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A Taxonomy of Constraints in Simulation-Based
Optimization

Sébastien Le Digabel∗ and Stefan M. Wild†

Abstract. The types of constraints encountered in black-box and simulation-based optimization
problems differ significantly from those treated in nonlinear programming. We introduce a character-
ization of constraints to address this situation. We provide formal definitions for several constraint
classes and present illustrative examples in the context of the resulting taxonomy. This taxonomy,
denoted QRAK, is useful for modeling and problem formulation, as well as optimization software
development and deployment. It can also be used as the basis for a dialog with practitioners in
moving problems to increasingly solvable branches of optimization.
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1. Introduction. This paper focuses on the feasible set Ω ⊂ Rn of the general
optimization problem

(1.1) min
x∈Ω

f(x),

where f : Rn → R ∪ {∞} denotes an extended-value objective function. We propose
a taxonomy of constraints, denoted QRAK, whose development is motivated by the
field of derivative-free optimization (DFO), and more precisely black-box optimization
(BBO) and simulation-based optimization (SBO). In BBO/SBO, the objective func-
tion f and/or some constraints defining an instance of Ω are, or can depend on, the
outputs of one or more black-box simulations. We assume that SBO is the more gen-
eral term; hence, we use it in the title of this work. In typical settings, evaluating
the simulation(s) is the primary bottleneck for an optimization algorithm; the time
required to evaluate algebraic terms associated with other constraints or the objective
is inconsequential relative to the time required to evaluate the simulation components.
In addition, simulations may sometimes fail to return a value, even for points inside
Ω.

Our taxonomy addresses a specific instance (or “description”) of Ω. This instance,
rather than the mathematical problem (1.1), will be passed to an optimization solver
(which may do some preprocessing of its own and then tackle a different instance).

To illustrate the distinction between problem and instance, we consider the two-
dimensional linear problem

(1.2) min
x∈R2

{x1 + x2 : x1 ≥ 0, x2 ≥ 0} .

In fact, many instances of the feasible set Ω share a solution set with (1.2). For
example, a different description can yield the same feasible set, either by chance,

Ω1 = {x ∈ R2 : x1 ≥ 0, x1x2 ≥ 0},
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or as a result of some redundancy,

Ω2 = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0, 2x1 + x2 ≥ 0}.
Or, the feasible sets can differ from instance to instance, but the minimizers of f over
the sets are the same, whether indirectly,

Ω3 = {x ∈ R2 : x1 ≥ 0, x1 + 2x2 ≥ 0, x1 + x2 ≤ 1},
or explicitly,

Ω4 = {x ∈ R2 : x1 = 0, x2 = 0}.
In situations similar to these examples, one likely expects that a modern solver

or modeling language—or even more classical techniques such as Fourier-Motzkin
elimination—would perform preprocessing that would address redundancies, ineffi-
ciencies, and the like before invoking the heaviest machinery of a solver. However,
when the problem involves some black-box or simulation component, the situation,
and hence such preprocessing, can be considerably more difficult.

More generally, the proposed classification is not absolute: it depends on the
entire set of constraint models specified in the instance and on the information that
the problem/simulation designer gives. For example, a simple bound constraint may
be indicated as the output of a black box rather than expressed algebraically, leading
to two different classes in the taxonomy. Other examples of different constraints
changing class will be described after the taxonomy has been introduced.

Formally, we assume that a finite-dimensional instance Ω is specified by a collec-
tion of equations, inequalities, and sets:

(1.3) Ω = {x ∈ Rn : ci(x) = 0,∀i ∈ I; cj(x) ≤ 0,∀j ∈ J ; ck(x) ∈ Ak,∀k ∈ K} ,
where I,J ,K are finite and possibly empty. Semi-infinite problems can be treated
by such a taxonomy but are not specifically addressed in this paper. Similarly, multi-
objective optimization problems are easily encapsulated in our taxonomy but are not
discussed specifically. Note that the form of Ω in (1.3) is general enough to include
cases when a variable changes the total number of decision variables (such as when
determining the number of bus stations to build as well as their locations).

