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The (multistep) one-shot method for design optimization problems has been successfully implemented
for various applications. To this end, a slowly convergent primal fixed-point iteration of the state equation
is augmented by an adjoint iteration and a corresponding preconditioned design update. In this paper
we present a modification of the method that allows for additional equality constraints besides the usual
state equation. A retardation analysis and the local convergence of the method in terms of necessary and
sufficient conditions are given, which depend on key characteristics of the underlying problem and the
quality of the utilized preconditioner.

Keywords: nonlinear optimization; automatic differentiation; piggyback; one-shot method; constraints;
eigenvalue analysis

AMS Subject Classification: 49M05; 65F08; 65F15; 90M50; 90C30

1. Introduction

In the past decade, numerous applications and methods for the minimization of design opti-
mization problems were considered. In these problems, one is interested in finding a control
u ∈ U that minimizes an objective function f : U × Y → R for some feasible state variable
y = y(u) ∈ Y , which is implicitly defined by some state equation c(u, y) = 0. Such scenar-
ios typically arise in PDE constraint optimization, where the state equation is some partial
differential equation describing a physical process, and can be found in various applications [18–
21,24,26,28,29,31]. For example, one can think of the shape optimization of an airfoil in order
to minimize the drag, which is represented by the objective function f. Thus, the (parametrized)
shape of the airfoil is given by the control u, and the feasible state y describes its surrounding air-
flow that satisfies some version of the Navier–Stokes equation represented by the function c. The
structure and the large number of unknowns make (the discretization of) these problems usually
intractable for most standard nonlinear programming methods. In many of these examples, the
state equation is given by an equivalent contractive fixed-point function G : U × Y → Y such
that the state variable y satisfies the state equation c(u, y) = 0 if and only if it is a solution of
the fixed-point equation y = G(u, y) for any given control u ∈ U . The fixed-point function G
can be thought of as one iteration of a numerical procedure for the solution of the underlying
(discretized) state equation, for example, a highly specialized simulation code for this particu-
lar physical application. It can be used to design so-called one-shot methods [1–3,8,11–13,16,
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2 T. Bosse

18,22], for the (local) solution of the resulting design optimization problem

min
(u,y)

f (u, y), s.t. y = G(u, y) (1)

if the functions f and G are sufficiently smooth1 and the fixed-point function satisfies the
contraction condition

‖Gy(u, y)‖ ≤ ρG < 1, (u, y) ∈ U × Y , (2)

in some appropriate operator norm on the vector space Y for any fixed control u ∈ U . These
methods are well suited for problems with a slow contraction rate of the fixed-point iteration,
namely, for problems where the upper bound ρG on the norm of the partial derivative of G w.r.t.
y is close to one. They are based upon the Karush–Kuhn–Tucker (KKT) conditions for the first-
order stationary points (u∗, y∗) of the design optimization problem (1). In the finite-dimensional
case, Y = R

n and U = R
m, the KKT conditions ensure the existence of a unique adjoint variable

ȳ∗ in the corresponding dual space Ȳ = R
m such that

0 = Lu(u
∗, y∗, ȳ∗) = fu(u

∗, y∗)+ Gu(u
∗, y∗)�ȳ∗

0 = Ly(u
∗, y∗, ȳ∗) = fy(u

∗, y∗)+ (Gy(u
∗, y∗)− I)�ȳ∗

0 = Lȳ(u
∗, y∗, ȳ∗) = G(u∗, y∗)− y∗

holds under the stated assumptions. Here, L : U × Y × Ȳ → R denotes the Lagrangian

L(u, y, ȳ) = f (u, y)+ ȳ�(G(u, y)− y)

associated with (1). In combination with the contraction condition (2), the necessary optimality
conditions yield an adjoint fixed-point iteration (see also [5,6,13])

ȳ+ = fy(u, y)+ Gy(u, y)�ȳ

for the adjoint ȳ that can be used in combination with a preconditioned design update

u+ = u + αB−1(fu(u, y)+ Gu(u, y)�ȳ)

for some suitable step-multiplier α ∈ R
+ and preconditioner matrix B ∈ R

m×m to find such KKT
points. The original fixed-point iteration, the adjoint fixed-point iteration, and the preconditioned
design update motivate a number of different one-shot schemes to compute a sequence of iterates
(uk , yk , ȳk) that converge to stationary points (u∗, y∗, ȳ∗) = limk→∞(uk , yk , ȳk) for some initial
guess (u0, y0, ȳ0) sufficiently close to a solution. Three of these one-shot schemes can be briefly
described by the propagation rules

· · · → (design u, state y, adjoint ȳ, ) → . . . , (3)

· · · → design u → state y → adjoint ȳ → . . . , (4)

· · · → design u → (state y)s → (adjoint ȳ)s → . . . . (5)

Here, the terminology (t1, t2) denotes the parallel execution of the two updates t1 and t2, whereas
t1 → t2 indicates that one update t2 is executed after one update t1 is completed using the latest
available information; consequently, ts1 abbreviates the s-times repetition t1 → · · · → t1 of one
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Optimization Methods and Software 3

update t1. In detail, the Jacobi–one-shot method (3), the Seidel–one-shot method (4), and the
multistep Seidel–one-shot method (5) refer to the respective updates

⎡
⎣uk+1

yk+1

ȳk+1

⎤
⎦ =

⎡
⎢⎣

uk − αkB
−1
k (fu(uk , yk)+ Gu(uk , yk)�ȳk)

G(uk , yk)

fy(uk , yk)+ Gy(uk , yk)�ȳk

⎤
⎥⎦ ,

⎡
⎣uk+1

yk+1

ȳk+1

⎤
⎦ =

⎡
⎢⎣

uk − αkB
−1
k (fu(uk , yk)+ Gu(uk , yk)�ȳk)

G(uk+1, yk)

fy(uk+1, yk+1)+ Gy(uk+1, yk+1)�ȳk

⎤
⎥⎦ ,

⎡
⎣uk+1

yk+1

ȳk+1

⎤
⎦ =

⎡
⎢⎣

uk − αkB
−1
k (fu(uk , yk)+ Gsk

u (u
k , yk)�ȳk)

Gsk
(uk+1, yk)

fy(uk+1, yk+1)+ Gsk

y (u
k+1, yk+1)�ȳk

⎤
⎥⎦ .

