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Abstract—Many scientific and numerical applications, in-
cluding quantum chemistry modeling and fluid dynamics
simulation, require tensor product and tensor contraction eval-
uation. Tensor computations are characterized by arrays with
numerous dimensions, inherent parallelism, moderate data
reuse and many degrees of freedom in the order in which to
perform the computation. The best-performing implementation
is heavily dependent on the tensor dimensionality and the target
architecture. In this paper, we map tensor computations to
GPUs, starting with a high-level tensor input language and
producing efficient CUDA code as output. Our approach is
to combine tensor-specific mathematical transformations with
a GPU decision algorithm, machine learning and autotuning
of a large parameter space. Generated code shows significant
performance gains over sequential and OpenMP parallel code,
and a comparison with OpenACC shows the importance of
autotuning and other optimizations in our framework for
achieving efficient results.
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I. INTRODUCTION

Computer architecture is undergoing a significant period
of exploration to find new ways for continued performance
gains while maintaining energy efficiency and reliability.
The result is a diverse landscape of architectures that in-
corporate features such as massive socket-level parallelism,
accelerators, and deep memory hierarchies. Developers of
high-performance computational science applications are
thus faced with the challenge of maintaining performance
portability across diverse architectures.

We are pursuing an approach to performance portability
that uses a domain-specific language (DSL) to specify high-
level semantics, a transformation and code generation frame-
work to map the DSL to an architecture, and autotuning
and machine learning to search among many possible code
variants. In this paper, we focus on GPU-based computation
of tensor contractions, a multidimensional generalization
of matrix-matrix multiplication. Such computations arise
frequently in computational science applications. We focus
on specific instances from computational fluid dynamics

using the spectral element method and electronic structure
modeling using coupled cluster theory.

As compared to other DSLs for tensor contraction [4, 27],
we focus on a class of tensor computations with small
dimensions on GPU architectures. In such cases, mapping
the problem to use highly-tuned linear algebra libraries
will not achieve high performance as these libraries are
optimized for large matrices. Our approach was driven by
a desire to improve specific tensor problems not addressed
by current tools, but we also view this work as an ex-
emplar for developing highly-tuned applications specialized
for individual architectures starting with a mathematical
representation of the problem in a DSL. This paper makes
the following contributions: (1) a modular domain-specific
system design; (2) a new decision algorithm for generating
optimized implementations for GPUs; (3) a new machine
learning approach customized to the resulting search space
of GPU implementations; and, (4) GPU performance results
that show significant gains over sequential, OpenMP and
OpenACC code. The modular system Barracuda starts from
a mathematical representation, generates a large search space
of possible implementations, and uses autotuning and ma-
chine learning to generate highly-optimized code targeting
a specific architecture.

Section II of this paper provides an overview of the prob-
lem domain and describes the Barracuda system. Section
III describes the high-level module Optimizing Compiler
with Tensor OPeration Intelligence (OCTOPI), a DSL and
optimizations for tensor contractions. Section IV describes
the intermediate module Tensor Contraction Representation
(TCR), which performs code generation from a tensor-
specific representation and encodes the autotuning search
space. Section V presents the new machine learning algo-
rithm SURF, which is used to search the large space of
code transformations. Section VI describes the experimental
design and results on three generations of NVIDIA GPUs.
Section VII describes related work. Section VIII is a con-
clusion.



Figure 1. Barracuda framework for tensor contraction code generation.

II. OVERVIEW

A. Background

Tensors are a multidimensional generalization of matri-
ces and are a natural way to express many computations
arising in scientific computing. The rank of a tensor is
the number of dimensions; a vector is a rank-1 tensor and
a matrix is a rank-2 tensor. Two types of tensor compu-
tation are particularly common: tensor decompositions, a
computation frequently used in data analysis, and tensor
contractions, a multidimensional analog of matrix-matrix
multiplication used in coupled cluster electronic structure
calculations [5, 27], in spectral element discretizations of
partial differential equations (PDEs) [9], and as a building
block for tensor decompositions. In this paper we focus on
tensor contractions, which can be expressed as summation
along one or more tensor dimensions.