As underscored in the recent book by Conn et al. [15], derivative-free optimization
in the presence of general constraints has not yet been fully addressed in the algorith-
mic literature or in benchmark papers such as [35] or [38]. Even in broader SBO fields
such as simulation optimization and PDE-constrained optimization, a disconnect of-
ten exists between what algorithm designers assume about a simulation and what
problem/simulation designers provide. In these communities, many different terms
coexist for the same concepts, and unification is needed. The proposed taxonomy of
constraints consolidates many previous terms such as soft, virtual, hard, hidden, diffi-
cult, easy, open, closed, and implicit. Its purpose is to introduce a common language
in order to facilitate dialog between algorithm developers, optimization theoreticians,
software users, and application scientists formulating problems.

The paper is structured as follows. Section 2 presents the taxonomy of constraints
for SBO and describes the different classes. It also illustrates the taxonomy through
practical examples and situations. Section 3 puts the taxonomy in perspective with
the existing literature. Putting the literature review toward the end of the paper here
is deliberate and eases the presentation. Section 4 summarizes our contributions and
discusses extensions to the taxonomy.
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                   Relaxable or Unrelaxable?

                               Quantifiable or Nonquantifiable?

               Known or Hidden?

                         A priori or Simulation?
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Fig. 1. Tree-based view of the QRAK taxonomy of constraints. Each leaf corresponds to a class
of constraints.

2. Classes of constraints. This section introduces the QRAK taxonomy, which
we present graphically by the tree of Figure 1. An alternative and equivalent repre-
sentation of the taxonomy using the same notations is given in the Venn diagram of
Figure 2.

The letters defining the acronym of the taxonomy correspond to four types of
left branches in the tree: Q is for Quantifiable, R is for Relaxable, A is for A priori,
and K is for Known. The corresponding right branches are identified with N for
Nonquantifiable, U for Unrelaxable, S for Simulation, and H for Hidden.

Each leaf of the tree in Figure 1 is identified with a sequence of four letters, each
entry taking one of two possible values. The acronym of a leaf reads from the bottom
to the root of the tree. As we argue later, not all 16 possible combinations of these
letters are captured in the taxonomy, because hidden constraints take a special form.
The nine possible constraint classes in the taxonomy are summarized in Table 1.

The two top levels of the tree are specific to SBO while the lower two are more
general. In addition, most of constraints found in traditional nonlinear optimiza-
tion (NLO) exist in the leftmost leaf. In fact, general difficulty grows from left to
right, which outlines a preference for practitioners to model constraints such that
they appear in the most possible left part of the tree. Further subdivisions (convex-
ity, nonlinearity, etc.) are also important but more focused on the NLO case and
hence not discussed here.

Every constraint in an SBO problem instance fits in one leaf of the tree. However,
a constraint type from a classification scheme different from QRAK (e.g., bound con-
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Fig. 2. Venn diagram of the taxonomy of constraints. Each region corresponds to a leaf in the
tree of Figure 1.

Table 1
The taxonomy as a table where each column corresponds to a leaf in the tree of Figure 1 and

to an intersection of regions in Figure 2.

Leaf Number Name in the
in Figure 1 Taxonomy

1 QRAK
2 NRAK
3 QUAK
4 NUAK
5 QRSK
6 NRSK
7 QUSK
8 NUSK
9 NUSH (hidden)

straint, nonlinear equality constraint) can correspond to several QRAK leaves at once.
In this case, we use the generic wildcard notation “*.” For example, depending on the
context, a bound constraint can be relaxable or unrelaxable. It is clearly, however,
a constraint that is known, a priori, and quantifiable. In this case, the bound con-
straint is identified by Q*AK. The wildcard is not systemically used when the sense
is obvious: For example, we simply write S instead of **S*. These issues will appear
as natural as we proceed with examples and formal definitions of each class/level of
the tree, starting from the bottom and moving to the top.
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2.1. Quantifiable (Q) versus nonquantifiable (N). For a nonquantifiable
constraint, one has only a binary indicator saying whether the constraint has been
satisfied or violated. Consequently, an alternative term for such constraint is a binary
or 0-1 constraint, but this does not have a natural complementary term. Similarly,
we avoid the terms measurable/nonmeasurable in order to avoid confusion with mea-
surable in analysis.

Definition 2.1. A quantifiable constraint is a constraint for which the degree of
feasibility and/or violation can be quantified. A nonquantifiable constraint is one for
which the degrees of satisfying or violating the constraint are both unavailable.

The definition of a quantifiable constraint does not guarantee that measures of
both feasibility and violation are available. In particular, both of the following are
examples of quantifiable constraints.
Quantifiable feasibility: The time required for the underlying simulation code to

complete should be less than 10 seconds.
Here, we have access to the time that it took for the code to complete (and
hence we know how close we are to the 10-second limit), but the execution is
interrupted if it fails to complete within 10 seconds (and hence we will never
know the degree to which the constraint was violated).

