accesses and analyzes data write patterns. Based
on these patterns and historically available tuning parame-
ters for similar patterns, the framework selects best perform-
ing configurations. If previous history is unavailable, the
framework initiates model-based training to acquire efficient
configurations. Our framework includes a runtime system
to apply the selected configurations using dynamic linking,
without the need for changing code. We test this framework
using several I/O kernels extracted from real applications
and demonstrate substantial I/O performance benefits.

General Terms
Parallel I/O, I/O Patterns, Autotuning, Performance Opti-
mization, Parallel file systems

1. INTRODUCTION
HPC applications from various scientific domains produce

and consume massive amounts of data. For example, plasma
particle codes such as VPIC [5] simulating ten trillion par-
ticles can produce ≈300 TB data per time step [6]. Simi-
larly, cosmology datasets also simulate trillions of particles
producing data in the range of 10’s of TB in size [22]. Since
many of scientific simulations need to write massive datasets
to parallel storage and read them for post-processing anal-
ysis, efficient parallel write and read operations are critical
to scientific discovery.

The parallel I/O software stack includes high-level I/O
libraries, i.e., HDF5 and NetCDF, I/O middleware such as
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MPI-IO, parallel file system such as Lustre and GPFS. Each
of these layers offer various configurable tuning parameters.
When these configurations match “well” through all the lay-
ers, read or write operations perform efficiently. Manual
characterization, tuning, and optimization of parallel I/O
performance on multiple platforms have been proven to be
effective [29, 13]. However, finding the right combinations
of tunable parameters is complex on large-scale supercom-
puters because the search space is enormous. For example,
on a Lustre file system using HDF5 chunking it can con-
tain up to 336,000 possible configurations [3]. Finding these
parameters automatically is even more challenging. While
autotuning has been extensively studied in optimizing com-
putational algorithms [26, 10, 14, 25, 28, 8, 27], applying the
same techniques to parallel I/O tuning is nontrivial. One of
the challenges is the sensitivity of parallel I/O performance
because of interdependent parameters of various software
layers. Additionally, in contrast to computational kernel
tuning, where the compute nodes are not shared by other
users, the parallel I/O system is shared by hundreds of ap-
plications.

In our prior work, we have shown the effectiveness of I/O
tuning at multiple layers of tunable parameters using genetic
algorithms [3]. We have improved the configuration search
process significantly by developing an empirical performance
prediction model for a selection of I/O kernels derived from
real scientific simulations [1]. Despite these efforts, the chal-
lenge of tuning an arbitrary I/O phase in a simulation re-
mains an open issue. For instance, when a simulation needs
to perform a large write operation, an I/O autotuning frame-
work is required to identify the characteristics of the write
operation, to find optimal tunable parameters, and to apply
them at runtime without the need to stop the simulation for
recompiling the simulation code with the optimal configura-
tions.

In this paper, we address the requirements of an autotun-
ing framework mentioned above. We first define high-level
I/O patterns to characterize write operations. We use our
tracing library to collect high-level I/O calls, such as HDF5
data model definition and write calls. This library uses bi-
nary instrumentation to redirect a set of HDF5 calls to col-
lect the required information. We analyze these traces to
obtain the I/O pattern information of a simulation’s I/O
phase. We then match the patterns with previously tuned
I/O kernels for obtaining their optimal configurations. We
define a simple key-value pair-based database to store the
previously tuned I/O patterns and their optimal configura-
tions. We provide a runtime library to apply the selected
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optimal configuration without the need for recompiling the
code. If a matching previously tuned pattern was not avail-
able, we use our empirical prediction model to find tuning
parameters at offline and store them in the database for fu-
ture use.

Overall, this paper has the following contributions:

• We provide a new definition of I/O pattern based on
the traces of high-level I/O libraries, such as HDF5.
This definition contains the global view of I/O accesses
from all MPI processes in parallel applications.

• We develop a trace analysis tool for identifying the I/O
patterns of an application automatically.

• We demonstrate mapping an arbitrary write pattern
with existing write pattern to determine optimal con-
figurations.

• We show that using our runtime library, users can
achieve significant portion of the peak I/O performance
for arbitrary I/O patterns.

The remainder of the paper is structured as follows: In
Section 2, we introduce our autotuning framework and present
the functions of various components in the framework. We
describe the experimental setup to test our framework in
Section 3 and evaluate the results in Section 4. Section 5
goes over related work. Finally, we conclude the discussion
in Section 6 along with our future work.

