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Abstract—We present a general space-filling curve algorithm
for partitioning an arbitrary 3D mesh. We discuss communication
patterns in Adaptive Mesh Refinement (AMR) applications and
how we can reduce communication and improve the quality of
partitions using a better space-filling curve. We compare the our
partitions with those generated using Morton order, which is
currently used by majority of AMR software frameworks. We
used the MiniAMR miniapp from Mantevo to generate our test
cases and also measure the various costs involved in adpative
mesh refinement.

Index Terms—Space-filling Curve; Mesh partitioning; Geomet-
ric partitioning; AMR; Load balancing

I. INTRODUCTION

Adaptive Mesh Refinement is a general technique used for
solving problems in science and engineering where the amount
of computation can be significantly reduced by adjusting the
precision of the solution according to the evolution of the
computation. The governing equations are solved on a discrete
mesh with varying resolution. A fine mesh is used in the
regions that are more sensitive to resolution (e.g., because of
turbulence), and a coarse mesh is used to cover the rest of
the domain. This reduces both computation and storage, as
compared to a a mesh with fixed resolution.

The locations of the regions of interest in an AMR ap-
plication change during the course of the simulation and the
mesh is adaptively refined or coarsened according to location
changes. This creates an interesting and challenging problem
for parallel computing that involves repartitioning a mesh on
the fly with as little overhead as possible. The new partitions
should satisfy the criteria of a good partition i.e load balance
and minimum communication, as much as possible. Repar-
titioning a mesh during the course of a simulation involves
several additional costs besides the actual partitioning phase.
It includes migrating data to its new location and recomputing
the communication pattern for the next phase of the simulation.
A good repartitioning scheme should minimize data migration
and generate the new communication pattern quickly. Space-
filling curves (SFC) have been used as a preferred partitioning
scheme for AMR applications due to their low overhead, good

load balance and low data migration costs. However, not much
work has been done on selecting SFC partitions that are most
appropriate for the dynamic, irregular meshes used in AMR.

II. THE ADAPTIVE MESH REFINEMENT PROBLEM

AMR applications can be broadly divided into Structured
AMR (SAMR) and Unstructured AMR (UAMR). In this work,
we have only evaluated SAMR , although SFCs can be used
for partitioning UAMR problems as well.

A. Structured AMR - Representation

-G

(b) Grid Hierarchy

The grid cells in SAMR are polygons bounded by hyper-
planes parallel to the dimensions of the domain i.e rectan-
gles in 2D and rectangular boxes (or cuboids) in 3D. The
numerical methods for solving these problems were originally
defined by [1]. There are two popular implementations of this
method - patch-based and tree-based. Both implementations
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maintain a hierarchy of grid levels, with grid cells at the
same refinement level appearing at the same height of the
hierarchy tree. The levels are nested, i.e grid cells at level
I+ 1 are formed from subsets of those at level [ which satisfy
certain refinement criteria. The patch-based scheme groups the
refined cells at a level into mostly non-overlapping patches
of different sizes. The tree-based scheme creates equal-sized
blocks out of the grid cells at a level. This leads to slightly
different requirements for each implementation. Patches are
typically larger than blocks. The patch-based method is more
constrained by the load imbalance of various sized jobs. The
tree-based scheme on the other hand needs better partitioning
schemes that can reduce communication during refinement and
halo-exchange. In this paper, we have only dealt with the tree-
based AMR implementation.

1) Tree-based SAMR: Figure la shows an adaptively re-
fined mesh in 2D with two levels of refinement. The refinement
ratio is 2 in either dimension. The grids are named according
to their refinement levels. Gy corresponds to a coarse block
covering the entire problem domain. It is refined into four
blocks labelled G;. Two of the GG1 blocks are further refined
to create blocks belonging to G2 and so on. Figure 1b has
the corresponding tree. The non-terminal nodes in the tree
are indicated using circles and terminals (leaf nodes) are
represented by squares. In a tree-based implementation, the
AMR solution is computed only at the terminal nodes of the
tree. The AMR scheme allows for refinement in space as well
as time. If ref_ratio is the refinement ratio, a refined block
has m times the resolution of its parent block in each
dimension. Similarly, the refined blocks have the option to
advance the solution by ref_ratio timesteps compared to
its immediate coarse neighbor. The communication costs in
SAMR can be broadly classified into the following:

Intra-level: This is the cost of halo-exchange between
neighbor blocks that are at the same level
of refinement.
A block at level [ may share a boundary
with a coarse block at level | — 1 or
with finer blocks at level [ + 1. Data is
exchanged between these boundary blocks
using a scatter-gather pattern. If refinement
is done in time, the coarse-fine boundaries
need to be synchronized.
Refinement/De-refinement:

The decision to refine or de-refine a block

requires communication between itself and

its parent and other neighbor blocks.

Inter-level:

The first two costs require the partitions to have good
locality, i.e blocks that are physically close in space should
be located on the same processor as far as possible. The
third cost includes communication across the tree hierarchy.
This depends to a large extent on how the distributed tree
data structure is implemented. Ideally, a non-terminal block
should be co-located with its child blocks to minimize this
communication.