Quantifiable violation: A time-stepping simulation should run to completion (time
T ).
If the simulation stops at time t̂ < T , then T − t̂ measures how close one was
to satisfying the constraint.

A constraint for which both the degrees of feasibility and of violation are available
can be referred to as fully quantifiable.

From a method or solver point of view, the distinction between Q and U clearly
is important. For example, if one wants to build a model of the constraint, Q might
imply interpolation whereas U might imply classification.

2.2. Relaxable (R) versus unrelaxable (U). The next notion addressed by
the taxonomy is that of relaxability.

Definition 2.2. A relaxable constraint is a constraint that does not need to
be satisfied in order to obtain meaningful outputs from the simulations in order to
compute the objective and the constraints. An unrelaxable constraint is one that must
be satisfied for meaningful outputs to be obtained.

In this definition, meaningful simulation output(s) means that the values can be
trusted as valid by an optimization algorithm and rightly interpreted when observed
in a solution.

Typically, relaxable constraints are not part of a physical model but instead rep-
resent some customer specifications or some desired restrictions on the outputs of the
simulation, such as a budget or a weight limit.

Within an optimization method, the implication regarding this R versus U prop-
erty is that all the iterates must satisfy unrelaxable constraints, while relaxable con-
straints need be satisfied only at the proposed solution. Said differently, infeasible
points may be considered as intermediate (approximate) solutions.

Alternative terms include soft versus hard, open versus closed, and violable versus
unviolable; but these terms are often overloaded, as we note in Section 3.

2.3. A Priori (A) versus simulation-based (S). A simulation constraint is
specific to BBO/SBO. The nature of a simulation constraint is such that a poten-
tially costly call to a computer simulation must be launched in order to evaluate the
constraint. We note, however, that this constraint evaluation may not ultimately
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prove to be costly. For example, the simulation could include a constraint that is
cheap to evaluate and can be used as a flag to avoid any further computation; such a
constraint is still defined by our taxonomy to be an S constraint (more specifically, a
*USK constraint).

Definition 2.3. An a priori constraint is a constraint for which feasibility can be
confirmed without running a simulation. A simulation-based constraint (or simulation
constraint) requires running a simulation to verify feasibility.

Simple examples of a priori constraints include one-sided bounds and linear equali-
ties. A Priori constraints, however, can include very general and special formulations,
such as semidefinite programming constraints, constraint programming constraints
(e.g., all different, ordered), or some constraints relative to the nature of the vari-
ables: reals or integers or binary or categorical.

One can easily appreciate that a solver should want to evaluate *UA* (unrelax-
able, a priori) constraints first and avoid a simulation execution if the candidate is
infeasible—especially when the simulation is costly. For *RA* (relaxable, a priori)
constraints, it is not as clear whether an algorithm would benefit from a similar or-
dering of constraint evaluations. For example, should noninteger input values be
passed to a simulator that may then end up rounding to the nearest integer within
the simulation? The answer depends on the context.

An alternative to “simulation” is a posteriori [5]; alternative terms for “a pri-
ori” include algebraic or algebraically available, analytic, closed-form, expressible, and
input-constraint. An algebraic function is usually defined to be one that satisfies
an equation that can be expressed as a finite-degree polynomial with rational coef-
ficients. Unfortunately this definition does not include transcendental functions (ex,
etc.). Some modeling languages, such as GAMS [8], already use this term (GAMS is
“generalized algebraic” to include available transcendentals). Formally, an analytic
function is usually one that locally has a convergent power series; this rules out simple
nonsmooth functions. The idea behind the term input-constraint is that A constraints
can be seen as simply related to the inputs x, whereas S constraints are somehow
expressed as a function of the simulator.

2.4. Known (K) versus hidden (H). The final distinction in the taxonomy is
specific to BBO/SBO.

Definition 2.4. A known constraint is a constraint that is explicitly given in the
problem formulation. A hidden constraint is not explicitly known to the solver.

The majority of constraints that one encounters when solving SBO problems—
especially when an optimizer is involved early in the modeling and problem formu-
lation process—are known to the optimizer. A hidden constraint typically (but not
necessarily) appears when the simulations crashes. For such constraints, we can de-
tect only violations, typically when some error flag or exception is raised. However,
a violation may go unnoticed. Alternative terms include Unknown, Unspecified, and
Forgotten.