2. I/O AUTOTUNING FRAMEWORK
Figure 1 illustrates an overview of our proposed I/O au-

totuning framework that can address parallel I/O tuning
problem. It consists of two phases: The first phase is the
tuning phase which performs extraction of the I/O pattern
from the application. Once the pattern is extracted, there is
a look-up phase in which the pattern is queried in a database
of patterns. If the pattern is found in this database, then
the model associated with it is used to are suggest tuned
parameters for it as XML files to be run with the applica-
tion as part of the second phase, the adoption phase. This
is the phase in which the application is dynamically linked
with the H5Tuner library in order to set the selected tuning
parameters on the fly while the application is running.

Since our previous work has shown the adoption phase
in detail [1, 3], in the following subsections we describe the
components of the tuning phase of the framework. In order
to have a simpler description of these components, we use
a sample parallel HDF5 application distributed along with
the HDF5 source code, called pH5Example. The code creates
two two-dimensional HDF5 datasets and writes them to a
file.

2.1 I/O Traces
To be able to automatically extract the I/O activities of

an application, we need to first extract the characteristics of
I/O operations it is conducting. The I/O trace of an applica-
tion is used towards this end. In our previous work, we have
developed a multi-level I/O tracer tool, called Recorder [17];
It uses dynamic library pre-loading and intercepting I/O
functions at different levels of the I/O stack. We observe
that the best level of the I/O stack to define I/O patterns
is at the higher-level I/O libraries such as HDF5. There-
fore, we made use of the Recorder to capture all the HDF5
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Figure 1: An overview of our I/O autotuning frame-
work

I/O operations of an application. At the end of one run of
the application on P processes, P trace files are generated
by the Recorder library. Figure 2 shows the trace file for
process 0 of a four-process run of pH5example code. There
are different function calls traced, causing to first create a
HDF5 file (named "ParaEg0.h5"), then create two datasets
(named "Data1" and "Data2"), then each process selects a
hyperslab of these datasets, they write the data to them and
close the file.

1396296304.23583 H5Pcreate (H5P_FILE_ACCESS) 167772177 0.00003
1396296304.23587 H5Pset_fapl_mpio (167772177,MPI_COMM_WORLD,
469762048) 0 0.00025
1396296304.23613 H5Fcreate (output/ParaEg0.h5,2,0,167772177) 16777216 
0.00069
1396296304.23683 H5Pclose (167772177) 0 0.00002
1396296304.23685 H5Screate_simple (2,{24;24},NULL) 67108866 0.00002
1396296304.23688 H5Dcreate2 (16777216,Data1,H5T_STD_I32LE,
67108866,0,0,0) 83886080 0.00012
1396296304.23702 H5Dcreate2 (16777216,Data2,H5T_STD_I32LE,
67108866,0,0,0) 83886081 0.00003
1396296304.23707 H5Dget_space (83886080) 67108867 0.00001
1396296304.23708 H5Sselect_hyperslab (67108867,0,{0;0},{1;1},
{6;24},NULL) 0 0.00002
1396296304.23710 H5Screate_simple (2,{6;24},NULL) 67108868 0.00001
1396296304.23710 H5Dwrite (83886080,50331660,67108868,67108867,0) 0 
0.00009
1396296304.23721 H5Dwrite (83886081,50331660,67108868,67108867,0) 0 
0.00002
1396296304.23724 H5Sclose (67108867) 0 0.00000
1396296304.23724 H5Dclose (83886080) 0 0.00001
1396296304.23726 H5Dclose (83886081) 0 0.00001
1396296304.23727 H5Sclose (67108866) 0 0.00000
1396296304.23728 H5Fclose (16777216) 0 0.00043

Figure 2: A sample I/O trace generated by the
Recorder for a simple parallel application called
pH5Example

The next subsection discusses how we make use of the in-
formation in the trace files to come up with the I/O pattern
of the application.

2.2 High-level I/O Patterns
For performing automatic tuning of writing large datasets,

we first need to identify the I/O pattern of the write opera-
tion. We define these patterns from observing the high-level
I/O library calls, i.e., HDF5 calls.

There are many ways of defining an I/O pattern of an



application. Following the approach of the database com-
munity, we separate the I/O pattern of an application into
two categories:

• Physical Pattern: The physical pattern of read/write
operations is related to the hardware configuration and
is specific to the file system, platform, etc. These are
discussed in our previous work [1, 3] and statistical
models have been proposed for it. They are the mod-
els that have either linear or inverse relationship with
file-system parameters such as Lustre stripe settings
and MPI-IO settings. We showed that different I/O
benchmarks have different relationship with these pa-
rameters and it is possible to generalize the models to
take the number of processes and file sizes into account
as well.

• Logical Pattern: Logical pattern is defined at the
application level and is the focus of this paper. This
is the pattern that takes the number of processes that
run the application into account along with the dis-
tribution of the data between them. Higher-level I/O
libraries divide the I/O operations into two categories
below. We believe that in order to have a more ac-
curate definition of the logical I/O patterns, we can
utilize the same division:

1. Metadata: Metadata of a high-level library
includes information about the data itself such
as datatypes, dimensions, etc. This also includes
information about the data that user may want
to save such as attributes. The size of metadata is
pretty small and it is typically stored in the first
part of the file.