We have measured only the cost for intra and inter-level
communication for comparison: The code we used, namely the
MiniAMR code from the Mantevo suite [2], is not designed
so as to localize structures at different levels of the tree, so
that communication is not improved with a better partition.
Also, we have only considered refinement in space; all active
blocks advance the solution at the same rate.

III. SPACE-FILLING CURVES IN 3D

A Space-Filling Curve (SFC) f in d-dimensional space is
defined as a continuous surjective function from the interval
[0,1] to [0,1]%. Space Filling Curves are usually built through
successive approximations by piecewise linear curves that
connect the k¢ points of a rectangular grid of equally spaced
points in [0, 1]¢, for increasing values of k. Each curve is
non-intersecting and traverses each point once. We call these
approximations Finite Space Filling Curves, or just Space
Filling Curves, when the the meaning is clear from the context.
Such a finite SFC can be identified with a linear order on the
grid points: the curves order the points and is obtained by
connecting successive points in the linear order. These curves
are locality preserving: successive points on a curve are grid
neighbors; more generally, m successive points are contained
in a cube of volume O(m/k?).

These curves can be used to partition rectilinear grids: One
uses a curve that snakes through the center of the bricks. The
elements are partitioned into p subsets by cutting the curve
into p segments containing each roughly the same number of
points. The partitions have good locality, so that, if the com-
putation requires communication between adjacent bricks, the
partition will be load-balanced and have low communication.

Some of the popular SFCs include Hilbert, Peano and
Sierpinski [3]. Although Morton order [4] does not fit into the
definition of being derived from a family of finite space filling
curves, it is widely used due to its ease of computation. A
Morton order of points in R? can be generated by interleaving
the binary representation of the co-ordinates of the points,
followed by sorting.

Hilbert curves are well-defined in 2D; there is a unique finite
Hilbert curve for any 2" X 2" points on a plane. However, the
definition is not clear for dimensions > 2. Sagan [5] provided a
mathematical and geometric interpretation of a Hilbert curve in
3D, but this definition is not unique. Also, SFCs are generally
defined only for grids which have sizes that are powers of 2
(Hilbert) or 3 (Peano). These constructions can be generalized
to meshes with other dimensions e.g., by embedding them into
meshes of the required dimensions. Tree-based SAMR meshes
can be handled by using a curve (Hilbert for a refinement of
2, Peano for a refinement of 3) that snakes through all cells at
the highest level of refinement. Subcells of a coarser cell are
traversed consecutively, so that the curve also traverses each of
the cells of the adaptive mesh once. However, these methods
result in partitions with degraded locality.

By extension, a Space-Filling Curve for a set S of points in
R? is a continuous, non-intersecting curve that passes through
each point once and is locality-preserving. (We do not provide



Fig. 1. kd-tree for a set of 9 points

a formal definition of locality-preserving for the general case,
but use it loosely to mean that successive points on the curve
tend to cluster in space.)

Such a space filling curves can be used to partition irregular
meshes in R%: Each cell is represented by a point in the cell,
such as its center of gravity; a SFC is used to partition the
points and thus partitioning the cells. If the cells have good
quality shapes then the resulting clusters have good surface to
volume ratios, resulting in low communication overheads.

In the next section we discuss a recursive algorithm to
generate good space-filling curves for arbitrary sets of points
in 3D. Our definition is independent of the geometry of the
domain and hence suitable for adaptively refined meshes.

IV. THE 3D GENERAL SFC ALGORITHM

There are two general techniques to create a finite space
filling curve for a set of points in R?

1) Bit-manipulation of the co-ordinates of the points to

generate keys, followed by sorting of the keys

2) Recursion.

We used recursion to define our SFC. We first arrange
the points in a kd-tree and then traverse it based on a set
of rules to generate the curve. A kd-tree is a data structure
commonly used for solving multi-dimensional search prob-
lems efficiently [6]. Each node of the tree corresponds to a
cuboid in 3D. The root node of the tree represents a cuboid
containing all the points. Subsequent sub-domains (nodes in
the tree) are created by recursively splitting along a hyperplane
perpendicular to one of the dimensions until further splitting is
not possible, i.e there is only one point at a node. These form
the leaf nodes of the kd-tree. In a typical construction, the
splitting is done by alternating between the three co-ordinate
dimensions and the hyperplane passes through the midpoint of
the splitting dimension. For all of our test cases, we built the
kd-tree by splitting along the dimension of maximum spread
of the points. The hyperplane was positioned either at the
midpoint of the splitting dimension, splitting the box into sub-
two boxes of equal length; or at the median, splitting into
two sub-boxes containing an equal number of points. Figure 1
shows an example for kd-tree construction for a set of 9 points
in 3D. In this example, we always split along the median of
the dimension of maximum spread.

A. Traversal Rules

Once the kd-tree is constructed, the SFC is generated by
traversing the tree according to a set of traversal/refinement

rules: For each cuboid, we specify the face through which the
curve enters the cuboid and the face through which it exits
it. The order of traversal of the leaves of the kd-tree specifies
the SFC. The traversal rules are also defined recursively. We
start by specifying an order for the root node. The orders of
traversal for the children of a node are generated by refining
the order for the parent node when it is split.

