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Abstract

This paper presents the design and implementation of a
novel file I/O solution for Blue Gene systems. We propose
a hierarchical I/O cache architecture based on open source
software. Our solution is based on an asynchronous data
staging strategy, which hides the latency of file system ac-
cess from compute nodes. The performance results demon-
strate the high scalability and significant performance im-
provements of our architecture over existing solutions.

1 Introduction

In the last years the exponential increase in the proce-
ssing power of large computing systems has continued. A
significant number of systems from Top 500 [5] is repre-
sented by large supercomputers with hundreds of thousands
of processors such as Blue Gene and Cray.

In order to make full benefit of the processing scalabi-
lity, the parallel applications need also a scalable parallel
I/O system. This paper addresses this challenge by propos-
ing a novel scalable parallel I/O solution for Blue Gene sys-
tems. This solution consists of a scalable multi-tier caching
architecture and a I/O architecture implementation hiding
the latency of file accesses to the applications.

The parallel file system is a basic component of any sca-
lable parallel I/O solution, which stripe file data and meta-
data over several independent disks managed by I/O nodes
in order to allow parallel file access from several compute
nodes. The parallel file systems employed in the majority of
the scalable parallel architectures include GPFS [18], PVFS
[13] and Lustre [6]. The solution presented in this paper
uses the PVFS parallel file system, but any other parallel
file system can be included with minimal changes.

A limited number of papers have proposed novel solu-
tions for scalable parallel I/O systems of large supercomput-
ers. Nevertheless, the supercomputers such as Blue Gene
have a complex architecture consisting of several networks,

several tiers (computing, I/O, storage) and, consequentlya
potential deep cache hierarchy. This architecture provides a
rich set of opportunities for optimizations.

The contributions of this paper can be summarized as
follows:

• We present the design and implementation of a novel
hierarchical I/O cache architecture for Blue Gene sys-
tems based on open source software.

• We show how asynchronous data staging can hide the
latency of file system access from compute nodes.

• The performance results demonstrate the high scalabi-
lity and superior performance of our architecture over
existing solutions.

• We discuss how the limitations of the Blue Gene/L ar-
chitecture affect our solution and describe the way in
which our architecture can benefit from design features
of the successor Blue Gene/P supercomputer.

The remainder of the paper is structured as follows. Sec-
tion 2 reviews related work. The hardware and operating
system architectures of Blue Gene/L is presented in Section
3. We discuss our latency hiding file I/O solution in Sec-
tion 4. The experimental results are presented in Section 5.
Finally, we summarize an discuss future work in Section 6.

2 Related work

Collective I/O techniques merge small individual re-
quests from compute nodes into larger global requests in
order to optimize the network and disk performance. De-
pending on the place where the request merging occurs, one
can identify two collective I/O methods. If the requests are
merged at the I/O nodes the method is calleddisk-directed
I/O [12, 19]. If the merging occurs at intermediary nodes
or at compute nodes, the method is calledtwo-phase I/O
[3, 2]. Data shipping [16] is a collective optimization that
uniquely binds each file block in a round-robin manner to



Figure 1. Blue Gene/L architecture overview.

a unique I/O agent. All subsequent read and write opera-
tion on the file go through the I/O agents, which ship the
requested data between the file system and the appropriate
processes.

MPI-IO [14] has imposed as a portable and high per-
formance interface for parallel applications. The MPI-IO
standard and its distributions (such as the popular ROMIO
[22]) offer various file access optimizations on top of exist-
ing file systems. Several researchers have contributed with
optimizations of MPI-IO data operations: data sieving [21],
non-contiguous access [23], collective caching [10], co-
operating write-behind buffering [11], integrated collective
I/O and cooperative caching [8].

A limited number of recent studies have proposed and
evaluated parallel I/O solutions for supercomputers. Yu
et al. [17] present a GPFS-based three-tiered architecture
for Blue Gene/L. The tiers are represented by I/O nodes
as GPFS clients, network shared disks and storage area
network. Our solution extends this hierarchy to include
the memory of the compute nodes and proposes an asyn-
chronous data staging strategy that hides the latency of file
accesses from the compute nodes. An implementation of
MPI-IO for Cray architecture and Lustre file system is de-
scribed in [26]. In [25] the authors propose a collective I/O
technique, in which processes are grouped together for co-
llective I/O according to the Cray XT architecture.