2. Raw Data: Raw data is the main data which
is the bigger portion of the file and the main I/O
time is spent in doing I/O operations for it. The
main difference between the I/O operations of
different applications exists in the access to raw
data. Applications can do the I/O operations
contiguously or non-contiguously. They can ac-
cess the raw data in horizontal stripes or vertical
stripes. They can even have random selections of
this raw data. The main focus of this paper is to
abstract these kinds of patterns.

As mentioned above, high-level I/O libraries give us much
more information in order to define and distinguish the way
different applications conduct the I/O operations. One ex-
ample and probably the main one is the concept of selection
in HDF5. Selection is an important and a very powerful fea-
ture of HDF5 library that lets the developers select different
parts of a file and different parts of memory in order to con-
duct I/O operations. It also is the main mechanism for the
processes to choose different parts of the file in a parallel
I/O application. Therefore, we base our definition of I/O
patterns on the concept of selection. In summary, we will
define the I/O pattern of an application as a coverage of the
datasets based on the selections they make.

In HDF5 terminology, hyperslabs are portions of datasets,
either a logically contiguous collection of points in a datas-
pace, or a regular pattern of points or blocks in a datas-
pace. In a parallel HDF5 program, once each process defines
both the memory and file hyperslabs they execute a partial

read/writei [11]. In HDF5, the hyperslabs are selected using
H5Sselect_hyperslab function. The four parameters that
can be passed to this function are start, stride, count, and
block: The start array is used by each process to specify
the starting location for the hyperslab; The stride array
specifies the distance between two consecutive selected ele-
ments or blocks. The count array for specifying the number
of the elements/blocks to select; Finally, the block array
specifies the size of the block selected from the dataspace.

In order to be concrete, we are going to illustrate this defi-
nition of I/O patterns with the example application we have
in this paper. Figure 3 shows the four hyperslab selection of
a parallel four-process run of pH5Example.

H5Sselect_hyperslab (...,H5S_SELECT_SET,{0;0},{1;1},{6;24},NULL) 0

H5Sselect_hyperslab (...,H5S_SELECT_SET,{6;0},{1;1},{6;24},NULL) 0 

H5Sselect_hyperslab (...,H5S_SELECT_SET,{12;0},{1;1},{6;24},NULL) 0 

H5Sselect_hyperslab (...,H5S_SELECT_SET,{18;0},{1;1},{6;24},NULL) 0 

Rank 0:

Rank 1:

Rank 2:

Rank 3:

herr_t H5Sselect hyperslab(hid_t space_id, H5S_seloper_t op, const 
hsize_t *start, const hsize_t *stride, const hsize_t *count, const 
hsize_t *block)

Function Signature:

Figure 3: The four HDF5 hyperslab selection func-
tion calls across different ranks of a parallel four-
process run of pH5Example

As it can be seen, all the processes are calling the same
function with the same arguments except for start. The
values of these start arrays are {0, 0}, {6, 0}, {12, 0}, and
{18, 0}. The values of count arrays on all the ranks are {6,
24}. The call specifies that the 2D dataset is decomposed
in the first dimension, with each process accessing a distinct
horizontal slice. Figure 4 visualizes this decomposition.

6

6

6

6

24

24

P0

P1

P2

P3

Figure 4: Decomposition of one of the dimensions
in pH5Example by the four processes

2.3 I/O Patterns Repository
In order to abstract these patterns, we make use of ar-

ray distribution notation that was also used in High Perfor-
mance Fortran (HPF)[20]. High Performance Fortran uses



data distribution directives to help the programmer to dis-
tribute data between processes. Among these directives,
DISTRIBUTE directive is used to specify the partitioning of
the array data on to an abstract processor array. The basic
distributions are BLOCK, CYCLIC, and DEGENERATE. A differ-
ent distribution can be used for each dimension. Below is a
short description of each of these distributions:

1. Block Distribution: In a block distribution, each
process gets a single contiguous block of the array.

2. Cyclic Distribution: In a cyclic distribution, ar-
ray elements are distributed in a round-robin manner.
This means that the first element is on the first pro-
cess, the second element on the second process and so
on.

3. Degenerate Distribution: Degenerate distribution,
represented by *, is basically no distribution or serial
distribution. It means that all the elements of this
dimension is assigned to one processor.