TTP
LT — {TP,BM, RT, BK, FT}
BK TP — {LT,RT,BM,FT, BK}
R / RT — {BM, LT, TP, FT, BK}
T - BM — {LT,TP,RT,FT, BK}
Loy RT FT — {LT,RT,TP,BM,BK}
BK — {LT,RT, TP, BM, FT}
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Fig. 2. Directions for entry/exit for each face of a cuboid

Our rules generate a hilbert-like curve in 3D that is face-
continuous - adjacent cuboids share a common face and the
curve use this common face to traverse from one cuboid to
the next. As shown in figure 2 there are 30 different choices
of entry and exit faces for a 6-faced cuboid. Most of these
are symmetric transformations of each other. We need to
consider only two base cases - cis and trans. Trans considers
the scenario where the curve enters and leaves the cuboid
through opposite parallel faces. Cis covers all cases where the
curve enters and exits the cuboid through its adjacent faces
(sharing a common edge). All traversal rules can be generated
by applying symmetric transformations to the rules for these
two base cases.

The cis case has three sub-cases based on whether the
cuboid is split in a dimension parallel to the entry face, parallel
to the exit face or perpendicular to both. There are unique
ways to traverse the sub-domains for the first two cases. For
the third case, we chose one of the two options that minimizes
discontinuity in the curve by matching the entry location with
the previous exit face. Figure 3 describes the three cases in
detail.
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Fig. 5. SFC on a set of 9 points in 3D

Similarly, for frans, one can identify three cases based on
whether the splitting dimension is parallel to the entry and
exit faces or perpendicular to both. We deal with ambiguities
in the same manner as before, by choosing the shortest face-
continuous path through the sub-domains. The trans rules are
explained in figure 4.

Figure 5 provides an example for traversing a kd-tree of
9 points in the left to right direction. The cuboid on the left
has the directions marked on it in red, based on the traversal
order of the nodes in the tree. The cuboid on the right has
the generated curve drawn in blue. We have an example for
resolving an ambiguity here. After visiting point 6, the curve
could either visit point 7 or point 8. But we choose point 7
because it is closer to 6 and therefore the shortest path for
the curve. The pseudocode for kd-tree traversal is provided in
algorithm 1.

B. Special Cases

We described the construction assuming that each box is
split into two sub-boxes when refined. Many SAMR algo-
rithms refine boxes by directly splitting them into four quad-
rants in 2D, or eight octants in 3D. This types of refinement
can be handled as special cases of the general algorithm.

The general algorithm has the following degrees of freedom:

o The order in which boxes are split
o The choice of the dimension being split

Algorithm 1 Kd-tree Traversal

procedure TRAVERSE(n)
entry + n.ENTRY()
exit < n.EXIT()
splitdim < n.SPLITDIM()

entry_pt < n.ENTRY_LOC() > Used to resolve ambiguities

first < ORDER(entry, exit, splitdim, entry_pt)
which child is visited first
u < n.CHILD( first)
v + n.cHILD(1- first)
u.entry <— entry
v.exit < exit
if splitdim = dimX then
if first =0 then
u.exit < RT
v.entry <+ LT
else
u.exit < LT
v.entry < RT
end if
else if splitdim = dimY then
if first =0 then
u.exit <+ BK
v.entry + FT
else
u.exit < FT
v.entry + BK
end if
else
if first =0 then
u.exit < TP
v.entry + BM
else
u.exit <+ BM
v.entry < TP
end if
end if
if u.size() > 1 then
TRAVERSE(u)
end if
if v.size() > 1 then
TRAVERSE(v)
end if
end procedure

> Selects




o The choice of the displacement for the splitting hyper-
plane.

It is easy to see that refinements into quadrants or octants
can be obtained by a suitable choice of these parameters.

V. PARALLEL ALGORITHM FOR SFC CONSTRUCTION

The tree-based AMR is naturally suited to a parallel im-
plementation of SFC ordering on the boxes. The domain is
discretized into boxes which have a strict hierarchical rela-
tionship between each other. The active boxes in the domain
are the leaf nodes in the tree. New boxes are created during
the refinement stage by splitting an existing active box. The
box that is split is no longer an active box and is promoted to
being a parent node in the tree. Boxes are deleted from the tree
during the de-refinement or coarsening stage. A parent node
in the tree becomes the new active box and its child boxes are
removed during coarsening.

We use the co-ordinates of the center of a box as the data
points in our SFC algorithm. Each box is associated with an
entry face and an exit face. When a box is split into two sub-
boxes then the algorithm described in the previous section is
used to compute the entry and exit faces for each of the two
sub-boxes. In particular, this determines the order in which the
two sub-boxes are visited (they are visited consecutively). We
also generate recursively keys that encode this traversal order.

The parallel SFC algorithm has two steps :

1) Key Generation
2) Sorting

A. Key Generation

This phase of the algorithm assigns keys to newly added
blocks to the tree. Each node is associated with a binary
string. The root is associated with the empty string L. If a
box associated with the key k is split into two sub-boxes, then
the first traversed box is associated with the string k0 and the
second traversed box is associated with the string k1. When
the sub-boxes are merged back, then the parent box regains
its original key k. It is easy to see that the lexicographic order
of the keys encodes the SFC traversal order.

In practice, akey k = ky ... k,, is represented by the integer
number ki ...k;,0...0. In order to properly compute key
values one also needs to store the key length, i.e., the depth
of the node in the tree.