A hidden constraint is not necessarily a bug in the simulator. For example,
consider the problem min{f(log x) : x ∈ R} with f some simulation-based function
from R to R. If the constraint x > 0 is expressed in the description of the problem,
then it is an a priori constraint. Otherwise, it is hidden and can be observed only for
negative or null values of x. This constraint may have been stated explicitly inside the
simulator in order to avoid a crash and raise some flag; but as far as it not indicated
to the solver, it remains H.

As shown in Figure 1, the H branch of the tree is the only one that goes directly to
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a terminal leaf. A hidden constraint cannot be a priori (by definition) and quantifiable
(we do not know what to quantify). A hidden constraint also cannot be relaxable since
the violation/satisfaction cannot be detected if the outputs are always meaningful.

Note that the boundary between a hidden (NUSH) constraint and a NUSK con-
straint is thin. In the NUSK case, however, the constraint is explicitly given, and its
satisfaction can be checked. These subtle differences are emphasized in the presence
of several different hidden constraints: When the simulation crashes, one has no way
of knowing exactly what went wrong, a situation that would have been different if
these constraints had been expressed with flags by the modeler.

2.5. Short case studies. The previous examples were related to the four levels
of decision in the taxonomy. We now show that each of the nine leaves of the tree in
Figure 1 (similarly, each row of Table 1) is nonempty, and we illustrate some situations
that belong to each leaf.

1: QRAK (Quantifiable Relaxable A Priori Known): Probably the most common
type of constraint found in classical nonlinear optimization.

•
n∑

i=1

xi ≤ 100: If each xi represents an amount of money, this constraint

defines a budget.
• Relaxable discrete variable: xi ∈ {0, 1} for some indices i. Then min

{
|xi|,

|1− xi|
}

provides the violation measure.
2: NRAK (Nonquantifiable Relaxable A Priori Known): A good example is a

categorical variable constrained to a subset of its possible values:
• A simulator can work in two modes depending on the value of a binary

flag x ∈ {0, 1}. If x = 1, the simulation is costly but more accurate.
If x = 0, it is cheap but imprecise. We want a solution that has been
validated with x = 1, but an optimization algorithm can set x = 0 at
intermediate points. The NRAK constraint is “x = 1”.

• Consider a simulator that drives a C++ compilation, with the two cat-
egorical variables x1 ∈ {gcc, icc} and x2 ∈ {O2,O3}. We want the final
solution to have x2 = O2 if x1 = gcc, and these two constraints are
of type NRAK. (Note that the two set constraints, x1 ∈ {gcc, icc} and
x2 ∈ {O2,O3}, may be NUAK; see below.)

3: QUAK (Quantifiable Unrelaxable A Priori Known):
• Well rates in groundwater problems: If we can simulate only extraction

(and not injection), then the constraints ri ≥ 0 for all well indexes i are
of type QUAK.

• Decision variables must be ordered or be all different.
4: NUAK (Nonquantifiable Unrelaxable A Priori Known): Categorical variables

are a typical example: compiler ∈ {gcc, icc}.
5: QRSK (Quantifiable Relaxable Simulation Known): Simply consider a re-

quirement on one of the simulation’s output, such as the following:
• A budget based on economical criteria, S(x) ≤ b.
• In the context of optimization of algorithm parameters, the percentage

of problems solved by the algorithm under consideration must be 100%.
6: NRSK (Nonquantifiable Relaxable Simulation Known):

• A simulator displays a flag indicating whether a toxicity level has been
reached during the simulation, but we know neither when this occurred
nor the level of toxicity.

• The simulator indicates whether the power consumption remained under

7



100W, but we have access only to the notification.
7: QUSK (Quantifiable Unrelaxable Simulation Known): One of the outputs

cS(x) of the simulation is a concentration level; if it is below zero, the simu-
lation stops and displays NaN for all the outputs except cS .

8: NUSK (Nonquantifiable Unrelaxable Simulation Known):
• A flag indicates that the convergence of some specific and identified

numerical method inside the simulation could not converge.
• An error number/code with associated documentation is obtained.

These are not hidden constraints since the reason for the violation can be
identified. However, a single binary flag indicating that the simulation failed
is considered as a hidden constraint. In the same way, an error message
that cannot be interpreted is equivalent to such a flag and hence should be
interpreted as hidden.