For convenience, we represent tensor contractions using
the Einstein summation convention, where whenever the
same index appears twice in an expression, once as a
superscript and once as a subscript, there is an implied
summation over all values of an index. Thus, the vector
inner product is represented as y = uiv

i, the matrix-vector
product as yi = Ai

jx
j , and the matrix-matrix product as

Ci
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j
k. The contraction of a rank-3 tensor with another
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and the contraction of a rank-3 tensor with another rank-3
tensor along two dimensions results in a rank-2 tensor
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We are interested in computing multidimensional tensor
contractions as efficiently as possible. We focus on scenarios
featuring computations over thousands of identically-sized
small tensors (size O(1)–O(10) in each dimension) because
they occur naturally in the spectral element method [9] and
provide a building block for computations with large tensors
in coupled clustered computations [5, 27].

Consider the case of a pth-order spectral element dis-
cretization of a PDE on a mesh with N elements. Each
mesh element requires computing tensor contractions of the
form
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in two dimensions or
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in three dimensions. A naive implementation of the two-
dimensional contraction requires O(p4) operations (O(p2)
for each of the p2 members of Vij). However, this approach
ignores redundant subcomputations across columns and rows
of V . One can instead compute W l

i = Bk
i Ukl followed

by Vij = Al
jWil at a cost of O(p3) operations. A similar

reorganization of the three-dimensional computation reduces
the cost from O(p6) operations to O(p4) operations. Tools
such as the Tensor Contraction Engine (TCE) [5, 16] and
libtensor [10] seek to reorganize tensor contractions in this
fashion to minimize the number of floating-point opera-
tions [16]. In this paper, we combine such reorganizations
with an autotuning compiler so that the search space of
possible implementations is much richer.

B. Code Generation

We use the Barracuda system illustrated in Figure 1 to
generate many possible variants of a tensor computation
and to identify the best-performing implementation. Figure 2
illustrates the input at each stage and final output. The
user inputs to OCTOPI a high-level representation of a
computation that resembles mathematical tensor notation, as
shown in Figure 2(a). This example corresponds to Eqn.(1)
above and is adapted from the computation v = Cu on p.
168 of [9]. To this input, OCTOPI applies tensor-specific
optimizations to reorganize the computation, as described
in Section III, to generate a set of inputs to TCR. For
Equation(1), OCTOPI generates fifteen different versions.
While six versions all perform the same amount of floating-
point computation, their performance on an Nvidia GTX 980
(Maxwell) varies by as much as 9%. The TCR input for
what is ultimately the best-performing version is shown in
Figure 2(b). TCR generates code annotations to existing tool
Orio [15, 21] specifying which transformations and autotun-
ing search space should be explored, an excerpt of which
is shown in Figure 2(c). Each code variant is then gener-
ated automatically using CUDA-CHiLL, a source-to-source
compiler transformation and code generation framework that
transforms sequential loop nests to high-performance GPU
code [18]. In CUDA-CHiLL, code variants are described
by transformation recipes, which encode the transforma-
tions to be applied to the original sequential computation;



V[i j k] += A[l k] B[m j] C[n i] U[l m n]

(a) Tensor contraction input to OCTOPI.

ex
access: linearize
define:
N = J = M = I = L = K = 10
variables:
temp3:(J,I,L)
A:(L,K)
C:(N,I)
B:(M,J)
U:(L,M,N)
V:(I,J,K)
temp1:(I,L,M)
operations:
temp1:(i,l,m) += C:(n,i)*U:(l,m,n)
temp3:(j,i,l) += B:(m,j)*temp1:(i,l,m)
V:(i,j,k) += A:(l,k)*temp3:(j,i,l)

(b) Input to TCR.

def performance_params {
...
param PERMUTE_2_TX2[] = [’m’];
param PERMUTE_2_TY2[] = [’i’,’1’,’m’,’l’];
param PERMUTE_2_BX2[] = [’i’,’m’,’l’];
param PERMUTE_2_BY2[] = [’i’,’1’,’m’,’l’];
param UF_2[] = [1,2,3,4,5,6,7,8,9,10];

}
/*@ begin CHiLL (
...
cuda(2,block={PERMUTE_2_BX2,PERMUTE_2_BY2},

thread={PERMUTE_2_TX2,PERMUTE_2_TY2})
registers(2,"n","V")
unroll(2,"n",UF_2)

) @*/
...
for (i=0; i<I; i++){
for (l=0; l<J; l++){
for (m=0; m<K; m++){
for (n=0; n<L; n++){
V[i*J*K + l*K + m ] = V[i*J*K + l*K + m ] +

(A[n*K + m ] * temp3[l*I*L + i*L + n ]);
}
}
}

(c) Search space excerpt for CUDA-CHiLL and Orio.