We can use several shortcuts: If the computation starts from
a regular 2F x 2% x 2% Cartesian mesh then the keys for the
mesh boxes can be computed directly from the box indices. If
boxes are split into octants, then we can compute directly the
keys of the eight children from the key of the parent.

B. Sorting

Once the keys are generated, we sort them locally. If
the initial domain was ordered and partitioned according to
some SFC, then concatenating the partially sorted key lists is
sufficient to generate the full curve. All the keys on processor
P; will be greater than or equal to those on P;_; and less
than or equal to the keys on P;; ;. Now, the curve needs to be

sliced so that all processors have roughly the same workload.
Since sorting is local, we need to determine the position of
a block/key in the global order. This is done using a parallel
prefix operation to determine the total number of keys to the
left of a particular key. After this step, the curve can be sliced
into equal sized segments. For the test cases we used in this
paper, all blocks performed the same amount of work. In the
case where the mesh is refined in time, we can add a weight
value to a block that is inversely proportional to its refinement
level (since finer blocks are updated more often). The curve
should then be sliced into equal weight segments. Paramesh [7]
uses a similar technique to order the blocks using Morton.
But they use bit-interleaving to generate the Morton keys. We
wanted a mechanism that is more general and can be applied
to irregular distributions.

VI. EXPERIMENTS

We used MiniAMR from the Mantevo miniapp suite to
test the quality of our SFC partitions. This miniapp has a
tree-based AMR implementation modeled on Paramesh. It
was designed with the intention to better understand the
communication behavior of AMR applications. Therefore, the
computation kernel is very simple. It is a single loop that
averages the values of each variable based on a stencil. The
baseline implementation of MiniAMR does the following :

1) - Create an initial 3D Cartesian grid of blocks and a
set of objects in the grid. The position, size and shape
of the objects can be decided by the user. The objects
can be made to move at a certain speed in the domain.
They can also be made to grow/shrink during the course
of the simulation. Blocks are refined/de-refined based on
whether they intersect the object or not.

2) - Refinement/de-refinement decisions are subject to the
constraint that no two adjacent blocks should differ by
more than one refinement level. The maximum number
of refinement levels is decided by the user.

3) - After every refinement/de-refinement, the average and
maximum load on any processor are computed. Load
balancing is triggered if they differ by more than a
ratio decided by the user. The current load balancing
scheme in MiniAMR uses an RCB (recursive co-ordinate
bisection) algorithm that recursively distributes the extra
blocks on a processor along each dimension. The blocks
are distributed to their new locations, the pointers in the
tree are adjusted and the new communication pattern is
determined.

4) The stencil computation and halo-exchange routines use
the current assignment of blocks to processors until the
next load balancing step. The simulation runs until the
maximum number of time steps is reached. Refinement is
done only in space; all active blocks advance at a uniform
rate.

The baseline implementation uses separate data structures
to store the non-terminal and terminal nodes in the tree. The
terminal nodes (active blocks) are not stored in contiguous
memory locations, which affects the efficiency of the stencil



computation code as well as the on-processor copying of ghost
(halo) data. We made changes to some of the communication
routines of the baseline code to improve its performance. The
current version of MiniAMR orders inter-processor communi-
cation according to the dimensions of the grid; all neighbors
in the x dimension are exchanged before y and then z. This
was inefficient for SFC partitions. So we aggregated messages
so that any pair of processors communicate atmost once
during a halo exchange step. The parameters which affect
the communication time are therefore the maximum degree
(the maximum number of distinct messages sent/received by
a process) and the maximum communication volume (the
maximum number of bytes sent/received by any process).

We also modified the block re-distribution routines of
MiniAMR. The baseline implementation did not aggregate
blocks during re-distribution - blocks were sent to their new
locations one at a time . We aggregated messages so that all
the blocks that need to be moved from F; to P; are packed
and sent in a single message. Besides, we used separate ghost
buffers for each face of a block and parallelized on-processor
communication using openmp [8].

A. Comparison with Baseline Implementation

#p’r‘ocs Tcomp Teomm ﬂb Texec
128 15.24 30.15 3.979 | 54.70
256 13.10 26.96 4.852 | 51.17
432 10.74 23.32 6.79 49.35
512 10.40 22.86 5.77 46.72
1024 8.55 19.21 7.15 44.16

2048 7.58 17.98 9.23 47.04
TABLE I

TOTAL RUNNING TIMES FOR THE BASELINE IMPLEMENTATION FOR
DIFFERENT PROCESSOR COUNTS

We refer to our SFC as GenSFC for the rest of the
discussion. The testcase we constructed for this comparison
is that of a deforming sphere hitting a cuboid. Blocks are
refined at the interface of the sphere and the cuboid. We ran
the simulation for a total of 2000 timesteps with refinement/de-
refinement frequency equal to 3 timesteps. Each block consists
of 4X4X4 grid cells and each cell has 32 data variables
associated with it. We used a 7 — pt stencil with a ghost region
of width = 1 grid cell in all dimensions. Load balancing
was done aggressively, i.e whenever the maximum number of
blocks on any processor is at least two more than the average.
We split total running time into the following costs :

Tewec = Lcomp + Tco’mm + ﬂb + Tref

where T,yc. is the total running time, .oy is the total
time for stencil computation and T, is the time taken
for exchange of ghost values over all timesteps. 1j; is the
total time spent in load balancing. This includes the cost of
computing new partitions and re-distributing blocks. Ti.c; is
the time taken for refinement and de-refinement. Table I shows
the running times for the baseline implementation. Tables II

and III are the running times for the modified miniapp using
Morton order and our SFC partitions. The values reported in
tables I, II and III are the maximum of the sum over 2000
timesteps.