Using this terminology for the sample pH5Example ap-
plication is straightforward. First of all there is one HDF5
dataspace in the whole application created by the use of
H5Screate_simple() function. It is a 2D dataspace of size
24× 24. Then there are two datasets created on this datas-
pace named Data1 and Data2. Then each of the ranks are
selecting their own decomposition of the space and create
two datasets of the size of the selected set as their memory
dataset. Finally there are two H5Dwrite() function calls to
write to Data1 and Data2. Using HPF terminology we can
abstract pH5Example as the following:

• pH5Example:
<2D, (BLOCK, *), (6, 24)>

<2D, (BLOCK, *), (6, 24)>

The advantage of this representation is that it is succinct
enough in order to be stored in a key-value store, called the
I/O pattern repository.

2.4 Mapping an Arbitrary Application to an
I/O Pattern

As we can extract and provide a representation of an I/O
pattern of HPC applications, the next question is, given an
arbitrary HPC application, how can we map it to one of the
existing patterns we have in our database? In this subsection
we try to answer this question. The first thing one should do
is to look up for the dimension of the arbitrary application
and check if we have an application with the same dimension
value as the arbitrary one. Then, it has to look for the dis-
tribution of the given application. The order to look for this
distribution is challenging, and we propose the following so-
lution: First check if each of the dimensions has a DEGEN-
RATE distribution. If so, check for a BLOCK distribution
for all the other dimensions. If none of the above, check
for multi-dimensional BLOCK. Multi-dimensional BLOCK
is the general version of BLOCK distribution which means
that once the value of a dimension reaches to its maximum
value, the other dimension is increased. Section 3 shows a
full example of this distribution. If not, check for CYCLIC
or BLOCK-CYCLIC distribution and finally if none of these
apply, this is a random I/O access pattern.

The first two steps are simple to check, we just need an
analysis operation which goes over every dimension of the
start array and compares it to the previous value corre-
sponding to the value of the previous rank. If all these
numbers are the same, then it can conclude that it is a DE-
GENRATE distribution, if the difference is between every
two consecutive element is the same, it is a BLOCK distri-
bution. However, if these cases do not happen, step 3 should
be performed and that is a multi-dimensional BLOCK. Al-
gorithm 2.4 shows our procedure for this analysis operation
which is a generalized version of step 2. This is a general
version of a simple algorithm to check if numbers have a
BLOCK distribution. The only difference between the gen-
eral version and the simple version is that it needs a general
version of subtract and equal operation. As input, the
algorithm gets all the traces of H5Sselect_hyperslab func-
tion call. These traces have all the start and count arrays
for each process. The algorithm starts by getting the first
and the second element of the start array and uses the
gen_subtract function to calculate the difference between
these start arrays. It stores this in a variable named diff

and continue with the next elements of the array in order
to see if this difference stays the same in the whole array.
Figure 5 shows applying this algorithm on VORPAL-IO ap-
plication, which we will explain in detail in Section 3. As
it can be seen in the figure, the start array of consecutive
processes are subtracted from each other and since the diff

value is always the same, we can conclude that VORPAL-IO
has a multi-dimensional BLOCK distribution.

If none of these patterns are found in the selection val-
ues, the analyze operation will check CYCLIC and BLOCK-
CYCLIC distributions too. Note that if none of these pat-
terns can be found, we mark that application with a random
I/O access pattern and will not store it in the database.

Algorithm 1 Check for Multi-Block Distribution

Input: H5Sselect_hyperslab traces of all the processes
Output: Whether they have a block distribution and how
much is the block size
Variables:
pi= process i
start[ ]: Start array in H5Sselect_hyperslab function
count[ ]: Count array in H5Sselect_hyperslab function
Pseudo Code:
prev_start ← *start[0].
cur_start ← *start[1].
diff ← gen_subtract(cur_start, prev_start).
prev_start ← cur_start.
while There are more array elements do

update cur_start

new_diff ← gen_subtract(cur_start, prev_start)

if gen_equal(diff, new_diff) == false then
is_multi_block ← false

end if
diff ← new_diff

prev_start ← cur_start.
end while
return diff

Once the distribution of each of the datasets are found,
the patterns should be queried in the database as will be
shown in the next subsection. Note that the sizes in the
database should not exactly match, but has to be within a



P0 = [ {0,0,0}, ... ]
P1 = [ {0,0,300}, ... ]
P2 = [ {0,100,0}, ... ]
P3 = [ {0,100,300}, ... ]
P4 = [ {60,0,0}, ... ]
P5 = [ {60,0,300}, ... ]
P6 = [ {60,100,0}, ... ]
P7 = [ {60,100,300}, ... ]

max = [120, 200, 600]
diff = {0, 0, 300}

diff = {0, 0, 300}

diff = {0, 0, 300}

diff = {0, 0, 300}

diff = {0, 0, 300}

diff = {0, 0, 300}

diff = {0, 0, 300}

Figure 5: An Example of Generalized Operations
(diff and equal) for VORPAL-IO application

threshold which we will describe later in Section 4.