__global__ void ex_GPU_2
(double *V,double *A,double *temp3)

{
// ... declarations ...
nv2 = V[ty * 100 + bx * 10 + tx] ;
for (n = 0; n <= 6; n += 3) {
nv2 = nv2 + A[n * 10 + tx]

* temp3[bx * 100 + ty * 10 + n];
nv2 = nv2 + A[(n + 1) * 10 + tx]

* temp3[bx * 100 + ty * 10 + (n + 1)];
nv2 = nv2 + A[(n + 2) * 10 + tx]

* temp3[bx * 100 + ty * 10 + (n + 2)];
}
nv2 = nv2 + A[9 * 10 + tx]

* temp3[bx * 100 + ty * 10 + 9];
V[ty * 100 + bx * 10 + tx] = nv2;

}

(d) Optimized CUDA (partial) output.
Figure 2. Example representing Eqn.( 1), displaying one of three loop nests generated automatically by Barracuda.

in Barracuda, these are generated automatically, with an
example in Figure 2(c). While Orio supports code trans-
formations, in this work, we rely on CUDA-CHiLL for all
code transformations and use Orio to navigate the search
space arising from OCTOPI and TCR. We implement SURF,
a model-based search method, within Orio to prune the
search space, and focus on a small subset of the myriad
possibilities of code variants. The resulting tuned GPU code
is excerpted in Figure 2(d). In the example, three kernels
are generated and individually optimized, corresponding to
the three summations in the TCR input, but the data remains
on the GPU across these calls. The next sections describe
OCTOPI, TCR and SURF, the new modules of Barracuda.

III. OCTOPI INPUT AND OPTIMIZATION

The input to OCTOPI is a sequence of summation state-
ments. The argument to the sum in Figure 2(a) is the

summation indices, and the right hand side expression is
computed for the entire (implicit) range for each index.
The user can optionally specify the index dimension or a
range of dimensions so that the framework can specialize
the optimizations it applies for specific tensor sizes.

OCTOPI takes a two-stage approach to optimizing tensor
contractions. First, it analyzes the tensor for possible high-
level transformations that might improve performance; it
then passes each of these transformed variants to TCR. The
most important transformation OCTOPI applies at a high
level has been previously called strength reduction [4], and
involves algebraic simplification to reduce the amount of
computation. The pseudocode for the OCTOPI algebraic
transformation enumeration is in Algorithm 1. The input
to the algorithm is a set of multiplication terms, and the
algorithm enumerates possible reorderings of those terms,
taking advantage of commutativity and associativity. We now



Algorithm 1 Creating a valid OCTOPI algebraic transfor-
mation
Input: a set T of n terms, with Ti having indices I(Ti)

1 c ← 0
2 d ← n
3 while n > 1 do
4 d ← d+ 1
5 for i← index occurring only in Ta do
6 Create term Td[I(Ta)− {i}] =

∑
i Ta

7 T ← T ∪ {Td} − {Ta}
8 c ← a
9 end for

10 Choose any a, b such that a < b, b > c
11 To enumerate exhaustively, perform depth-first

search on these choices
12 Create term Td[I(Ta) ∪ I(Tb)] = Ta × Tb

13 T ← T ∪ {Td} − {Ta, Tb}
14 c ← b
15 end while

give an example of the performance advantages that can
come from this computational reordering. We consider again
the tensor example from Figure 2(a).

V[i j k] =
Sum([l m n], A[l k] * B[m j] * C[n i] * U[l m n])

The naive implementation of this code creates a 6-deep
nested for loop.

for i
for j

for k
for l
for m

for n
V[i j k] +=

A[l k] * B[m j] * C[n i] * U[l m n]

These loops can be interchanged, creating N ! loop choices
for N indices. In the Equation 1 example, there are 720
total arrangements of these loops. Some open opportunities
for moving code outside of loops, sometimes called strength
reduction [14]. Strength reduction is a reorganization of the
sums that takes advantage of partial sums to reduce the
total computation. OCTOPI carries out strength reduction
by finding all subexpressions that have a smaller iteration
space than the full computation. It takes advantage of
commutativity to find all reorganizations. In our example,
the following are the possible subexpressions for the above
input.