#pTOCS Tcomp Tcomm le Tezec
128 12.90 12.74 3.48 35.02
256 11.08 11.28 499 | 35.17
432 9.06 9.44 6.02 33.29
512 8.78 9.11 5.61 32.41
1024 7.21 7.84 6.61 31.62
2048 6.47 7.56 7.20 | 33.98

TABLE II

TOTAL RUNNING TIMES FOR THE MODIFIED MINIAPP WITH MORTON SFC
PARTITIONS FOR DIFFERENT PROCESSOR COUNTS

#procs Tcomp Teomm Ty Tezec
128 12.91 12.81 391 35.97
256 11.10 11.03 5.02 35.19
432 9.06 9.13 6.64 33.86
512 8.78 8.93 5.68 32.57
1024 7.22 7.40 6.66 31.37
2048 6.47 6.95 7.99 34.24

TABLE IIT

TOTAL RUNNING TIMES FOR THE MODIFIED MINIAPP WITH GENSFC
PARTITIONS FOR DIFFERENT PROCESSOR COUNTS

From the observations, it can be seen that message aggrega-
tion makes a big difference to the total communication time.
Also, the use of openmp for computation and on-processor
communication is an added advantage. The load balancing
time of the RCB algorithm seems to worsen with increasing
number of processors. This is due to the lack of message
aggregation during block redistribution. The modifications
made to the baseline implementation have optimized the inter-
processor communication of the miniapp and this is reflected
in the total running times. The GenSFC algorithm we used for
this test case uses the midpoint of the dimension of maximum
spread as the splitting strategy for the initial domain. Between
Morton order and GenSFC, the Morton order partitions have
higher Ty, due to discontinuities in the curve. GenSFC has
slightly higher values for 7}, in some cases. This is due to the
increased locality of the curve. It places more blocks that are
near each-other in physical space on the same processor. This
increases the likelihood of co-located blocks being refined and
hence more blocks have to be moved during load balancing
than Morton. However, the values reported here are an upper
bound for 7j;, since load balancing is done at the slightest
change in the number of blocks. In real applications, load
balancing is done less often. Also, the observations for 128
processes is interesting. The communication cost for GenSFC
is higher than Morton for this case. This is again due to its
higher locality. For 128 processes, the communication cost
increased as a result of the on-processor memory accesses for
copying ghost values. The non-contiguous block data structure
used by MiniAMR is the reason behind this increase. The
active blocks in the tree should be placed in contiguous



memory locations by compressing the sparse array. This effect
does not appear in the remaining observations due to fewer
blocks per processor.

Since we have not optimized the refinement/de-refinement
communication in MiniAMR, the values for 7,,.. donot
reflect the time saved due to better partitions. In the current
version of MiniAMR, the communication during refinement
is a huge overhead because of separate decompositions used
for the non-terminal and terminal nodes and indirect memory
accesses. Therefore, we cannot conclude anything from the
measured values of T,... As explained earlier, T .. can only
be improved by using better data structures and optimizing
communication across the tree hierarchy.

We analyse these results in detail in the following sections
using different test cases and splitting strategies for GenSFC.
We used the following communication model for our experi-
ments :

T. = degee * a + b x comm_vol

where degree is the number of distinct messages and
comm_vol is the total bytes sent/received by a process. a is
the latency or set up cost o'f a message apd b is m. The
values of T.,,,m reported in our results includes the following
Costs

1) Inter-processor halo exchange

2) Packing ghost data into send buffers

3) On-processor copying of ghost data (overlapped with
inter-processor communication)

4) Unpacking of ghost data from receive buffers

B. Testcasel

The first test case resembles an explosion; we created an
expanding object inside a cuboid. Refinement was done only at
the advancing front of the object. The center of the object was
chosen to be the geometric center of the domain (cuboid). The
rate of expansion of the object was 2x 10~3 in all dimensions.
We introduced asymmetry in this test case by varying the
aspect ratio of the cuboid. The simulation was run for a total
of 1000 time steps, the maximum number of refinement levels
was chosen to be 6. Refinement/de-refinement was done every
3 time steps. Tables IV and V show the measured values for the
maximum of the sum of Tiomp, Teomm, Tip and Tepe. over
all time steps, across all processes. We used blocks of size
4X4X4 with halo width equal to 1. Also, we have assumed
a 7 — pt stencil for all three test cases.