2.5 Intelligent Runtime System
The runtime system we have developed consists of two

main components:

1. H5Analyze: H5Analyze is a code we have developed
based on pattern analysis provided by Tang et al. [24]
for analyzing HDF5 read and write traces. Our im-
plementation contains structures for storing informa-
tion about HDF5 files, dataspaces, datasets, selections,
and operations. It accepts the traces gathered by the
Recorder [17] from all the processes as input and pop-
ulates these information by reading all these traces.
Once this information is stored, the H5Analyze code
starts to execute the above-mentioned analysis on them
in order to come up with the patterns and output them
in HPF terminology. Figure 6 shows the output of
H5Analyze on the pH5example. As it can be seen,
once the correct arguments are given to H5Analyze
code, it is able to find out the dimension, distribution
and the size of the access pattern of each dataset.

$ ./H5Analyze WRITE 1 testlog/pH5example_4 4
.
.
.
I/O Pattern with HPF Terminology:
Dataset name: output/ParaEg0.h5/Data1
  - Dimension: 2
  - Distribution: <BLOCK, DEGENERATE>
  - Size: <6, 24>
Dataset name: output/ParaEg0.h5/Data2
  - Dimension: 2
  - Distribution: <BLOCK, DEGENERATE>
  - Size: <6, 24>

Figure 6: Output related to the I/O pattern of
H5Analyze code for pH5example code

2. Key-Value Store: In order to store the patterns as-
sociated with their I/O performance model, ultimately
we should use a database as the number of patterns
increase. For now however, we are using text files as
it is easier to store the patterns in text files without
requiring a global database.

3. H5Tuner Library: If the framework is able to find
a pattern close enough to an input application, then

it will adopt the same model for that pattern and as
completely explained in [1] it proposes the top k con-
figuration as the k-best performing configurations for
that pattern in XML files. H5Tuner library [3] is then
dynamically linked to the application to set these pa-
rameters at runtime of the application. The user can
control the value of k based on the amount of time
they want to put on tuning the I/O phase of the ap-
plication. In our experiment, k = 20. If the user is
happy with the I/O bandwidth these top k configura-
tion lead to, they can use that specific XML file along
with H5Tuner library for that application.

4. Modeling Component: If the pattern of the input
application is not found in the key-value store, since
there is no model associated with it, the framework
needs to come up with a model for it. This is the fo-
cus of our previous paper [1] and includes a training
phase in which the model is trained for a set of differ-
ent values for each of the parameters at different core
counts. Since this component has been studied in de-
tail in our previous work we will not go over it here.
The only thing to note is that we have chosen to have
a separate component for this in our framework as it
may be improved over time.

3. EXPERIMENTAL SETUP
We have conducted all the experiments presented in this

paper on two platforms, Edison and Hopper, located at
the National Energy Research Scientific Computing Center
(NERSC):

1. Edison: Edison is a Cray XC30 system consisting
5, 576 twenty-four core nodes with 64GB of memory
per node. It has Cray Aries with Dragonfly topol-
ogy and three Lustre file systems with aggregate band-
width of 168 GB/s. We have used a Lustre partition
of the file system in these experiments that has a max-
imum of 96 OSTs with 48 GB/s peak I/O bandwidth.
Cray’s MPI library v7.0.4, HDF5 v1.8.11, and H5Part
v1.6.6 were used on Edison.

2. Hopper: Hopper is a Cray XE6 system containing
6, 384 twenty-four core nodes with 32GB of memory
per node. It employs the Gemini interconnect with
a 3D torus topology. We used a Lustre file system
with 156 OSTs and a peak bandwidth of about 35GB/s
for storing data. We used Cray’s MPI library v6.0.1,
HDF5 v1.8.11, and H5Part v1.6.6 for compiling the
I/O kernels.

In this paper we chose different I/O benchmarks and ker-
nels. I/O kernels are simpler applications that issue the
same I/O operations as a full-scale HPC applications. The
four I/O kernels we have looked at are: Vector Particle-In-
Cell (VPIC-IO), VORPAL-IO, and Global Cloud Resolving
Model (GCRM-IO) and FLASH-IO. Below is a brief descrip-
tion of these I/O benchmarks.

• IOR—I/O benchmark: IOR [16] is an I/O bench-
mark developed at LLNL for the procurement of the
ASCI Purple. Since it is highly-configurable and con-
tains different I/O interfaces, it serves as one of the
main HPC I/O benchmarks.



• VPIC-IO—plasma physics: Vector Particle-In-Cell
(VPIC)[5] is a computer code simulating plasma be-
havior. VPIC-IO, replays only the I/O operations of
VPIC application by creating a file, writing eight vari-
ables and closing the file. It makes use of H5Part li-
brary [4] and the variables written are for the particles
and contain random data of float data type.