The derivatives in the definition of the updates can be computed by applying techniques from
algorithmic differentiation [14,25]. For example, the adjoint product Gy(u, y)�ȳ can be efficiently
evaluated by software packages such as ADOL-C [33] or Tapenade [17].

In particular, the multistep Seidel approach (5) was investigated in [3], where the method was
shown to be locally convergent for an appropriate choice of preconditioner matrices Bk and a
sufficiently large number sk ∈ N of multiple state updates

Gsk
(uk , yk) = G(uk , G(uk , . . . , G(uk , yk) . . . ))︸ ︷︷ ︸

sk−times

and corresponding adjoint updates. The choice for the preconditioner Bk and the number sk in
every iteration k was related to problem-dependent quantities that could be estimated during
the runtime of the procedure by using the information from previous iterates (ul, yl, ȳl) for l =
0, 1, . . . , k − 1. Moreover, the proposed stepping scheme was shown to have a retardation factor
of 2 in the ideal case. Here, the retardation factor is the efficiency measure of an optimization
method that is defined by the ratio

Cost(Optimization)

Cost(Simulation)
∼ O({prob, mesh, load, . . .}0),

representing the slowdown of going from a full simulation to compute a feasible state to a full
optimization of the design optimization problem.

In this paper, we extend the previous results for the original design optimization problem (1)
and consider the modified design optimization problem

min
(u,y1,y2)

f (u, y1, y2), s.t. y2 = G(u, y1, y2) and g(u, y1, y2) = 0. (6)

It has a similar structure to problem (1), except that now an additional equality constraint g : U ×
Y1 × Y2 → Y1 is present. For consistency, we adapt the previous notation and denote by u ∈ U
the control variables and by (y1, y2) ∈ Y1 × Y2 the state variables, where the finite-dimensional
spaces Y1, Y2, and U are now given by U = R

m, Y1 = R
n1 , and Y2 = R

n2 with m, n = n1 + n2 ∈
N. Analogous to before, G : U × Y1 × Y2 → Y2 represents a contractive fixed-point mapping for
fixed variables (u, y1) satisfying the contraction condition

‖Gy2(u, y1, y2)‖ ≤ ρG < 1 for (u, y1, y2) ∈ U × Y1 × Y2, (7)

in some appropriate operator norm but now for the vector space Y2. As already implicitly done
in definition (6), we assume that the state variable y can be separated into two state variable parts
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4 T. Bosse

y1 ∈ Y1 and y2 ∈ Y2 such that for any choice of y2 and a control u ∈ U there exists y1, which
solves the additional constraint g(u, y1, y2) = 0. Mathematically, we require that the Jacobian
gy1(u, y1, y2) not be singular for all (u, y1, y2) ∈ U × Y1 × Y2 in a sufficiently large neighbour-
hood of the solution, such that there exists an implicit function φ : U × Y2 → Y1 that satisfies
g(u,φ(u, y2), y2) = 0.

As before, the fixed-point iteration G can be interpreted as a simulation code for the computa-
tion of the flow y2, and the control vector u represents all parameters for the shape of the airfoil.
The additional constraint given by the function g : R

m+n1+n2 → R
n1 describes, for example, the

requirement for constant lift (n1 = 1) and the second state variable y1 ∈ R
1 the angle of attack

of the airfoil, which can be adjusted to solve the additional constraint.
Until now, it was not clear how the design optimization problem with additional constraints

could be solved by the one-shot approach. One possibility was to use a penalty approach, where
a penalty term is added to the objective, to incorporate the violation of the additional constraint,
and apply one of the previously described methods on the modified problem. For example,
Walther et al. [32] just recently proposed an extension for the Jacobi-one-shot method [15],
which uses a preconditioner that is based on a doubly augmented penalty function. However,
this method requires some heuristic for the adaptation of the penalty parameters and, in case of
a bad choice, might lead to a slow convergence of the overall method. In detail, a retardation
analysis for this approach still has to be investigated even if the stated numerical results are
promising.

Therefore, we pursue the more intuitive approach and develop an extended one-shot method
that directly incorporates updates for the additional constraint into the stepping scheme. The
proposed method extends the multi-step Seidel–one-shot method (5) for the original problem (1)
and is based on the first-order optimality conditions for the extended problem (6), which will be
given at the beginning of Section 2. In detail, we replace the previous state and adjoint update
in (5) by the extended state and adjoint updates

(state y2 → state y1) and (adjoint (ȳ1, ȳ2))

that now include the quantities y1 and ȳ1, respectively. Both updates are motivated on a small
illustrative counterexample and will be defined in Section 2 (see Equations (9) and (10)). The
update for the state (y1, y2) and adjoint (ȳ1, ȳ2) can be thought of an extended mapping G with
its corresponding adjoint operation depending on some preconditioner C. In Section 3, we show
that the preconditioner can be chosen such that G satisfies the contraction condition (2) and,
thus, allows use of the previous convergence results for the original multistep Seidel–oneshot
method (5) for the extended fixed-point mapping G. A requirement for the existence of such
a preconditioner is that the original fixed-point iteration G has a sufficiently small contraction
rate ρG as can be seen by an eigenvalue analysis. The latter can be achieved by considering a
sequence of sG updates for the state y2 before the update of y1 and the corresponding adjoint
update. This inspires the nested multistep one-shot scheme proposed in Section 4:

. . . → design u → ((state y2)
sG → state y1)

s → (adjointsG (ȳ1, ȳ2))
s → . . . .