A[l k] * B[m j] * C[n i] * U[l m n] →

A[l k] * B[m j] (l k m j)
B[m j] * C[n i] (m j n i)
A[l k] * C[n i] (l k n i)
A[l k] * U[l m n] (l k m n)
B[m j] * U[l m n] (m j l n)
C[n i] * U[l m n] (n i l m)

The set of subexpressions depends on the size of the

tensor, but for the computations we encounter, it is possible
to enumerate them exhaustively. Because each of these
subexpressions involves four indices, each requires N4 oper-
ations. For example, if we begin with the last subexpression
in the list above, we can replace the single loop nest of
order N6 by three N4 loop nests, thus reducing the amount
of computation and improving performance. The OCTOPI
output follows.

T1[i l m] += C[n i] * U[l m n]
T2[j i l] += B[m j] * T1[i l m]
V[i j k] += A[l k] * T2[m j]

This output corresponds to the following pseudocode.
for i

for l
for m

for n
T1[i l m] += C[n i] * U[l m n]

for j
for i

for l
for m

T2[j i l] += B[m j] * T1[i l m]
for i

for j
for k

for l
V[i j k] += A[l k] * T2[m j]

We can additionally incorporate loop fusion, with more
fusion available if we reorder the loops.

for i
for l

for m
for n

T1[i l m] += C[n i] * U[l m n]
for j

T2[j i l] += B[m j] * T1[i l m]
for k

for j
V[i j k] += A[l k] * T2[m j]

This variant performs the same number of operations, but
has better memory usage and enables more optimizations
for CUDA-CHiLL. Choosing different subexpressions to
evaluate first will result in different fusion opportunities and
sometimes different operation counts. Performance depends
on data layout in memory and subsequent transformations.
In our example, OCTOPI generates and sends all versions
to CUDA-CHiLL for autotuning.

The transformations described here are extremely difficult
at the C source level: it requires complex loop interchange,
strength reduction, and loop fusion. By considering the
operations at the tensor level, we can easily enumerate the
possibilities and expose the search space.

IV. TCR AND GENERATING THE SEARCH SPACE

The variants generated by OCTOPI are expressed in an
an intermediate representation that is input to a lower-level
tool (TCR) that encodes a set of parameterized code variants
ultimately used by CUDA-CHiLL to generate GPU code.
From the representation in the code example in Figure 2(b),
TCR creates a for loop for each different loop index listed



in the operation and uses the tensor equation to generate
the statement. In addition, this code is accompanied by a
collection of transformations to be applied in CUDA-CHiLL
to define the autotuning search space for this specific variant.
The search space explored is a simplification of Khan et al.’s
algorithm [17, 18]. The algorithm finds the thread and block
decomposition and data placement in different levels of the
memory hierarchy, along with additional transformations to
optimize the thread program.

Data dependence analysis is used to determine the safety
of parallelization and other reordering transformations. In
general, data dependence analysis requires pairwise com-
parison of access expressions to the same array, where one
of the accesses is a write, within the context of the iteration
space of the common loops in which the two accesses are
nested [1]. While CUDA-CHiLL incorporates this general
approach to dependence analysis, we can rely on a simplified
dependence analysis specialized to the domain of tensor
contractions that can be specified by TCR’s mathematical
description. Dependences can be carried only by loops with
indices present in the right-hand side but not in the left-
hand side of a tensor operation. Loops corresponding to
all remaining indices may be executed in parallel. We also
analyze the memory access patterns for each of the input
tensors.

We use contiguous tensors to describe array references
whose index expressions refer to loops in the same order
as they appear in the code; that is, the array is accessed
in memory order (assuming row-major layout). Contiguous
tensors are desirable, as they lead to data access orders
that achieve global memory coalescing and reuse in the
GPU’s caches. Nevertheless, in most tensor contraction
computations, not all tensors are accessed as contiguous
tensors as there does not exist a loop order that is optimal
for all data.

We first generate the search space for thread and block
decomposition on the GPU. ThreadX and ThreadY refer
to the X and Y thread dimensions on the GPU; BlockX
and BlockY refer to the X and Y block dimensions on the
GPU. The X dimension is the leading one, such that adjacent
X threads with the same Y value are usually mapped to
adjacent GPU cores. Therefore, we choose as candidates for
ThreadX any loop such that adjacent elements on an input
tensor are accessed by adjacent threads so as to achieve
global memory coalescing. Potential choices for ThreadY ,
BlockX , and BlockY are selected by the following rules:
• Select parallel loop indices from the contiguous tensors

from innermost to outermost loops.
• If the contiguous tensors have fewer than four parallel

loops, then start selecting parallel indices from the non-
contiguous tensors from outer to inner.