• VORPAL-IO—accelerator modeling: VORPAL[18]
is an acceleration modeling and computation plasma
framework developed by Tech-X Corporation. VORPAL-
IO, replays only the I/O operations of VORPAL and
uses H5Block to write 3D blocks of data per processor.

• GCRM-IO—global atmospheric model: Global
Cloud Circulation Model (GCRM)[19], is a faily new
atmospheric model taking large convective clouds into
global climate models. GCRM-IO also uses H5Part to
perform I/O operations similar to GCRM with random
data.

• FLASH-IO—high-energy density model: FLASH
I/O benchmark routine mimicks the I/O of the FLASH
parallel HDF5 write operations. It has the data struc-
tures in FLASH application and writes a checkpoint
file, a plotfile with centered data, and a plotfile with
corner data. At 512 cores, FLASH-IO creates a 122
GB checkpoint file, 11 GB centered data plotfile and
12 GB corner plotfile. At 4096 cores, it creates a 973
GB checkpoint file, 82 GB centered data plotfile, and
a 92 GB corner plotfile.

Figures 7-9 show the I/O accesses of the three applications
we are considering in this work. These I/O accesses are
the range of accesses based on the four parameters of the
hyperslab selection. It can be observed that VPIC-IO is a
1-dimensional application and VORPAL-IO and GCRM-IO
have 3-dimensional I/O accesses. We can also see how each
processes are writing the same amount of data by having
the same count arrays. The processes access different parts
of the file in parallel by having different values for the start

array.

P0 = [ {0}, {1}, {8 M}, {0} ]
P1 = [ {8 M}, {1}, {8 M}, {0} ]
P2 = [ {16 M}, {1}, {8 M}, {0} ]

...

[start, stride, count, block]

P0 P1 P2 ... Pn

0 8 M 16 M 24 M

Figure 7: I/O pattern of the VPIC-IO benchmark

Each process is writing a contiguous amount of data with
8 MB of size one after the other in the VPIC-IO benchmark.
This is a very common and simple I/O pattern and we will
see how it is abstracted. A more complex I/O access is
GCRM-IO’s. It is a 3-dimensional I/O benchmark decom-
posed only along one dimension as Figure 8 shows. Since

P0 = [ {0,0,0}, {1,1,1}, {1,26,327680}, {0,0,0} ]
P1 = [ {0,0,327680}, {1,1,1}, {1,26,327680}, {0,0,0} ]
P2 = [ {0,0,655360}, {1,1,1}, {1,26,327680}, {0,0,0} ]

...
.
.

[start, stride, count, block]

Figure 8: I/O pattern of the GCRM-IO benchmark

P0 = [ {0,0,0}, {1,1,1}, {60,100,300}, {0,0,0} ]
P1 = [ {0,0,300}, {1,1,1}, {60,100,300}, {0,0,0} ]
P2 = [ {0,100,0}, {1,1,1}, {60,100,300}, {0,0,0} ]

...
.
.

[start, stride, count, block]

Figure 9: I/O pattern of the VORPAL-IO bench-
mark

only one dimension is decomposed in GCRM, we can see
that the size of the whole dimension is used in the count ar-
ray for the other two dimensions and the value of the start

is 0.
The last I/O benchmark with the most complex I/O pat-

tern is VORPAL-IO. It writes a 3-dimensional grid with a
3-dimensional decomposition along each of the dimensions.
The size of the block that each process is writing is fixed and
therefore the count array is the same for each of the pro-
cesses. However, each of the processes have different values
along the 3 dimensions of the start array.

Using the notation described in Section 2, we can repre-
sent our three applications as below:

• VPIC-IO:
<1D, BLOCK, 8388608>

<1D, BLOCK, 8388608>

... (5 more times) ...
<1D, BLOCK, 8388608>

• GCRM-IO:
<3D, (*, *, BLOCK), (1, 1, 327680)>

<3D, (*, *, BLOCK), (1, 1, 327680)>

... (7 more times) ...
<3D, (*, *, BLOCK), (1, 1, 327680)>

• VORPAL-IO:
<3D, (BLOCK, BLOCK, BLOCK), (60, 100, 300)>

<3D, (BLOCK, BLOCK, BLOCK), (60, 100, 300)>

... (17 more times) ...
<3D, (BLOCK, BLOCK, BLOCK), (60, 100, 300)>



4. RESULTS
This section shows the results of our framework in four

subsections: The first experiment to show that our frame-
work is capable of identifying an I/O pattern exactly similar
to what it has tuned before and configure the I/O correctly.
The second one is to show that a new pattern but similar to
the ones in the database is recognized and the model used
for the most similar application to it in the database can
lead to acceptable I/O performance. We then tune an arbi-
trary application that does not have any similar patterns in
the database is tuned. Finally, we evaluate the overheads of
our autotuning framework.