A sufficient lower bound on the number sG for the number of fixed-point iterations G will be
given, in order to guarantee local convergence of the overall method, relying on the results given
in [3] for the choice of s. Both lower bounds on sG and s depend on problem-specific quantities
and the quality of the corresponding preconditioners C and B, respectively. For a suitable choice
of both quantities, it can be shown that the proposed oneshot-method has a retardation factor
of 4. A numerical validation for some parts of the theoretical results is illustrated with a simple
example given in Section 5. The conclusion are given in Section 6 with a brief summary and
suggestions for future work.
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Optimization Methods and Software 5

2. Fixed-point iteration for the augmented problem

According to standard nonlinear optimization theory [27] and the stated assumption, there exists
a unique pair of adjoint variables ȳ∗

1 and ȳ∗
2 in the corresponding dual spaces Ȳ1 = R

n1 and Ȳ2 =
R

n2 , respectively, such that the KKT conditions

0 = Lu(u, y1, y2, ȳ1, ȳ2) = fu(u, y1, y2)+ Gu(u, y1, y2)
�ȳ2 + gu(u, y1, y2)

�ȳ1

0 = Ly1(u, y1, y2, ȳ1, ȳ2) = fy1(u, y1, y2)+ Gy1(u, y1, y2)
�ȳ2 + gy1(u, y1, y2)

�ȳ1

0 = Ly2(u, y1, y2, ȳ1, ȳ2) = fy2(u, y1, y2)+ (Gy2(u, y1, y2)− I)�ȳ2 + gy2(u, y1, y2)
�ȳ1

0 = Lȳ1(u, y1, y2, ȳ1, ȳ2) = g(u, y1, y2)

0 = Lȳ2(u, y1, y2, ȳ1, ȳ2) = G(u, y1, y2)− y2

are satisfied for any first-order stationary point (u∗, y∗
1, y∗

2) of the extended problem (6), where lin-
ear independence constraint qualifications hold. Here, L : U × Y1 × Y2 × Ȳ1 × Ȳ2 → R denotes
the Lagrangian function

L(u, y1, y2, ȳ1, ȳ2) = f (u, y1, y2)+ (G(u, y1, y2)− y2)
�ȳ2 + g(u, y1, y2)

�ȳ1.

In this paper, we provide a modification of the multistep Seidel–one-shot method (5) to find
a stepping scheme that computes such stationary points (u∗, y∗

1, y∗
2, ȳ∗

1, ȳ∗
2) of the problem (6).

Although several stepping schemes are possible,

· · · → (design u, state y2, state y1, adjoint ȳ2, adjoint ȳ1, ) → . . . ,

· · · → design u → (state y2, state y1)
s → (adjoint ȳ2, adjoint ȳ1)

s → . . . ,

· · · → design u → (state y2)
s → (state y1)

s → (adjoint ȳ2)
s → . . . , etc.,

which correspond to the original Jacobian method (first scheme), a mixed Seidel–Jacobian
approach (second scheme), and the pure Seidel approach (third scheme), respectively, we focus
first on the specific stepping scheme

. . . → design u → (state y2 → state y1)
s → (adjoint ȳ2 → adjoint ȳ1)

s → . . . (8)

that extends the previously presented multistep Seidel–one-shot approach (5) in a natural manner.

Example 1 (Motivating Counterexample) If we assume for the moment that s= 1, then we can
formulate the state update for the primal variable y2 at a given current iterate (u, y1, y2) by the
fixed-point iteration step

y+
2 = G(u, y1, y2)

motivated by the stationarity condition 0 = Lȳ2(u, y1, y2, ȳ1, ȳ2) and the assumption ‖Gy2(u, y1,
y2)‖ ≤ ρG < 1. Also, we can at least theoretically define the new state y+

1 as the root of
g(u, ·, y+

2 ) = 0 such that 0 = Lȳ1(u, y+
1 , y+

2 , ȳ1, ȳ2) holds after one primal state cycle (state y2 →
state y1). Analogously, we can compute the adjoint update ȳ2 by the fixed-point iteration

ȳ+
2 = Ly2(u, y+

1 , y+
2 , ȳ1, ȳ2)

� + ȳ2

according to the third stationarity condition and set the adjoint ȳ+
1 to be the unique solution of

0 = Ly1(u, y+
1 , y+

2 , ȳ1, ȳ+
2 ) since ‖Gy2(u, y1, y2)‖ ≤ ρG < 1 and gy1(u, y1, y2) was assumed to be
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6 T. Bosse

Figure 1. Divergence of (y1, y2) for the primal update cycle without damping in the exact case (left). Convergence of
(y1, y2) for damped primal updates y1 with exact (middle) and inexact fixed-point iteration G (right).

invertible. Hence, we see that after one evaluation of the update sequence

· · · → (state y2 → state y1)
1 → (adjoint ȳ2 → adjoint ȳ1)

1 → . . . ,

at least the two stationarity conditions

0 = Ly1(u, y1, y2, ȳ1, ȳ2) and 0 = Lȳ1(u, y1, y2, ȳ1, ȳ2)

are exactly satisfied. However, this situation does not need to hold true for the other two sta-
tionary conditions 0 = Ly2(u, y1, y2, ȳ1, ȳ2) and 0 = Lȳ2(u, y1, y2, ȳ1, ȳ2) since they are in general
affected by the subsequent changes in the variables y1 and ȳ1, respectively. In fact, this may lead
to divergence of the state and adjoint cycles

(state y2 → state y1)
s and (adjoint ȳ2 → adjoint ȳ1)

s

even in the case when the updates are exact, as indicated in Figure 1 (left).