The search space also consists of different loop orders,
which can be realized using loop permutation. Any loops
that are inside the GPU kernel that improve memory layout

of inner dimensions are considered as candidates for loop
permutation. A final optimization included in the search
space is the unrolling of inner loops to reduce control
flow, enhance register reuse and increase instruction-level
parallelism. A number of unroll factors are considered, but
these are relatively small because of the small loop iteration
counts. Additionally, included with these optimizations, the
compiler always applies scalar replacement to explicitly
copy the output tensor variable to a scalar temporary so
that it is accessed in a register; it is copied back to global
memory only at the end of a thread’s computation to reduce
accesses to global memory.

An earlier version of this decision algorithm created a
smaller, pruned search space, which is a subset of the
one used in [25]. This prior work also provides additional
experiments to motivate the search space we derive. The
one example version shown in Figure 2(c) produces a search
space that consists of 4 different ThreadY values (one of
which is 1 indicating a 1-dimensional thread block), which
can be combined with three possible BlockX dimensions
and four possible BlockY dimensions. The meaning of
Orio’s PERMUTE is that one possible value is selected at
a time, and it cannot be the same as a value selected for
another parameter in the same block.

V. SEARCH SPACE EXPLORATION

Enumerating all possible code variants of the autotuning
problem posed by OCTOPI and TCR can be computationally
prohibitive: for a given tensor computation, OCTOPI can
generate a number of tensor variants, where each has
a number of parameters introduced by TCR for thread,
block decomposition, and unroll that in turn produce a
large number of code variants. Given the decomposition
parameters (encoded by PERMUTE) and unroll parameters,
the number of code variants grow exponentially with respect
to the number of parameters. For Lg3t (see Table I), we
have 512,000 possible tensor-code variants for empirical
evaluation. A promising approach to overcome this difficulty
is through the use of a search algorithm that finds high-
performing code variants while examining relatively few
variants. However, designing a search algorithm to navigate
the search space is quite challenging from a mathematical
optimization perspective because (decomposition) the result-
ing variants do not admit a natural ordinal relationship and
(unroll) integer parameters cannot be relaxed.

We customize and adapt the model-based search algorithm
proposed in [2] to the search problem. We refer to our
model-based search as SURF (search using random forest,
where random forest is the modeling algorithm adopted
within the search). We sample a small number of param-
eter configurations, empirically evaluating the correspond-
ing code variants to obtain the corresponding performance
metrics, and fitting a surrogate model over the input-output
space. The surrogate model is then iteratively refined by



Algorithm 2 Pseudo-code for SURF
Input: configuration pool Xp, batch size bs, max evalua-

tions nmax

1 Xout ← sample min{bs, nmax} distinct configurations
from Xp

2 Yout ← Evaluate_Parallel(Xout)
3 M ← fit(Xout, Yout)
4 Xp ← Xp −Xout

5 for i← bs+ 1 to nmax do
6 Yp ← predict(M, Xp)
7 xbs

i ← select bs configurations from Xp with the
best performance in Yp

8 ybsi ← Evaluate_Parallel(xbs
i )

9 retrainM with (xbs
i , ybsi )

10 Xout ← Xout ∪ xi; Yout ← Yout ∪ yi /* ∪ denotes
set union */

11 Xp ← Xp − xbs
i /* − denotes set difference */

12 end for

Output: x ∈ Xout with the best performance in Yout

obtaining new output metrics at unevaluated input configu-
rations predicted to be high-performing by the model. The
main extension handles the decomposition parameters by ap-
plying a preprocessing technique called feature binarization
[6], where they are transformed into binary vectors to enable
surrogate modeling.

Algorithm 2 shows the pseudocode of the model-based
search algorithm. The algorithm takes as input a set Xp of
unevaluated configurations, the stopping criterion of maxi-
mum number nmax of allowed evaluations, and batch size
bs that determines the number of concurrent evaluations at
each iteration. In the initialization phase of the algorithm,
bs configurations are sampled at random and evaluated in
parallel to obtain their corresponding performance metrics.
These points are then used as a training set to build a pre-
dictive model for performance. The iterative phase predicts
the performance of all remaining unevaluated configurations
using the models, evaluating bs configurations with best
predicted performance, and retraining the model with the
evaluation results. The batching allows for a higher degree
of parameter space exploration and increases the probability
of finding high-quality configurations in fewer iterations [3].
This algorithm reduces the time for the search needed to find
high-quality parameter configurations.