9: NUSH (Hidden):
The simulation failed to complete and nothing is displayed, or a simple flag
is raised or an undocumented error number indicated.

3. Literature review. In this section, we review the existing literature and
collect terminology from the BBO, DFO, and SBO communities in order to unify and
relate our taxonomy to past terms and formulations and to highlight inconsistencies
among previous conventions. This context also underpins the naming conventions used
in QRAK and the more formal definitions on which the taxonomy is built. Some of the
terms from the literature may have been used to define an alternative classification of
the constraints, and some of them have already been mentioned in our presentation,
such as soft versus hard in Section 2.2. We also survey early uses of various terms
(e.g., hidden constraints) for a historical perspective, and we illustrate the use of
the taxonomy in the context of modeling languages, algorithms, and some specific
applications.

Before proceeding, we note that the proposed classification is not related to the
constraint programming field [39], where, within a specific context, constraints can
be expressed as logical prepositions treated by specialized algorithms.

3.1. Hidden constraints. The term hidden constraint corresponds to the NUSH
leaf in the tree of Figure 1. It often appears in the literature on derivative-free
optimization. In the modern literature, this term is typically attributed to Choi and
Kelley [12], who say that a hidden constraint is “the requirement that the objective be
defined.” This definition is used in Kelley’s implicit filtering software [28] and has been
used to solve several examples (see, e.g., [9, 11]) whereby a hidden constraint is said
to be violated whenever flow conditions are found that prevent a simulation solution
from existing. The term is also used by the authors of the SNOBFIT package [26] to
capture when “a requested function value may turn out not to be obtainable.” To
handle such constraints, SNOBFIT assigns an artificial value, based on the values of
nearby points, to the points where such a constraint was violated. A more recent
reference to the term is in [23], where hidden constraints are “constraints which are
not part of the problem specification/formulation and their manifestation comes in
the form of some indication that the objective function could not be evaluated.”

In fact, the term had been previously used in the context of optimization. The
earliest published instance of hidden constraint that we are aware of is from 1967 [7]
and involved optimizing the design of a condenser. In this case, after a design was
numerically evaluated, one needed to verify that the Reynolds number obtained was
high enough to justify use of the equations in the calculations.
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3.2. Introduction to Derivative-Free Optimization textbook. Although
the DFO book [15] focuses on unconstrained optimization, it uses definitions of re-
laxable and hidden constraints similar to those used in QRAK. The book mentions
that unrelaxable constraints “have to be satisfied at all iterations” of an algorithm
while “relaxable constraints need only be satisfied approximately or asymptotically.”
Moreover, constraints for which derivatives are not available and which are typically
given by a black box, are denoted as derivative-free constraints. Although in gen-
eral these constraints can be treated as relaxable, some situations require them to be
unrelaxable. Doing so demands a feasible starting point, which may be difficult to
obtain in practice. Moreover, hidden constraints are seen as an extreme case of such
unrelaxable constraints. They are defined as constraints that

“are not part of the problem specification/formulation, and their
manifestation comes in the form of some indication that the objective
function could not be evaluated.”

The authors of [15] state that hidden constraints have historically been treated only by
heuristic approaches or by the extreme-barrier approach, which uses extended-value
functions in an attempt to establish feasibility.

Scheinberg et al. [13] refer to virtual constraints as “constraints that cannot ex-
plicitly be measured.” Only the satisfiability of such constraints can be checked, and
this is assumed to be a computationally expensive procedure. In our taxonomy such
constraints are N**K.

3.3. Unrelaxable and relaxable constraints. The terms unrelaxable and re-
laxable are widely used in the literature (see [15]). The related notions of hard and soft
constraints appear almost as frequently but with several different meanings. Here, we
follow the convention of [25]:

“To resolve this, the requirements are usually broken up into “hard”
constraints for which any violation is prohibited, and “soft” con-
straints for which violations are allowed. Typically hard constraints
are included in the formulation as explicit constraints, whereas soft
constraints are incorporated into the objective function via some
penalty that is imposed for their violation.”