Note that for the results of this paper, we use all the
developed models in our previous paper [1]. Therefore, there
was no tuning for any application for this work and we have
used the models developed for them in our previous work.

For the first series of experiments, we use IOR bench-
mark. The second experiment uses a synthetic benchmark
called Resemble-VORPAL-IO which is similar to VORPAL-
IO pattern but with different block sizes. The last experi-
ment is a whole new I/O benchmark: FLASH-IO.

4.1 An application with the same I/O pattern
In order to have IOR issue write patterns similar to VPIC-

IO, we configured it to use its HDF5 interface. Since VPIC-
IO writes 8 datasets, we need to configure IOR accordingly.
This is done by using segments (-s 8 command line op-
tion) of IOR. VPIC-IO only does write operations and we
use writeFile (-w option) for IOR. Since for each dataset of
VPIC-IO contains 32 MB of data per processor, we use the
blockSize (-b 32m option) of IOR along with the transfer
size of 32 MB (-t 32m command line option).
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Figure 10: The I/O performance of the autotuned
IOR application on Hopper and Edison compared
the default configuration

Figure 10 shows the performance of the autotuned con-
figuration which was proposed for IOR, as it has the same
pattern as VPIC-IO, on 512 and 4096 cores of Hopper, and
Edison in [1]. As mentioned before, there was no modeling
effort done for this application and yet we can see that we
are able to get up to 4.21 GB/s and 15.01 GB/s on 512 and
4096 cores of Hopper. On Edison these numbers are 9.34
GB/s, 16.70 GB/s.

4.2 An application with similar I/O pattern
Resemble-VORPAL-IO is a synthetic benchmark gener-

ated by Record-and-Replay framework [2]. It has very simi-
lar I/O pattern to VORPAL-IO benchmark but with differ-
ent block sizes of 64× 128× 256 instead of 60× 100× 300 of
VORPAL-IO. The purpose of these experiments is two-fold:
(a) To show that applications with similar I/O patterns with
slight differences only in block sizes can use the same I/O
configuration to obtain good I/O performance. (b) Requir-
ing a threshold for the similarity between I/O patterns can
save dramatic I/O tuning time.
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Figure 11: The I/O performance of the autotuned
Resemble-VORPAL-IO application on Hopper and
Edison compared the default configuration

Figure 11 shows the performance of the autotuned config-
uration which was proposed for Resemble-VORPAL-IO on
512 and 4096 cores of Hopper and Edison in [1]. Similar to
the previous experiment, there was no modeling effort done
for this application and yet we can see that we are able to
get up to 3.32 GB/s and 7.89 GB/s on 512 and 4096 cores
of Hopper respectively. On Edison the highest bandwidth
achieved by this mechanism was 8.75 GB/s and 13.07 GB/s
on the same number of cores.

4.3 A new application
The last experiment is designed to test an arbitrary appli-

cation that has not been tuned before. For this experiment,
we chose to test a well-known I/O kernel called FLASH-IO
because it is popular in the HPC I/O community and also
hard to tune. The same as previous experiment, we ran
FLASH-IO at two scales, 512 and 4096 cores of Hopper and
Edison. The way that we calculate the bandwidth for this
application is a little bit different than the other ones as it
has produces three files. The definition of bandwidth here is
basically just the sum of all the output sizes divided by the
runtime of the whole I/O benchmark which is a conservative
way of defining the I/O bandwidth of an application.

FLASH-IO is different from the other applications we have
looked at mainly because it writes many datasets with dif-
ferent I/O patterns. In order to overcome this problem the
framework considers the largest datasets in size and looks
up for those patterns in the database. Based on the out-
put of H5Analyze tool, FLASH-IO has 34 datasets, out of
which 24 of them has the same size as the largest size of the



file. On 4096 cores, this is about 40GB for each dataset.
These datasets are 4D and their pattern of these dataset are
also the same: <BLOCK, DEGENERATE, DEGENERATE, DEGEN-

ERATE>. Although the exact same pattern does not exist for
this pattern, GCRM-IO has the most similar pattern to this
application and therefore the framework uses the proposed
configurations for GCRM-IO.
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Figure 12: The I/O performance of the autotuned
FLASH-IO application on Hopper and Edison com-
pared the default configuration

Figure 12 shows the performance of the autotuned configu-
rations which was proposed for FLASH-IO based on GCRM-
IO model, on 512 and 4096 cores of Hopper, and Edison by
our framework. Similar to the previous experiment, there
was no modeling effort done for this application and yet we
can see that we are able to get up to 2.09 GB/s and 5.95
GB/s on 512 and 4096 cores of Hopper respectively. On
Edison the highest bandwidth achieved by this mechanism
was 3.34 GB/s and 8.23 GB/s on the same number of cores.