We deploy statistical machine learning methods [6] for
building surrogate models. In particular, we choose random-
ized trees [12], a state-of-the-art machine learning algorithm,
due to their ability to handle the binarized parameters using
recursive partitioning and to model nonlinear interactions
among the parameters.

Name Description
Spectral Element

Eqn.(1) example from Figure 2
Lg3 local grad3 from Nekbone
Lg3t local grad3t from Nekbone
Nekbone Mini-app using optimized Lg3 and Lg3t

Coupled Cluster
TCE ex TCE example tensor[4]
S1 (s1 1-s1 9) NWChem excerpt: 2 objects with 2&4 dimensions
D1 (d1 1-d1 9) NWChem excerpt: 2 objects with 4 dimensions
D2 (d2 1-d2 9) NWChem excerpt: 2 objects with 4 dimensions

Table I
BENCHMARKS USED IN THIS STUDY.

For Lg3t, we ran the model-based search with 100 evalu-
ations, which took 7 minutes (approximately 4 seconds per
variant). Assuming the same time per variant, enumeration
of 512,000 variants will take approximately 23 days.

VI. PERFORMANCE MEASUREMENTS

We tested the integrated system from Figure 1 on the
tensor-contraction computations in Table I. The compu-
tations (Eqn.(1), Lg3, Lg3t and TCE ex) were selected
because they allow us to evaluate tensor contraction in
isolation, and the Nekbone and NWChem computations
let us consider how tensor contractions are used in the
context of applications. Nekbone is a 3-dimensional spectral
element proxy application derived from Nek5000 [11, 30].
It performs a conjugate gradient loop that operates over a
sequence of tensor contractions recast as matrix multipli-
cations, which comprises 60% of the sequential execution
time. A problem size of 12×12×12 was used. These small
dimensions result from the small order of the discretization
polynomial; as it increases, the time required to converge
also increases. NWChem is a software package for quantum
chemistry and molecular dynamics simulations [31]. We
optimized kernels [7] extracted from the CCSD(T) (coupled
cluster theory with full-treatment singles and doubles, and
triples estimated by using perturbation theory) computations
of NWChem. These kernels are representative of what
executes at the socket level, with trip counts of 16 iterations
in each dimension, so are appropriate for a single GPU.

We performed experiments on an Intel Haswell CPU and
three generations of Nvidia GPUs: TESLA C2050 (Fermi),
TESLA K20 (Kepler) and GTX 980 (Maxwell). For the
OpenACC results, we used the Portland Group compiler
(PGI) version 14.3, but this version does not yet generate
code for the GTX 980. The CUDA code was compiled by
using the nvcc compiler for CUDA 5.5. For each point (code
variant) in the search space, we compute average execution
time over 100 repetitions.

A. Individual Tensor-Contraction Computations

We first look at the optimization of the individual tensor-
contraction computations summarized in Table VI. This table
shows speedup over sequential execution on the Haswell,



GTX 980 K20 C2050
Speedup GFlops Search GFlops Search GFlops Search

Eqn.(1) 0.63× 1.99 3556.0s 1.42 9691.4s 1.89 7111.3s
Lg3 23.74× 42.74 324.8s 41.52 784.6s 42.47 539.8s
Lg3t 22.87× 41.11 356.9s 38.38 849.9s 34.99 581.15s
TCE ex 29.77× 42.72 276.6s 17.82 768.8s 14.25 577.5s

Table II
RESULTS SUMMARY FOR INDIVIDUAL TENSOR CONTRACTIONS.

absolute performance in terms of GFlops, and time spent
in the SURF algorithm to derive the final solution. Three
of the four bencchmarks, Lg3, Lg3t and TCE ex, achieve
performance of more than 40 GFlops on the GTX 980 and
speedups of more than 20× over the sequential Haswell
implementation. Performance on the other GPU platforms
is comparable for Lg3 and Lg3t, but quite a bit lower
for TCE ex. The results on Eqn.(1) are quite different. It
is a computation that does not speed up compared to the
Haswell, and only achieves 1.99 GFlops on the GTX 980,
largely because there is insufficient work to compensate for
the overhead of copying data to/from the GPU.