That is, we view soft constraints as being handled by either additional objectives or
additional objective terms. A nice pre-1969 history of ways to move constraints into
the objective can be found in [17]. Another example comes from SNOBFIT [26], where
soft constraints are “constraints which need not be satisfied accurately.” Other uses of
hard and soft constraint can be found, for example, in [24]. There, the authors refer
to soft constraints as those “that need not be satisfied at every iteration,” a defini-
tion that is directly related to our term unrelaxable. A similar notion is used in [23]:
“Relaxable constraints need only be satisfied approximately or asymptotically.” But
our definition requires that a solution satisfy relaxable constraints, and hence the de-
gree of “approximate” satisfaction must be specified in the problem instance. In [33],
constraints are divided into relaxable and unrelaxable constraints, where unrelaxable
constraints

“cannot be violated by any considered solution because they guar-
antee either the successful evaluation of the black-box function . . . or
the physical/structural feasibility of the solution”

and relaxable constraints “may instead be violated as the objective function evaluation
is still successful.”
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3.4. Modeling languages and applications. Several modeling languages and
collections of test problems, such as AMPL [18], CUTEst [21], GAMS [8], or ZIMPL [29],
use the following classic ways of categorizing constraints: fixed variables; bounds on
the variables; adjacency matrix of a (linear) network; linear, quadratic, equilibrium,
and conic constraints; logical constraints found in constraint programming; and equal-
ities or inequalities. Usually, the remaining constraints are qualified as “general,” a
term frequently used in classical nonlinear optimization. All these constraints fit as
**AK constraints in the “classical optimization” portion of the tree of Figure 1.

The QRAK taxonomy can be illustrated on the following examples of SBO prob-
lems from the recent literature. The community groundwater problem [19] has only
bound constraints (**AK), while the LOCKWOOD problem [34] has a linear objec-
tive and simulation constraints (S); different simulation-based instances of the LOCK-
WOOD constraints are considered in [27] alongside solution methodologies for the re-
sulting formulations. The STYRENE problem from [4] has 11 simulation constraints
corresponding to Leaves 5 and 8 of the tree of Figure 1: 7 quantifiable and relaxable
constraints QRSK, and 4 unrelaxable binary constraints NUSK.

3.5. Algorithms and software for constrained problems. To motivate the
opportunities that such a constraint taxonomy affords, we briefly describe how some
algorithms and software address different types of constraints, using the taxonomy
syntax.

In general, most general-purpose software packages consider QR*K constraints,
but some tend to use exclusively algebraic forms (e.g., box, linear, quadratic, convex).
Furthermore, relaxable constraints often are also assumed to be quantifiable. Several
packages allow for a priori constraints, but some assume that these cannot be relaxed,
while others assume that they can.

The package SNOBFIT [26] treats soft and also NUSH (hidden) constraints. The
software SID-PSM [16] handles constraints with derivatives and U (unrelaxable) con-
straints. The DFO code [14] (which we distinguish from the general class of optimiza-
tion problems without derivatives) considers NUSH (hidden), NU*K, and Q*AK con-
straints. On the DFO solver page [14], the authors recommend moving S (simulation,
difficult) constraints to the objective function, while keeping easy constraints (with
derivatives) inside the trust-region subproblem; the authors also describe virtual con-
straints as N (nonquantifiable) constraints and recommend using an extreme-barrier
approach. The HOPSPACK package [37] explicitly addresses integers; linear equalities
and inequalities; and general inequalities and equalities. Depending on the type of
constraint, HOPSPACK assumes that the constraint is relaxable (e.g., general equality
constraints) or unrelaxable (e.g., integer sets). In NOMAD [30], the progressive-barrier
technique [6] is used for the QRSK constraints, and special treatment (such as projec-
tion) is applied for some Q*AK constraints (i.e., bounds and integers). The extreme
barrier is used for all other constraints, including hidden constraints.

In PDE-constrained optimization, solution approaches can be loosely classified
into “Nested Analysis and Design” (NAND) and “Simultaneous Analysis and De-
sign” (SAND) approaches [20]. In NAND approaches, the state variables of the PDE
constraints are not treated as decision (optimization) variables and hence the solution
of the PDE (for the state variables) is a simulation constraint. This situation exists
even if the simulation is not just a black box, but also returns additional information
(e.g,. sensitivities, adjoints, tolerances). In the NAND approach, the state variables
are included as decision variables and hence the PDE reduces to a set of algebraic
equations (and therefore *A*K constraints in our taxonomy).
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3.6. Other related work. Previous classifications also have been proposed. An
example is the mixed-integer programming classification [36] for linear inequalities,
linear equations, continuous parameters, and discrete parameters.