The basic idea is now to reduce the influence of the changes in the variables y1 and ȳ1 by rescal-
ing the corresponding updates y2 and ȳ2 as discussed in the previous example and depicted in
Figure 1 (middle, right) with some corresponding step multiplier and preconditioner. Therefore,
we consider the extended mapping G : U × Y1 × Y2 → Y1 × Y2 given by

(y+
1 , y+

2 ) = G(u, y1, y2)

= (y1 − αGC−1g(u, y1,G(u, y1, y2)), G(u, y1, y2)), (9)

which represents an update of the state variable y2 that is used for a scaled update of y1, as
indicated in (8). To guarantee that the extended state update G is contractive, we need to find
a suitable preconditioner matrix C ∈ R

n1×n1 and step multiplier αG ∈ R+ such that G satisfies
the contraction assumption (2) for y = (y1, y2) and control u. The corresponding ADJOINT
fixed-point iteration Ḡ : U × Y1 × Y2 × Ȳ1 × Ȳ2 → Ȳ1 × Ȳ2 can be derived by differentiating
the Lagrangian

L(u, y1, y2, ȳ1, ȳ2) = f (u, y1, y2)+ (G(u, y1, y2)− y2)
�(ȳ1; ȳ2)

= f (u, y1, y2)+ (−αGC−1g(u, y1,G(u, y1, y2)),G(u, y1, y2)− y2)
�(ȳ1; ȳ2)

of the design optimization problem (1) for G defined in (9) with respect to (y1, y2) and
incrementing

(ȳ+
1 , ȳ+

2 ) = (ȳ1 + Ly1(u, y+
1 , y+

2 , ȳ1, ȳ2)
�, ȳ2 + Ly2(u, y+

1 , y+
2 , ȳ1, ȳ2)

�). (10)
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Optimization Methods and Software 7

Thus, we do not have the stepping scheme (8) as proposed in the first place but

· · · → design u → (state y2 → state y1)
s → (adjoint (ȳ1, ȳ2))

s → · · · . (11)

Obviously, the primal preconditioning could and should depend on the current iterate, namely,
αG = αG(u, y1, y2) and C = C(u, y1, y2), to prevent a too-conservative update strategy and, thus,
slow convergence of the overall method to stationary points (u∗, y∗

1, y∗
2, ȳ∗

1, ȳ∗
2) of the problem

(6). For simplicity, we restrict ourselves on a local analysis to the extended multi-step–oneshot
method defined by the stepping sequence of the updates (5) for u, y = (y1, y2) and ȳ = (ȳ1, ȳ2)

close to (u∗, y∗
1, y∗

2, ȳ∗
1, ȳ∗

2), where the primal fixed-point iteration G and adjoint mapping Ḡ are
defined by (9) and (10), respectively. Based on an eigenvalue analysis, we will provide a suitable
choice for the preconditioner matrix C and the stepsize αG to ensure the contractivity of the
extended mapping G. For such stepsizes αG and preconditioner matrices C, we can then apply
the results from [3] for the multistep Seidel–one-shot method (s ≥ 1) on G using the previously
defined adjoint update. Therefore, we will assume for the moment that the contraction rate ρG
is sufficiently small. One choice for the matrix C in the extended fixed-point iteration (8) is the
projected Newton preconditioner

C = gy1 + gy2(I − Gy2)
−1Gy1 (12)

or a low-rank approximation of it [4,7,9,30]. The resulting algorithm and its (local) convergence
behaviour heavily depend on the quality of the preconditioner, besides other problem-dependent
quantities as we will see in the next section.

3. Eigenvalue analysis for the extended mapping

The eigenvalue analysis is based on an argumentation line similar to the one used in [3]. In the
first step of the analysis, we show that all eigenvalues λ ∈ C of the Jacobian matrix

G∗
(y1,y2)

= ∂G

∂(y1, y2)
(u∗, y∗

1, y∗
2)

of the extended mapping G either are in the spectrum of the Jacobi matrix Gy2 of the fixed-point
iteration G or are roots of a complex polynomial P(·) : C → C. For all eigenvalues that are not in
the spectrum of Gy2 , we can derive a necessary condition to be a root of this polynomial in terms
of an inequality that includes problem specific-parameters. As we shall see in Section 4, some
of these parameters can be adjusted such that the inequality is satisfied only for eigenvalues λ
with |λ| < 1. This then implies contractivity of the extended fixed-point mapping G at (u∗, y∗

1, y∗
2)

and, thus, also at points in a vicinity of the solution by a continuity argument. Therefore, let us
consider the Jacobian matrix G(y1,y2) of the extended mapping G

G∗
(y1,y2)

=
[
I − αGC−1gy1 −αGC−1gy2

0 I

] [
I 0
Gy1 Gy2

]

=
[
I − αGC−1(gy1 + gy2Gy1) −αGC−1gy2Gy2

Gy1 Gy2

]
,

where all occurring derivatives are evaluated at a solution (u∗, y∗
1, y∗

2) of problem (6). For the
eigenvalues of this matrix, we can show the following.
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8 T. Bosse

Proposition 1 Any complex eigenvalue λ ∈ C of the Jacobian G∗
(y1,y2)

satisfies

λ ∈ spec(Gy2) or det(M (λ)) = 0,

where M (λ) = (1 − λ)I − αGC−1(gy1 + gy2Gy1)− αGC−1gy2Gy2(λI − Gy2)
−1Gy1 .

Proof The spectrum of the matrix G∗
(y1,y2)

is given by the complex roots of the polynomial

P(λ) = det(G∗
(y1,y2)

− λI)

= det

[
(1 − λ)I − αG(C−1gy1 + C−1gy2Gy1) −αGC−1gy2Gy2

Gy1 Gy2 − λI

]
.