Table IV gives the values for Morton partitions and table V
has the same observations using GenSFC partitions. For the
GenSFC algorithm, we used the geometric midpoint of the
dimension of maximum spread as the splitter. The initial
distribution of blocks was partitioned using serial versions of
Morton and GenSFC; the top level keys were assigned during
this step. For the subsequent load balancing steps, we used
the parallel versions of both curves. Load balancing was done
whenever there was a change in the load i.e the maximum
number of blocks on any process exceeded the average value

by at least 2. This is a measure of the worst total 77, for both
SFCs. The experiments are tabulated as two categories based
on message lengths - short and long. When the messages are
short the communication time is dominated by the maximum
degree of any partition and when they are long, the bottleneck
is the bandwidth The short messages have 2 variables per grid
cell and the long messages have 20. We have designed the
experiments in such a way that they are weak scaling in some
sense - the maximum number of blocks per process per time
step was kept approximately the same.

F#procs | init_domain Short Msgs Long Msgs
Teomp | Teomm | Tiv | Tewec | Teomp | Teomm | Tip | Tewee
512 32X4X4 0.306 1.81 1.85 | 21.17 2.66 3.45 3.39 | 28.03
1024 32X8X4 0.243 1.817 1.20 | 19.94 2.06 2.56 2.65 | 2620
2048 32X8X8 0.514 2.34 332 [ 1552 4.72 5.98 6.81 | 27.11
4096 32X16X8 0.413 2.09 349 [ 1558 3.81 548 731 | 2625
8192 64X16X8 0.389 2.15 4.85 | 17.17 3.57 5.34 9.39 | 2830

TABLE IV
TOTAL RUNNING TIMES FOR TESTCASE] WITH MORTON PARTITIONS FOR
DIFFERENT PROCESSOR COUNTS

#procs | init_domain Short Msgs Long Msgs
Teomp | Teomm | Ty | Tewec | Teomp | Teomm | Tip | Texec
512 32X4X4 0.306 1.04 1.86 | 20.13 2.66 3.04 339 | 27.13
1024 32X8X4 0.243 0.89 1.61 [ 20.89 2.06 2.32 374 | 27.11
2048 32X8X8 0.514 1.91 34 15.02 4.72 5.46 6.78 | 2687
4096 32X16X8 0.413 1.69 3.61 15.12 3.81 4.83 7.38 | 25.92
8192 64X16X8 0.389 1.81 4.83 | 16.83 3.57 4.78 9.41 | 2781

TABLE V
TOTAL RUNNING TIMES FOR TESTCASE1 WITH GENSFC (MIDPOINT)
PARTITIONS FOR DIFFERENT PROCESSOR COUNTS

The observations in tables IV and V show the lower T.,,,m
for the GenSFC partitions, for both short and long messages.
The discontinuities in Morton order increase its maximum
degree as well as maximum communication volume. The
difference is more significant at large process counts when
there are few blocks per process and when the domain is
asymmetric. We designed our experiments carefully to capture
this difference. The worst case Ty, of GenSFC partitions is
slightly worse due to its better locality. But this is an upper
bound, which can of course be amortized by load balancing
less frequently. The improved communication times does not
reflect adequately in the total execution time due to the same
reasons explained in the previous section.

C. Test case2

This test case was designed to closely represent slowly
moving particle distributions in astrophysics simulations. The
distributions tend to display clustering of points in different
regions of the domain as the simulation evolves. We created
an ellipsoid object with a maximum of 4 levels of refinement
throughout its volume positioned inside an asymmetric cuboid
using MiniAMR. The object was initially positioned near the
left face of the cuboid and made to move slowly towards the
right with a constant velocity of the order of microseconds.
The simulation was run for a total of 2000 time steps. The
refinement/de-refinement frequency was set to 3 time steps.
Block size, ghost region width and stencil are same as the



previous test case. We measured the total computation time,
communication time, load balancing time and execution time
for Morton and GenSFC partitions. For the GenSFC algorithm
we experimented with two splitting functions

1) Geometric midpoint of the dimension of maximum spread
2) Median of the point distribution along the dimension of
maximum spread

We used a serial version of Morton and GenSFC for the
initial set of blocks, followed by parallel versions of the curve
for the subsequent load balancing steps.

Figure 6 and figure 7 show the curves generated for this
testcase for 128 prcessors and 3 levels of refinement.

Fig. 6. Morton order for testcase2

Like in the previous test case, we divided our results into
two categories based on message size - short and long. This
test case is different from the previous example where the
object was placed at the geometric midpoint of the domain.
Here, majority of the points are distributed in the volume
of the object which is entirely located in the left half of
the domain at the start of the simulation. There is dense
clustering of points in this region and this is not captured by
Morton and the midpoint splitter of GenSFC. The maximum
degrees of both Morton and GenSFC+midpoint is very high
for this configuration, as can be seen from the 7¢,,,,, values
of short messages. The communication volumes are also high
for these partitions due to high surface to volume ratio. Again,
the experiments are designed to reflect weak scaling. The
maximum number of blocks per processor per time step is
almost the same across different values of #procs. The results
seem to be influenced largely by the asymmetry and clustering
in the domain. For example, the highest values for T,mm
are obtained when the domain has maximum asymmetrys; it is
a long narrow box with clustering in one quarter (32X4X4,
32X8X8, 64X16X8). Splitting along the geometric midpoint
doesn’t help in these cases.