3 Blue Gene/L

This section presents the hardware and operating system
architectures of Blue Gene/L.

3.1 Blue Gene/L architecture

Figure 1 shows a high-level view of a Blue Gene/L sys-
tem. Applications run on compute nodes. Compute nodes

are grouped into processing sets, or “pset”. Each pset has
an associated I/O node, which performs I/O operations on
behalf of the compute nodes from the pset. The supported
sizes of a Blue Gene/L pset are 8, 16, 32, 64 or 128 com-
pute nodes (determined when machine is built). The com-
pute and I/O nodes are controlled by service nodes. The file
system components run on dedicated file servers connected
to storage nodes.

Compute and I/O nodes use the same ASIC with two
PowerPC 440 cores, with non-coherent L1 caches, coherent
2KB L2 caches, and a 4MB shared DRAM L3 cache. The
RAM may have 512 MBytes or 1 GBytes.

Compute and I/O nodes are interconnected by five net-
works: 3D torus, collective, global barrier, Ethernet and
control. The 3D torus is typically used for point-to-point
communication between compute nodes. The collective
network has a tree topology and serves collective communi-
cation operations and I/O traffic. The global barrier network
offers an efficient barrier implementation. The Ethernet net-
work interconnects I/O nodes and file servers. The service
nodes control the whole machine through the control net-
work.

A Blue Gene/L system can be divided in partitions. At a
given time each partition executes only one job. The com-
pute nodes of a partition may run in two modes: coprocessor
and virtual. In coprocessor mode one processor is used for
computation and has access to the whole memory, while the
other performs communication operations. In virtual mode
both processors perform communication and computation.

3.2 Operating system architecture

In the IBM solution [15], the compute node kernel
(CNK) is a light-weight operating system offering basic ser-
vices: creation of one or two address spaces (depending if
the running mode is coprocessor or virtual), simple system
calls such as setting an alarm, and forwarding I/O-related
system calls to the I/O nodes. CNK does not offer local
support for multi-threading, TCP/IP, file systems, or system
calls such as fork/exec or mmap.

The I/O system calls are forwarded to and served by the
I/O node associated to the pset. The I/O nodes run a simpli-
fied Linux OS kernel (IOK) with a small memory footprint,
an in-memory root file system, TCP/IP and file system sup-
port, no swapping, and lacking the majority of classical dae-
mons. The I/O nodes do not run applications. Because the
L1 caches are not coherent, all the threads of a daemon are
running on the same core.

The I/O forwarding from compute to I/O node is simi-
lar to Remote Procedure Calls. As shown in Figure 2(a),
the file system calls of compute nodes are shipped through
the tree collective network to the control and I/O daemon
(CIOD) on the I/O node. CIOD executes the requested sys-



Figure 2. I/O forwarding for IBM and ZeptoOs solutions.

tem calls on locally mounted file systems and returns the
results to the I/O nodes. On the I/O node the communica-
tion proceeds in kernel space, while CIOD is a user-level
daemon serving a mounted file system. Consequently, sev-
eral context switches are required for each file access.

4 Latency hiding file I/O

In this section we present our parallel I/O solution, which
is based on ZOID and ROMIO. ZOID [9] is an I/O for-
warding software developed under the ZeptoOS project [4].
ROMIO [22] is the most popular MPI-IO implementation
and is part of the majority of MPI distributions.

4.1 ZOID and ZeptoOS

The ZeptoOS project is developing an open-source alter-
native to the proprietary software stacks available on mas-
sively parallel architectures such as Blue Gene and Cray.

The I/O forwarding is implemented in a ZeptoOS com-
ponent called ZOID [9]. ZOID is designed to improve the
performance and flexibility of existing I/O forwarding pro-
prietary solutions. ZOID infrastructure consists of a multi-
threaded I/O daemon, a tool for automatic generation of for-
warded I/O routines, and an optimized network protocol.

As shown in Figure 2(b), the multi-threaded I/O ZOID
daemon is the equivalent of CIOD: it runs on each I/O node
and serves the I/O requests of the compute node. Each com-
pute node is served by a distinct ZOID thread.