According to the Laplacian expansion theorem (see [10]), we conclude that

P(λ) = det(Gy2 − λI) det(M (λ)),

where the matrix M (λ) ∈ C
n1×n1 is defined by the Schur complement

M (λ) = (1 − λ)I − αGC−1(gy1 + gy2Gy1)− αGC−1gy2Gy2(λI − Gy2)
−1Gy1 .

Thus, any eigenvalue is either in the spectrum of Gy2 or a root of det(M (λ)) = 0. �

Since any eigenvalue of Gy2 is already strictly smaller than, from the assumption of G being a
contractive fixed-point iteration, it is sufficient to guarantee that the condition

det(M (λ)) = 0

is satisfied only for λ ∈ C with |λ| < 1 in order to prove the contractivity of the extended fixed-
point iteration G. At least theoretically, we can assume that the variables were transformed by
y1 = T−1ỹ1 such that the matrix H̃G(1) with

H̃G(λ) ≡ g̃ỹ1 + g̃ỹ2 G̃ỹ1 + g̃ỹ2 G̃ỹ2(λI − G̃ỹ2)
−1G̃ỹ1

is the unit for the transformed functions and variables that are annotated by a tilde; in other words,
H̃G(1) = I for G̃(u, ỹ1, y2) = G(u, Tỹ1, y2) and so on. For example, we can use the transformation

T−1 = HG(1) ≡ gy1 + gy2Gy1 + gy2Gy2(I − Gy2)
−1Gy1 = gy1 + gy2(I − Gy2)

−1Gy1 ,

if HG(1)−1 exists. Note that the second variable y2 = ỹ2 is not affected by this transformation.
As a result, we find the following necessary condition using the rational expression,

μ(η, |λ|) ≡ η

( |λ| + 1

|λ| − η

)
,

and the transformed quantities such as the corresponding preconditioner matrix C̃, which should
be equal to the unit in the ideal case.

Proposition 2 All eigenvalues λ ∈ C of the Jacobian of the extended fixed-point iteration with
the preconditioner matrix C̃ satisfy

|λ| ≤ ρG or |λ| ≤ γG̃ + νG̃cG̃dG̃ μ(ρG , |λ|), (13)

where the constants are given by

γG̃ = ‖I − αGC̃−1‖, νG̃ = αG‖C̃−1‖, cG̃ = ‖gy2‖, and dG̃ = ‖(I − Gy2)
−1Gy1‖‖T‖.
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Optimization Methods and Software 9

Proof For the eigenvalues λ ∈ C with |λ| ≤ ρG there is nothing to show. Thus, we need to
consider only eigenvalues with |λ| > ρG . According to Proposition 2, it follows that for these
values det(M (λ)) = 0, which implies that there exists a kernel vector v ∈ C

n1 of unit length such
that

λv = [(I − αC̃−1H̃G(1))− αC̃−1(H̃G(λ)− H̃G(1))]v

and, therefore,

|λ| ≤ ‖I − αC̃−1‖ + α‖C̃−1‖ ‖H̃G(λ)− H̃G(1)‖.

Here, the difference H̃G(λ)− H̃G(1) is given by

H̃G(λ)− H̃G(1) = g̃y2 G̃y2(λI − G̃y2)
−1G̃ỹ1 − g̃y2 G̃y2(I − G̃y2)

−1G̃ỹ1

= [1 − λ] g̃y2 G̃y2(λI − G̃y2)
−1(I − G̃y2)

−1G̃ỹ1 .

Its norm can be bounded from above by using the submultiplicativity of the operator norm and
the assumption 0 ≤ ‖G̃y2‖ ≤ ρG

‖H̃G(λ)− H̃G(1)‖ ≤ |1 − λ|cG̃
ρG

|λ| − ρG
dG̃ ≤ cG̃dG̃ρG

|λ| + 1

|λ| − ρG
= cG̃dG̃μ(ρG , |λ|),

where cG̃ = ‖gy2‖ and dG̃ = ‖(I − Gy2)
−1Gy1‖‖T‖. Thus, the asserted inequality |λ| ≤ γG +

νG̃ cG̃ dG̃ μ(ρG , |λ|) follows by defining γG̃ = ‖I − αGC̃−1‖ and νG̃ = αG‖C̃−1‖. �

As an immediate consequence for the Newton scenario, we find the following result.

Corollary 1 Assume that the Newton preconditioner (12) is invertible. Then the extended
fixed-point mapping G is contractive for a suitable stepsize αG if ρG , cG̃ , and dG̃ are sufficiently
small.

Proof The proof is a direct consequence of Proposition 2 since the intersection points,
where (13) (right) holds as equality, are given by the roots of a quadratic equation that is obtained
by multiplication with |λ| − ρ. Its solution can be arbitrarily close to zero for a sufficient choice
of αG, ρG , cG̃ , and dG̃ using the given Newton preconditioner C with νG̃ = 1. �

In other words, the extended fixed-point iteration G is contractive if the primal updates for y2

and y1 are Newton steps and there is only a slight coupling of the variables by the constraints.
This situation can be seen by noting that (12) coincides with the total derivative dg(u, y1, y2)/dy1.
On the other hand, the situation depicted in Figure 1 (left) is reflected by the proposition; that is,
even full Newton steps (αG = 1) for y1 and arbitrary small contraction rates ρG �= 0 for y2 can
lead to divergence. In this case the right inequality (13) implies only

|λ| ≤ 0 + νG̃ cG̃ dG̃μ(ρG , |λ|) = ‖C̃−1‖ cG̃ dG̃ρG
|λ| + 1

|λ| − ρG
,

which can be satisfied for any |λ| ∈ R+ for a sufficiently large choice of ‖C̃−1‖cG̃dG̃ . This situ-
ation might happen if small changes in y2 have a large impact on the feasibility of the stationary
condition g(u, y1, y2) = 0. The latter fact is represented by the quantity cG̃ = ‖gy2‖ arising in
formula (13), which measures the partial derivative ∂g/∂y2. The other quantity dG̃ can be under-
stood as the influence of y1 on y2 since the projection matrix (I − Gy2)