4.4 The overhead of the framework
In this subsection, we measure the overhead of the frame-

work based on the order they appear in the architecture dis-
cussed in Section 2. Regarding the extraction of I/O pattern
from an application, the framework needs at least one run
of the application linked to the recorder in order to gather
the traces. The overhead of the Recorder library is mini-
mal [17]. Once the traces are gathered, H5Analyze analyzes
the traces to come up with the I/O pattern. H5Analyze
is a fast sequential application written in C programming
language which reads in the traces and comes up with the
pattern with a very fast turn-around time even at large scale
trace files. The looking up phase is also fast as the number
of patterns are small and comparing them to find the clos-
est. In case the pattern of an application is found, the I/O
configuration of the application is proposed with an XML
file. If not, the main part of the overhead of our framework
is exerted: The modeling phase. For those patterns that
the framework is not able to find a match, it requires the
autotuning framework to initialize the modeling process by
running the application with its training set. This may re-
quire more than several hours to come up with a non-linear
regression models. Once the model is developed, the frame-
work will associate the pattern along with the new model

for any future run of the application.

5. RELATED WORK
I/O patterns have been an important concept in the I/O

community and several research projects have been exploit-
ing them in different contexts. Out of these we can men-
tion I/O Signature is a notation proposed by Byna et al [7]
consisting of five dimensions of I/O operations: operation,
spatial offset, request size, repetitive behavior, and tempo-
ral intervals. These are then gathered by a framework for
each application and stored persistentlly for later look up
in order to help prefetching. Additionally, statistical mod-
els (such as Markov models) have been proposed for a long
time for being able to produce and predict I/O operations
and file system performance. [23, 21]. These are then more
used in the context of prefetching, caching or scheduling,
as compared to our work which is tuning I/O operations in
order to increase I/O bandwidth that applications gain.

In recent years, due to complexities of gaining I/O per-
formance in modern HPC applications, I/O patterns have
started to gain more attention. In particular, He et al. [12]
mention that a lot of information gets lost in a typical I/O
stack as the data flows between its layers. Although high-
level I/O libraries contain rich information about the data
structures, eventually they get down into simple offset and
length pairs in the storage system. Their solution to this
problem is to “rediscover these structures in unstructured
I/O” using “gray-box” technique. In terms of framework
design there are some similarities such as the way the pat-
tern detection engine works. Additionally, Omnisc’IO [9] is
a grammar-based I/O model in the hope of capturing and
predicting I/O operations of an application. At its heart, it
uses an algorithm based on Sequitur algorithm which given
a sequence of symbols, builds a grammar for text compres-
sion. It supports both spatial and temporal patterns in this
regard. In order to be more general, the authors use the
program’s stack trace as the symbols of the grammar. One
strength of their approach is that it does real-time prediction
as the grammar is being updated in the algorithm. Most of
this work uses the idea of I/O patterns with the main differ-
ence that they are based on low-level I/O layers, i.e. POSIX
layer as opposed to high-level I/O layers. As [12] correctly
argues about information getting lost in the flow of data in
the I/O stack, but uses POSIX offset pattern matching to
rediscover the information. Our approach is different in the
sense that we have defined the pattern at the high-level li-
braries and do not lose this information. Our approach is
more portable, accurate, and simpler than the POSIX ver-
sion given the parallel nature of the applications.

6. CONCLUSIONS AND FUTURE WORK
Poorly tuned Parallel I/O becomes a major performance

bottleneck in HPC applications that need to write or read
data. This is not due to incapability of I/O subsystems, but
mainly due to the complexity of its tuning. In this paper, we
propose a pattern-driven autotuning framework to solve this
problem. The framework consists of components to extract
I/O patterns, tune configuration for the detected patterns,
store them in a database of patterns associated with their
I/O model, and finally map an arbitrary I/O pattern to a
previously tuned model in order to improve its I/O perfor-
mance. We show that using these patterns, one can tune



different sets of applications ranging from the ones which
have tuned before the ones which are similar to the ones
before, and totally new ones.

The main line of future work of this paper is to get it
ready for production use. For this purpose, the main miss-
ing component is an implementation of a global database
which one can insert and query the patterns. Additionally,
as more and more applications use this framework, there is
more need for a database. Another future work is to apply
the same concepts to other high-level I/O libraries such as
PnetCDF [15]. This is a simple addition as these libraries
have the same concepts and they just differ in the function
calls. Last but not least, we are thinking about an ambitious
goal of pushing our framework futher to conduct real-time
I/O autotuning. This means that every HPC platform will
have an intelligent I/O runtime system which is able to iden-
tify the I/O pattern of different applications while they are
being run and set the I/O parameters for them accordingly
in order to have very good I/O performance.
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