Search time varies from a few minutes to a few hours,
depending on the computation and the architecture. The
older GPU architectures typically spend more time in search,
and the tiny Eqn.(1) computation spends the longest because
the performances of its versions are so similar. Nevertheless,
given the enormous search spaces associated with all of
these variants, SURF is performing well. We also compared
performance for some of these with prior work in [25]
which used a brute force search of a smaller search space.
We found that the performance resulting from SURF was
comparable to and sometimes better than the prior brute
force search.

We omitted from this table S1, D1 and D2, because each is
comprised of nine kernels. Figure 3 illustrates the speedups
achieved by the optimized Barracuda and OpenACC ver-
sions of these kernels over the naive OpenACC implemen-
tation. To summarize our results, performance ranges from
7 to 20 GFlops for S1, from 20 to 125 GFlops for D1 and 9
to 53 GFlops for D2, as is be shown in the next subsection.
Search times for each of the nine kernels ranges from 8 to
32 minutes per kernel.

B. GPU Code Generation Strategies in Context

OpenACC
Naive Optimized Barracuda

Tesla K20 2.86 12.39 36.47
Tesla C2050 1.18 19.21 34.65

Table III
NEKBONE PERFORMANCE COMPARISON: OPENACC VS. BARRACUDA.

We now consider how autotuning affects performance and
the strategy for generating GPU code. We now consider
the core computation from Nekbone, where the optimized
Lg3 and Lg3t have been integrated into the code, and
the computations representative of NWChem. Performance

measurements for Nekbone are summarized in Table VI-B,
and for the nine kernels for D1, D2 and S1 of NWChem
are shown in Figure 3. We evaluate four different strategies
for generating GPU code. OpenACC refers to taking the
output of our framework, and then replacing our tool’s
generated CUDA constructs with OpenACC directives. We
produced three OpenACC versions: Naive simply includes
parallelization directives but no guidance on parallelization
decomposition; Optimized adds directives on thread and
block decomposition that were derived by Barracuda and
performs scalar replacement on the output variable since
the private designation in OpenACC does not produce the
desired result. Overall we see that the Naive OpenACC
code generation is even slower than sequential execution,
but that the Optimized OpenACC version sometimes exceeds
performance of code generated by Barracuda. Nevertheless,
autotuning is essential to achieving high performance.

It is interesting also to ask whether a GPU is the right
architecture for these computations. With the OpenMP com-
parison, we use manually-coded OpenMP versions, par-
allelizing an outermost loop for nekbone and using the
OpenMP directives provided by the author of the NWChem
excerpts. Table VI-B shows that the GTX 980 GPU out-
performs a 4-thread OpenMP version on the Haswell in all
cases for all benchmarks.

1 core OpenMP 4 cores Barracuda
Nekbone 7.79GF 23.97GF 35.70GF
NWCHEM s1 2.47GF 2.61GF 16.14GF
NWCHEM d1 3.90GF 25.29GF 115.37GF
NWCHEM d2 5.60GF 14.90GF 50.00GF

Table IV
NEKBONE AND NWCHEM EXCERPT PERFORMANCE COMPARISONS:

OPENMP VS. BARRACUDA.

VII. RELATED WORK

Our project combines compiler optimizations, scientific
computation, and search algorithms. Some past research has
dealt with tensor computation specifically, and a large body
of work has used some form of search to improve code
performance, either using a domain-specific language as
we do here, or searching over an optimization space for
a general purpose language like C or Fortran.

Optimizing Tensor Computations: Many tools and li-
braries have been developed for optimizing tensor con-
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Figure 3. Speedup of the optimized Barracuda and OpenACC code versions over the naive OpenACC implementations of NWChem excerpts.

traction computations. Among these are the Tensor Con-
traction Engine (TCE) [4], the super instruction assembly
language (SIAL) [26], and Cyclops [27]. These efforts
have focused primarily on contractions involving very large
tensors, possibly distributed across a large parallel computer.
Performance optimization focuses on reducing the number of
operations performed by exploiting symmetry and redundant
subexpressions. Often, tensors are transposed so that a high-
performance matrix-matrix multiplication can be used. Our
focus is on the small tensors that arise in the spectral element
method and can be used as a building block for computa-
tions involving large tensors. Thus, different optimization
priorities apply.