−1Gy1 denotes the partial
derivative ∂y2/∂y1 according to the implicit function theorem. If one of the quantities is zero,
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10 T. Bosse

Figure 2. Feasible stepsizes for the exact Newton preconditioner in the decoupled case cG̃dG̃ = 0 (left) and the
situation for the general coupled case with cG̃dG̃ 
 0 (right).

for example, the solution y1 of g(u, y1, y2) = 0 is independent of the choice of y2, then (13)
simplifies to

|λ| ≤ ‖I − αGC̃−1‖,

which suggests that any preconditioner C, or its transformed version C̃, and step-multiplier αG

with ‖I − αGC̃−1‖ ≤ ρG preserve the contraction rate for the coupled iteration. In particular, we
have no retardation at all for this choice, and using the exact preconditioner does not make sense
since doing so would mean oversolving for y1. If the exact Newton preconditioner is available,
any stepsize αG ∈ [1 − ρG , 1 + ρG] preserves ρG = ρG, as visualized in Figure 2 (left).

4. Enforcing contraction for the general case

In the preceding section, we showed that there exist stepsizes αG and (projected Newton) pre-
conditioners C that guarantee that the extended mapping G satisfies the contraction condition (2)
and, thus, allow convergence of the overall method. A necessary condition for their existence
was that there is only a slight coupling of the variables by the constraints, namely, cG̃ or dG̃
are sufficiently small. In this section, we discuss how their existence can be enforced in the
case of a strong coupling, which will be achieved by choosing the primal contraction rate ρG
sufficiently small to compensate too large values cG̃dG̃ 
 0. The latter can be achieved by con-
sidering multiple updates GsG instead of one update G itself; that is, instead of just performing
one fixed-point iteration for y2, a sequence of sG updates is performed before updating y1 in (9).
This motivates the nested multistep one-shot method presented at the end of the introduction.
For this method, we give a lower bound on the number of updates sG to ensure that the primal
contraction rate ρsG

G of the multiple updates GsG is sufficiently small. It is based on the following
observations.

As mentioned earlier, we cannot prevent a contraction rate ρG of the extended fixed-point
iteration G larger than one for the Newton update with (12)

y+
1 = y1 − αGC−1g(u, y1,G(u, y1, y2))

by choosing αG sufficiently small or large. To see this, we depicted in Figure 2 (right) the right-
hand side

ψαG(|λ|) = ‖1 − αGC̃−1‖ + αG‖C̃−1‖cG̃dG̃μ(ρG , |λ|)
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Optimization Methods and Software 11

of the second inequality (13) for two choices 0 < α1
G < α2

G < 1 and variable |λ|. The lower
bound of the function ψαG(|λ|) for |λ| > ρG is given by the limit

ψ∗
αG

= lim
|λ|→∞

ψαG(|λ|) = lim
|λ|→∞

‖1 − αGC̃−1‖ + αG‖C̃−1‖cG̃dG̃μ(ρG , |λ|)

= ‖1 − αGC̃−1‖ + αG‖C̃−1‖cG̃dG̃ lim
|λ|→∞

ρG
|λ| + 1

|λ| − ρG

= ‖1 − αGC̃−1‖ + αG‖C̃−1‖cG̃dG̃ρG

since μ(ρG , |λ|) is a monotonically decreasing function for these values. In particular, it might
happen that no choice αG prevents (13) from being satisfied for |λ| ≥ 1, as depicted in Figure 2
for the Newton case with C̃−1 = I. Here, α2

G also allows for all λ ∈ [1, λ∗
2] and, thus, divergence

of the extended fixed-point iteration G. The basic reason is that the lower limit ψ∗
α2

G
is strictly

greater than one, which might be due to too large values for cG̃ and dG̃ . Hence, |λ∗
2| can never be

restricted below one if ‖C̃−1‖cG̃dG̃ρG ≥ 1.
The remedy for this problem is simple. Note that we can always assume ρG being sufficiently

small by considering a sequence of sG updates for y2 before we perform an update on y1. In
particular, we follow the multistep-Seidel idea and modify the extended stepping scheme (11)
to be

. . . → design u → ((state y2)
sG → state y1)

s → (adjointsG (ȳ1, ȳ2))
s → . . . (14)

with the corresponding multiple adjoint updates. Basically, we now write GsG instead of G, which
denotes the sG times repeated application

GsG (u, y1, y2) = G(u, y1,G(u, y1, . . .G(u, y1, y2)))︸ ︷︷ ︸
sG−times

in all occurring equations such as (9) and (10). The derivatives Gy1 and Gy2 are replaced by

GsG
y1

= (I + Gy2 + G2
y2

+ · · · + GsG−1
y2

)Gy1 = (I − GsG
y2
)(I − Gy2)

−1Gy1

and the product GsG
y2 = Gy2 · · ·Gy2 (sG-times), respectively. This modification does not alter the

previous eigenvalue analysis; the quantities C̃, γG̃ , νG̃ cG̃ , and dG̃ of Proposition 2 are the same
since the expressions (I − Gs

y2
) cancel out. The only difference is that the contraction rate ρG

becomes ρsG
G (i.e. the sG th power of ρG). Hence, we can indeed assume that ρG is sufficiently

small by choosing sG sufficiently large.
A necessary condition to ensure contraction for the extended fixed-point iteration with full

stepsize αG = 1 and Newton preconditioner C is given by the lower bound

sG > max

(
0,

⌈− log(cG̃dG̃)
log(ρG)

⌉)
∈ N.