We obtained the best results when the splitter was chosen to
be a combination of median and midpoint. We split the domain
along the median of the dimension of maximum spread at
the top levels of the recursion, followed by midpoint at the
lower levels. This created partitions with much better surface
to volume ratio and reduced the maximum degree of the

F#procs | init_domain Short Msgs Long Msgs
Teomp | Teomm N Texee | Teomp | Teomm Tip Tewec
512 32X4X4 292 6.72 0.1323 [ 15.64 22.77 22.29 0.11 51.02
1024 32X8X4 2.67 6.19 0.17 14.73 2121 21.05 0.286 48.42
2048 32X8X38 2.67 6.81 0.393 16.98 19.80 19.29 0.44 45.84
4096 32X16X8 2.02 4.60 0.746 13.42 19.21 19.7 1.03 44.86
8192 64X16X8 2.00 4.93 1.84 15.20 21.00 22.03 2.06 | 49.457

TABLE VI
TOTAL RUNNING TIMES FOR TESTCASE2 WITH MORTON PARTITIONS FOR
DIFFERENT PROCESSOR COUNTS

#procs | init_domain Short Msgs Long Msgs

Teomp | Teomm | Ty | Tewee | Teomp | Teomm | Tip | Tewec
512 32X4X4 2.92 6.62 0.14 15.40 22.78 21.98 0.19 | 50.92
1024 32X8X4 2.67 6.12 0.17 14.53 21.21 20.75 0.41 48.71
2048 32X8X8 2.67 6.01 0.40 16.04 19.80 19.26 0.51 46.02
4096 32X16X8 2.02 423 0.75 13.56 19.21 19.15 1.27 | 45.71
8192 64X16X8 2.00 4.82 1.91 15.36 21.00 21.93 232 | 4937

TABLE VII

TOTAL RUNNING TIMES FOR TESTCASE2 WITH GENSFC (MIDPOINT)
PARTITIONS FOR DIFFERENT PROCESSOR COUNTS

F#procs | init_domain Short Msgs Long Msgs

Teomp | Teomm | T | Tevee | Teomp | Leomm | Tib | Tewee
512 32X4X4 292 5.87 0.136 | 15.17 2278 18.93 0.26 | 50.17
1024 32X8X4 2.67 5.68 0.19 14.91 21.21 18.63 0.62 49.24
2048 32X8X8 2.67 5.61 0.44 16.38 19.80 17.85 0.58 | 45.98
4096 32X16X8 2.02 3.70 0.76 13.43 19.21 17.34 141 | 4491
8192 64X16X8 2.00 3.92 1.98 15.20 21.00 18.47 2.56 [ 48.78

TABLE VIII

TOTAL RUNNING TIMES FOR TESTCASE2 WITH GENSFC (MEDIAN)
PARTITIONS FOR DIFFERENT PROCESSOR COUNTS

GenSFC for testcase2

Fig. 7.




partitions drastically. The results are tabulated in table VIIIL.
The worst case partitioning times are slightly higher than
Morton, but as explained earlier, this is an upper bound. The
values of T,,.. continue to be affected by the inefficient tree
data structure, so we don’t see a big improvement in the total
running time.

D. Testcase3

Fig. 8. Morton for testcase3

The final test case is similar to test case2, except that
refinement was done only at the interface between the object
and the domain. We used 5 levels of refinement and 2000 time
steps. The object was moved at the same rate as the previous
case. Figures 8 and 9 show the snapshots of space-filling
curves traversing the domain during one of the early stages
of the simulation. Note the dense refinement region along
the boundary of the object. This was designed to resemble
refinement along slowly moving fronts, commonly seen in
scientific simulations. The refinement frequency, block size,
stencil and number of variables are the same as the previous
two test cases. Again, we tried to create experiments to show
weak scaling. The shape of the domain (init_domain) was
modified to introduce asymmetry.

Fig. 9.

GenSFC for testcase3

From our measurements, we found Morton and
GenSFC+midpoint to have very high maximum degree
values. This lead to an increase in their T,,,,,, values for

#procs | init_domain Short Msgs Long Msgs

Teomp | Teomm | Ty | Tewee | Teomp | Teomm | Tip Tewee
864 24X6X6 3.86 9.89 0.787 | 24.92 29.45 31.86 1.07 [ 71833
1024 32X8X4 4.39 10.67 1.129 | 27.14 33.29 36.15 1.09 | 79.725
1372 28XT7XT 3.09 8.54 1.27 24.40 31.26 35.93 2.40 82.124
2048 32X8X8 2.70 8.36 233 28.09 26.18 29.36 272 72.08
4096 32X16X8 2.56 8.28 2.97 29.62 14.82 15.76 3269 [ 42.633
8192 64X16X8 1.95 5.65 522 25.57 20.21 23.15 5.49 59.57

TABLE IX

TOTAL RUNNING TIMES FOR TESTCASE3 WITH MORTON PARTITIONS FOR
DIFFERENT PROCESSOR COUNTS

#procs | init_domain Short Msgs Long Msgs

Teomp | Teomm | Ty | Tewee | Teomp | Teomm | Tip | Tewec
864 24X6X6 3.86 9.90 0.75 | 24.89 29.45 31.12 1.15 | 72.02
1024 32X8X4 4.389 10.40 1.19 | 2691 33.29 35.96 1.20 | 78.63
1372 28XT7XT7 3.09 7.94 1.16 | 22.68 31.26 35.45 249 | 80.61
2048 32X8X8 2.70 833 2.33 | 28.13 26.18 29.03 2.81 | 7173
4096 32X16X8 2.56 8.12 3.03 | 29.94 14.82 15.23 3.8 41.26
8192 64X16X8 1.95 5.01 5.30 | 25.87 20.21 22.89 5.63 | 58.92