Our work builds from ideas in the similar TCE project
which also implements a DSL for tensors. In particular, our
fusion and strength reduction algorithm is the same one
described by the TCE papers for the single thread case.
TCE takes an analytic approach, using a memory model
to reduce traffic and exploit space-time tradeoffs [13]. Due
to the large tensor problems they solve, the parallelism
in TCE is distributed-memory parallelism that applies a
generalization of Cannon’s algorithm to reduce internode
communication [19].

Several efforts have sought to optimize the performance
of the Nekbone proxy application on GPUs. The CESAR
codesign center reports tensor contraction performance of
100–200 GFlops on a Fermi GTX 590 GPU for tensors

of size 8 × 8 × 8 to 12 × 12 × 12 using hand-coded
OpenCL kernels [28]. The CRESTA project ported Nekbone
to a multi-GPU system and reported a speedup of 1.59x
using 512 Nvidia Kepler K20x GPUs versus a CPU-only
implementation (512 nodes with 8192 cores) [8]. Although
direct comparisons are difficult, our speedup of 1.3x versus
OpenMP is encouraging, especially since our results include
the time to transfer data back and forth between CPU and
device memory.

Domain-Specific Tools: In addition to the tensor lan-
guages described above, other projects have used a domain-
specific language to focus on high-level optimization and
search opportunities.

SPIRAL [22] is a domain-specific language for discrete
signal processing. It uses a genetic algorithm as a search
strategy for autotuning. SPIRAL translates the search space
into trees of rules for breaking discrete transforms into
simpler units. The authors develop a unique crossover and
mutation scheme for these ruletrees based on swapping and
manipulating subtrees. SPIRAL has similarities to our ap-
proach, however the difference in domain requires different
search and code generation. Signal processing transforms
are usually created by calling smaller blocks which handle
subproblems, and the primary search challenge is which of
these transform decompositions to apply at each stage.

The DxT project [20] is a DSL for distributed-memory
dense linear algebra that that uses a cost model based on



operation count and communication costs to estimate the
performance of many possible implementations. It composes
each high-level algorithm mostly out of Level 3 BLAS. The
authors use a similar style of search heuristics to narrow the
space, focusing on transformations likely to be helpful.

Search and Autotuning: Vuduc, Demmel and Bilmes [32]
study the optimization space of applying register tiling, loop
unrolling, software pipelining, and software prefetching to
matrix multiplication. They show that this search space
is difficult (a very small number of combinations achieve
good performance), and they present a statistical method for
determining when a search has found a point that is close
enough to the best.

Tiwari et al [29] describe an autotuning framework that
combines ActiveHarmony’s parallel search backend with
the CHiLL transformation framework. Looptool [23] and
AutoLoopTune [24] support loop fusion, unroll-and-jam, and
array contraction. AutoLoopTune supports tiling. POET [34]
supports a number of loop transformations.

Integer search paramaters, such as loop unroll factors or
tile sizes, can take advantage of the integer space in the
search strategy. Optimizations like loop fusion or adding
SIMD instructions are not easily represented by an integer
search parameter, so most search strategies do not apply.
Zhao et al [35] use exhaustive search and empirical testing
to select the best combination of loop fusion decisions. Qing
and Qasem [33] apply empirical search to determine the
profitability of optimizations for register reuse, SSE vector-
ization, strength reduction, loop unrolling, and prefetching.
Their framework is parameterized with respect to the search
algorithm and includes numerous search strategies.

VIII. CONCLUSION

This paper describes an autotuning system for tensor
contraction computations targeting GPUs. The system uses
a tensor-specific mathematical representation as input and
generates an autotuning search space that is customized to
both the domain of tensors with small dimension sizes,
and GPU architectures. We explore the very large search
generated by these tools using machine learning, resulting
in search times that are practical. We show speedup over
sequential and OpenMP execution, as high as 29×, and
also demonstrate the necessity of autotuning when using
OpenACC to generate efficient code. Our approach was
driven by a desire to improve specific tensor problems not
solved by current tools, but we also view this work as an
exemplar for developing highly-tuned applications special-
ized for individual architectures starting with a mathematical
representation of the problem in a DSL. In the future, we
plan to extend this work to further prune the autotuning
search space once we develop a better understanding of
where pruning does not impact quality of results, and
facilitate integration of the generated code into applications.
As we expand the approach to surrounding computations,

such as jointly optimizing lgrad3, lgrad3t and adjacent code,
the search space will grow, and pruning it will be essential
to feasibility.
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