A sufficient choice for the number of inner iterations sG is as follows.

Proposition 3 Let γG = ‖I − αGC̃−1‖ < 1. Then by adjusting sG and, thus, ρsG
G , any rate ρG ∈

(γG , 1) can be attained as an upper bound on the spectrum of G∗
(y1,y2)

. Sufficient is the following
relation between sG , ηG , and ρG for given cG , dG , γG , and νG :

ρ
sG
G ≤ ρG(ρG − γG)

(ρG − γG)+ (νG̃cG̃dG̃)(1 + ρG)
. (15)
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12 T. Bosse

Proof From the inequality (13) it follows that any eigenvalue ρG of G needs to satisfy

ρG ≤ γG + (νG̃cG̃dG̃)ρ
s
G
ρG + 1

ρG − ρs
G

.

Thus, inequality (15) must hold in order to exclude values greater than ρG, as can be seen by
elementary operations. �

Moreover, the lower bound sG for the number sG follows by setting ρG = 1 in (15), which
implies that

sG > sG = log(1/ρG)[1 + 2(νG̃cG̃dG̃)/(1 − γG)] (16)

is sufficient to enforce contraction of the extended mapping in the general case with γG = ‖I −
αGC̃−1‖ < 1 (i.e. ρG < 1). Moreover, we can choose the values αG, sG , C̃−1, and ρG such that
the resulting algorithm is “optimal” in terms of the retardation factor.

Corollary 2 Let γ̄G ∈ (0, 1) be an upper bound on γG = ‖I − αGC̃−1‖, namely, γ̄G ≥ γG .
Then there exists a preconditioner C̃−1 such that ρG can be chosen as the harmonic mean

ρG = 2

1 + γ̄−1
G

= 2

(
1 − 1

1 + γ̄G

)
⇐⇒ γ̄G = ρG

2 − ρG

for the stepsize

αG = 1 − ρG

1 + ρG
∈ (0, 1].

Furthermore, the minimal cycle length sG for the choice ρG, αG, and C̃−1 is given by

sG(C̃) =
⌈

2 logρG

(
1 − 1

1 + γ̄G

)
− logρG

([
1 − 1

1 + γ̄G

]
/2 + ‖C̃−1‖cG̃dG̃/(2 + 2γ̄G)

)⌉
.

Proof Under the stated assumptions, we can bound the right-hand side of (15) from above and
deduce by elementary arguments that the minimal cycle length sG must satisfy

ρ
sG
G = ρG(ρG − γ̄G)

(ρG − γ̄G)+ (νG̃cG̃dG̃)(1 + ρG)
= ρ2

G(1 − ρG)

ρG(1 − ρG)+ (νG̃cG̃dG̃)(1 + ρG)(2 − ρG)

= ρ2
G

ρG + ‖C̃−1‖cG̃dG̃(2 − ρG)
=

(
1 − 1

1+γ̄G

)2

(
1 − 1

1+γ̄G

)
/2 + ‖C̃−1‖cG̃dG̃/(2 + 2γ̄G)

.

�

As a direct consequence of Corollary 2, we see that the retardation factor of the extended
fixed-point iteration G w.r.t. to GsG is 2 in the ideal case. In particular, we have

lim
γ̄G→0

log ρsG
G / log ρG = 2
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Optimization Methods and Software 13

for the proposed choices of αG, ρG, sG(C̃−1) and a sufficiently accurate preconditioner C̃−1,

which satisfies γG = ‖I − αC̃−1‖ ≤ γ̄G . A promising upper bound on γ̄G is ρG (or ρs
G) so that

ρG → 0 (or s → ∞) implies γG → 0 and αG → 1; in other words, a very contractive fixed-point
mapping G requires a good approximation of the preconditioner for the extended fixed-point
iteration and a stepsize αG close to one. Thus, for the nested approach (14) the retardation factor
w.r.t. G is expected to be 4 in the ideal case with a sufficient choice for s and sG—independent of
the meshsize!

Naturally, the quantities ρG , cG̃ , and dG̃ needed for the choice of the number of inner cycles sG
are usually unknown. Therefore, we propose to approximate them by corresponding estimates
that can be derived by measurements during the optimization course analogous to [3], for exam-
ple, by using differences of the gradients of the Lagrangian function. However, care must be
taken for the estimates γG and ‖C̃−1‖ since C̃ is in general non-symmetric and indefinite (but not
singular because of the general assumptions). In particular, it is advisable to estimate now both
quantities ‖C̃−1‖ and ‖I − αC̃−1‖.

A simple example is given in the next section, where the required quantities such as the
Newton preconditioner can be derived analytically.

5. Numerical results

Parts of the theoretical results are validated by using a discretized version of the Poisson equation
over � = [0, 1] ⊂ R with constant control u1 and boundary conditions,

− y′′(t) = u1 for t ∈ � and y(0) = y(1) = u2. (17)

Besides the Dirichlet conditions we require that y(t = 1
2 ) = k for a given constant k ∈ R. For an

equidistant discretization of� with meshsize h = 1/2n, we can compute the N = 2n− 1 discrete
state variables y(i) using the Jacobi method [23]

y(i)new = 1
2 [h2u1 + y(i−1) + y(i+1)], for i = 1, . . . , N

and set y(0) = y(2n) ≡ 0 to solve the boundary problem (17), which represents a slowly con-
vergent fixed-point solver G : R

N → R
N with contraction rate ρG close to 1 1. The extra

pointwise requirement translates to the scalar condition g(u1, u2, y) = y(n) − k = 0 and provides
the additional constraint for y(n) = y(n)(u1, u2). Obviously, there always exists a unique solu-
tion y = y(u1, u2) that is a fixed point of G and satisfies g if one of the quantities u1 or u2 is
fixed.