TABLE X

TOTAL RUNNING TIMES FOR TESTCASE3 WITH GENSFC(MIDPOINT)
PARTITIONS FOR DIFFERENT PROCESSOR COUNTS

F#procs | init_domain Short Msgs Long Msgs

Teomp | Teomm | Tiv | Tewee | Teomp | Teomm | Tty | Tewee
864 24X6X6 3.84 8.91 0.78 | 24.48 29.45 29.93 1.57 [ 7138
1024 32X8X4 4.39 9.13 1.19 | 25.87 33.29 33.74 1.41 | 76.18
1372 28X7X7 3.09 7.38 1.17 | 2229 31.26 32.03 2.86 | 79.56
2048 32X8X8 2.70 7.42 233 | 27.68 26.18 27.12 323 | 7274
4096 32X16X8 2.56 7.08 32 28.75 14.82 14.96 4.15 | 40.77
8192 64X16X8 1.95 3.89 554 | 2513 20.21 21.18 5.80 | 57.63

TABLE XI

TOTAL RUNNING TIMES FOR TESTCASE3 WITH GENSFC(MEDIAN)
PARTITIONS FOR DIFFERENT PROCESSOR COUNTS

short messages. We were able to balance the degree of the
partitions by splitting along the median of the distribution. As
in test case2, the splitter shifted to midpoint of the dimension
of maximum spread at the lower levels of recursion. There
is significant lowering of communication times using the
modified splitter. Therefore, this seems to be a good approach
to identify clustering in arbitrary point distributions and
obtain partitions with better surface to volume ratio. In all of
the above testcases, we have shown a slice of the simulation
where the distribution is evolving slowly.

VII. RELATED WORK

Parallel AMR is an area of active research and there are
many frameworks available which have displayed scaling to
large processor counts. GrACE [9] and Paramesh [7] are both
frameworks for tree-based AMR implementation and both
use SFC as partitioner of choice. Paramesh, which is used
by FLASH [10], computes Morton order of the entire tree,
including terminals and non-terminals. GrACE uses a Peano-
Hilbert ordering of the domain at the top level and orders
blocks according to this. They seem to have an efficient
distributed tree data structure where the blocks are indexed
using SFC keys. But it has not been optimized further; there
is significant communication overhead to maintain this design.
Both implementations have not analysed the quality of their
SFEC partitions in terms of degree and communication volume.
Boxlib [11], Chombo [12] and SAMRAI [13] are software
packages which use a patch-based implementation. They may
further divide a patch into blocks. Boxlib stores and partitions



the the adaptive grids in the hierarchy according to their refine-
ment levels. All the grids at a particular level are partitioned
across all processes independently. This can adversely affect
communication, since locality between levels is lost. Chombo
is based on Boxlib, however, they partition the disjoint boxes
that comprise an adaptive mesh using Morton order. The boxes
may be of different sizes. They use a knapsack algorithm to
load balance these boxes across processes. The quality of these
partitions in terms of load balance and communication cost
have not been evaluated. Also, this problem is constrained by
load balancing at the granularity of boxes instead of smaller
blocks. Besides, the meta data containing the grid hierarchy is
maintained by all processes. Whenever the grids are modified,
this meta data information needs to be updated. SAMRAI
uses SFC-like ordering to arrange patches of different sizes
in a linear list and balances the load by distributing the
list. Enzo [14] is an open-source AMR package that has a
patch-based implementation. It support blocks of arbitrary
sizes. It partitions the top level grid using an SFC order, but
the lower levels are kept local to a process. This can lead
to load imbalance. They overcome this to some extent by
having each over-loaded process occasionally share its load
with other processes. The communication cost of this greedy
load balancing scheme can be high if data is migrated to
distant processes frequently. The effectiveness of this methods
depends to a large extent on the amount of clustering in the
mesh. There has been work in the algorithms community
to define parallel graph partitioners that minimize edge-cut
[15], [16] and [17]. They have high re-distribution costs. [18]
describes a parallel algorithm based on graph partitioning that
reduces re-distribution cost. [19] explored SFC partitions to
some extent, but their parallel algorithm was not effective.
New partitions were computed by exchanging additional work-
load with neighboring processes. [20] discusses an SFC-like
mapping to generate quick partitions, but locality may be lost
when new points are added or when they move.

VIII. CONCLUSION

Our SFC algorithm is able to identify clustering of points
in the adaptive mesh and partition accordingly. This created
partitions of better quality. The current version applies median
splitting only on the initial data. The results reported in this
paper are valid for a simulation window where the median
doesnot shift by a large amount. If there is a large deviation
from the current median value, partition quality will drop.
We are currently working on implementing a parallel version
of the median splitter so that this technique can be used
adaptively whenever the domain changes. We are also working
on improving the data structures used to represent the AMR
grid hierarchy so that look-up and update operations on the
tree can be done inexpensively without the need for global
information at every process.
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