The closest related work toward a more compete characterization of constraints
is that of Alexandrov and Lewis [3], who examined different formulations for gen-
eral problems arising in multidisciplinary optimization (MDO). These authors consid-
ered constraint sets partitioned along three axes: open (closed) disciplinary analysis,
open (closed) design constraints, and open (closed) interdisciplinary consistency con-
straints. They showed that of the eight possible combinations, only four were possible
in practice. They referred to closed constraints as those

“assumed to be satisfied at every iteration of the optimization. If the
formulation does not necessarily assume that a set of constraints is
satisfied, we will say that that formulation is open with respect to
the set of constraints.”

This convention has subsequently been used by others in the MDO community (see,
e.g., [40]).

The notion of unknown constraints appears in [22] but is not equivalent to its use
in our taxonomy; rather, it corresponds to constraints given by a black box. Note
that the same authors and others addressed hidden constraints in [31].

Additional terms for describing general constraints are found in the literature.
For example, chance constraints [10] are constraints whose satisfaction requirement
depends on a probability. Side constraint is a generic term sometimes used to qualify
constraints that are not lower or upper bounds or to distinguish new constraints added
to a preexisting model; see [2] for an example. Other terms include the notions of
vanishing constraints [1], complementarity constraints, or variational inequalities [32].
Conn et al. describe easy constraints and difficult constraints as follows [13]:

“Easy constraints are the constraints whose values and derivatives
can be easily computed,”
and
“Difficult constraints are constraints whose derivatives are not avail-
able and whose values are at least as expensive to compute as that
of the objective function.”

The latter definition is similar to the derivative-free constraints described in [15]. This
characterization differs from our proposed taxonomy, which does not seek to guaran-
tee an ordering with regard to the computational expense of evaluating a constraint
and/or establishing feasibility with respect to the constraint.

4. Discussion. This work proposes a unification of past conventions and terms
into a single taxonomy, denoted QRAK, which targets the constraints encountered in
simulation-based optimization. The taxonomy has an intuitive representation as a
tree where each leaf describes one of nine types of possible constraints. In addition,
examples have been given for each constraint type and their possible treatment in
applications and algorithms.

We propose that BBO, DFO, and SBO software and algorithms should adopt this
taxonomy for two important reasons. The first is unification, so that researchers in
the field use the same terms and practitioners and algorithm developers share the
same language. The second reason is that the taxonomy is a tool to better identify
constraint types and thereby achieve effective algorithmic treatment of more general
types of constrained optimization problems.

Future work is related to extensions to the taxonomy. One can refine the tree in
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Figure 1, depending on the context, by adding subcases to the leaves. Such extensions
within QRAK could include stochastic, convex, linear, and smooth constraints (i.e.,
constraints for which derivatives are available). Equality, inequality, or set member-
ship is also an option: For example, an equality N*SK constraint is difficult (impossi-
ble?) to treat, whereas an equality Q*AK constraint may be easy. At a different level,
we consider the addition of three branches from each Q node: quantifiable feasibility
only, quantifiable violation only, and fully quantifiable. There is also a limit to being
unrelaxable: So far we say that a constraint is unrelaxable if it is unrelaxable at some
point, and we may want to specify such limits when they are known.
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[35] J. J. Moré and S. M. Wild, Benchmarking derivative-free optimization algorithms, SIAM
Journal on Optimization, 20 (2009), pp. 172–191.

[36] G. L. Nemhauser, M. W. P. Savelsbergh, and G. S. Sigismondi, Constraint classification
for mixed integer programming formulations, COAL Bulletin, 20 (1992), pp. 8–12. http:

//alexandria.tue.nl/repository/books/365757.pdf.
[37] T. D. Plantenga, HOPSPACK 2.0 user manual, Tech. Report SAND2009-6265, Sandia Na-

tional Laboratories, Livermore, California, October 2009.

13



[38] L. M. Rios and N. V. Sahinidis, Derivative-free optimization: a review of algorithms and com-
parison of software implementations, Journal of Global Optimization, 56 (2013), pp. 1247–
1293.

[39] F. Rossi, P. van Beek, and T. Walsh, eds., Handbook of Constraint Programming, Elsevier,
2006.

[40] S. Tosserams, L. Etman, and J. Rooda, A classification of methods for distributed system op-
timization based on formulation structure, Structural and Multidisciplinary Optimization,
39 (2009), pp. 503–517.

14



The submitted manuscript has been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy
Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said article to reproduce, prepare deriva-
tive works, distribute copies to the public, and perform publicly and display publicly,
by or on behalf of the Government.