Since we are interested primarily in the contraction of the extended fixed-point iteration (2),
we identify u = u2 ∈ R, y1 = u1 ∈ R, y2 = y ∈ R

2n+1 and assume that u2 = 0 is constant; that
is, we do not consider the overall one-shot optimization (14) but only state cycles (9) to find
a state (y∗

1, y∗
2) satisfying the Poisson equation with zero boundary conditions. Hence, we can

formulate the extended fixed-point mapping G : R × R × R
N → R × R

N with preconditioner
C ∈ R

1×1 as follows:

G(0, y1, y2) = [
y1 − αGC−1

(
1
2 [h2y1 + y2

(n−1) + y2
(n+1)] − k

)
,G(0, y1, y2)

]
,

where the boundaries are defined to be y2
(0) = y2

(2n) ≡ 0. Moreover, we find that the correspond-
ing derivative matrices are given by

gy1 = [0] ∈ R
1×1, gy2 = [0, . . . , 0, 1, 0 . . . , 0] ∈ R

1×N ,

Gy1 =
[

h2

2
, . . . ,

h2

2

]
∈ R

N×1, Gy2 = 0.5 tridiag[1, 0, 1] ∈ R
N×N.
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14 T. Bosse
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Figure 3. Snapshots (every 250 iterations) of the intermediate states (gray) and the solution (orange) of y2 for the
extended (left) and the original (right) fixed-point iteration, where the original iteration was computed at y1

∗.
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Figure 4. Convergence history of the residuals for the extended fixed-point iteration G (orange) and its two compo-
nents (light/dark gray) compared with the original fixed-point iteration G (purple) with fixed states y1

init (purple) and y∗
1

(yellow) using random initial values (k = 1, n = 50, sG = 1).

Figure 3 depicts the snapshots of the intermediate states y2 after every 250 iterations (gray)
and the solution y2

∗ (orange) of the extended and the original fixed-point mapping G and G (at
y1

∗), respectively. Here, we use the full-step projected Newton preconditioner matrix C for the
choice k =1, n= 50, and random initial values as stated in Table 1. The convergence history
of the residuals for the extended fixed-point iteration ‖(y∗

1, y2
∗)− G(0, y1, y2)‖2 (orange) and

its two components ‖y∗
1 − y1‖2 (light gray) and ‖y2

∗ − G(0, y1, y2)‖2 (dark gray) can be found in
Figure 4, where we also provide the residual ‖y2

∗ − G(0, y∗
1, y2)‖2 of the pure original fixed-point

iteration G for the initial fixed state y1
init (purple) and its solution y∗

1 (yellow). In particular, we
can deduce from the graphics that the extended mapping is a contractivity fixed-point iteration
that converges toward the solution (y∗

1, y∗
2).
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Optimization Methods and Software 15

Table 1. Matlab code example for the extended fixed-point iteration without graphical output.

maxiter = 1e4; %Number of maximum iterations
tol=1e-8; %Stopping tolerance
k = 1.0; %Constant for pointwise condition
Ndis = 50+1; %Number N of free states y_2
h2=1.0/(Ndis-1)^2; %Mesh-size^2 of discretization

I=speye(Ndis,Ndis); %Derivatives of g and \cal{G}
gy1=0.0; gy2=zeros(1,Ndis); gy2(1,ceil(Ndis/2))=1.0;

Gy1=h2/2.*ones(Ndis,1);
Gy2=0.5*(spdiags(ones(Ndis,1),-1,Ndis,Ndis)+...

spdiags(ones(Ndis,1),1,Ndis,Ndis));

C=gy1+(gy2/(I-Gy2))*Gy1; %Projected Newton-preconditioner

rho=normest(Gy2); %Primal contraction rate
alpha=(1-rho)/(1+rho); %Step-size

y1=randn(1,1); %Random initial values
y2=randn(Ndis,1);
u=0.0; %Boundary condition value
y2(1)=u; y2(Ndis)=u;

%Extended fixed-point equation
for i=1:maxiter

y1new=y1-alpha*(C\(gy2*Gy1*y1+gy2*Gy2*y2-k));
y2new=Gy1*y1+Gy2*y2; y2new(1)=u; y2new(end)=u;
res1=norm(y1-y1new)^2; res2=norm(y2-y2new)^2;
y1=y1new;
y2=y2new;
if(max(res1,res2)<tol)

break;
end

end

6. Conclusion

We considered an extension of the multistep one-shot method presented in [3] for design opti-
mization problems with additional equality constraints (6). The convergence theory is based on
an eigenvalue analysis that suggests using the nested approach (14). The resulting method is in
the limit s, sG → ∞ similar to a fully hierarchical approach, where exact feasibility is established
after each iteration. Local convergence of the method can be proven for a sufficient choice of
preconditioners and cycle lengths sG and s. The lower bound on sG , which depends on problem-
specific quantities and the quality of the preconditioner, was given in Corollary 2. The latter
quantities can be estimated during the optimization analogous to the approximations used for s
presented in [3]. The retardation factor is expected to be 2 for the constraint restoration part and
4 for the overall nested multistep one-shot method in the ideal case, namely, if the preconditioner
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16 T. Bosse

is exact and the step-size for the Newton steps is in the limit one. Some theoretical results and
observations were validated on a simple discrete test problem.

Computations for real applications have not been conducted so far. Also, the question remains
open of whether corresponding results can be formulated in a functional analytic setting and how
additional inequality constraints can be embedded into the approach for more general design
optimization problems.
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derivative is evaluated; for example, Gy, gy, and fy denote the Jacobians of G, g, and the gradient of f with respect
to y, respectively.
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