The ZOID daemon can be easily extended with new
functionality in a flexible way by plug-ins. In order to im-
plement new forwarded calls as a plug-in, a programmer de-
clares the functions to be forwarded from a compute node
(client) to an I/O node (server) in a header file. Subse-
quently, a ZOID tool generates client and server stubs. Fi-
nally, the programmer implements the server functions and
deploys them to the I/O node, where they are plugged into
the ZOID daemon as a dynamic library.

ZOID daemon and compute nodes communicate through
an optimized network protocol running in user space. The
network communication for I/O forwarded calls is automat-
ically generated by the ZOID tool.

Unlike CIOD, the communication proceeds in user space
and the extendibility of ZOID allows to easily add user-level
plug-ins such as ZOIDFS.

ZOIDFS [9] is a ZOID plug-in for I/O forwarding of file
system calls. ZOIDFS abstracts away the details of a file
system API under a stateless interface consisting of generic
functions for file create, open, write, read, close, etc. As
seen in the right hand side of Figure 2 (b), the ZOIDFS
solution does not require any context switch. The solution
presented in this paper is based on ZOID-FS backend over
the PVFS parallel file system.

4.2 ADIO

The most wide-spread implementation of MPI-IO stan-
dard is ROMIO [22]. In ROMIO, the MPI-IO interface is
implemented portably on top of an abstract device interface
called ADIO [20]. ADIO consists of general-purpose op-



timizations and a file system specific implementation. The
general optimizations include among others file views and
collective two-phase I/O [21].

The files system specific part has to be implemented for
providing MPI-IO support for a novel file system, as in the
case of ZOIDFS. The ZOIDFS-ADIO implementation calls
the client stubs generated by ZOID generation tools. The
client stubs forward the calls to the ZOID on the I/O node,
where they are served.

4.3 Collective I/O

Our collective I/O solution is based on view-based co-
llective I/O [1]. In view-based I/O each file block is
uniquely mapped to one process called aggregator, which
is responsible to perform the file access on behalf of all
processes of the application. When an MPI-IO application
defines a collective view (MPI views are collective opera-
tions), the views of all processes are transferred to all aggre-
gators, where they are cached. At access time, contiguous
view data can be transferred between compute nodes and
aggregators: using the view parameters, the aggregator can
perform locally the scatter/gather operations between view
data and file blocks.

The aggregators cache the data in collective buffer cache.
In the original view-based solution this buffer cache is asyn-
chronously flushed to the final file system by an I/O thread.
Because the Blue Gene/L does not offer support for threads
on the compute nodes, the asynchronous flushing has not
been used in the Blue Gene/L solution. However, the full
solution has been just ported on Blue Gene/P, in which
multi-threaded applications can run on compute nodes. The
results presented in this paper can be further improved by
this technique.

In the existing solutions for Blue Gene systems, the tree
network is used for file system traffic. In our solution the
torus network is leveraged for collecting the file system re-
quests and data to aggregators. Subsequently, the aggrega-
tors transfer data to the I/O nodes through the tree network.
This approach reduces the contention on the tree network
by avoiding the transfer of small I/O requests.

There are several differences between view-based I/O
and two-phase I/O. First, in view based I/O files are mapped
onto aggregator at file block granularity, while in two-phase
I/O the file access range is evenly split among aggrega-
tors. Caching file blocks at I/O nodes is complicated for
two-phase I/O because different accesses will produce data
blocks with different sizes, complicating the consistency
protocol. Second, in view-based I/O, the MPI-IO view is
transferred once and reused several times. Third, in two-
phase I/O lists of file offsets and lengths have to be send for
each file access, whereas in view-based I/O the views are
used for scatter/gather. Fourth, unlike two-phase I/O, view-

based I/O offers an compute node cache, which scales with
the number of compute nodes.

4.4 Asynchronous data staging

In order to hide the latency of file accesses we have im-
plemented a file cache on the I/O node. As depicted in
Figure 2 (b), the file cache module lies between ZOID-
FS server stub and the PVFS2 library. It is managed by a
dedicated data staging ZOID thread, which asynchronously
stages the data between the local cache and the file system
servers from the storage node.

Incoming write requests do not wait for the data to be
transferred to the file servers through the Ethernet network:
the data is copied into the I/O node cache and a success-
ful acknowledgment is returned to the compute node. Sub-
sequently, the data is asynchronously flushed to the file
servers by the data staging thread. The write requests have
to wait only if the cache is full. A prefetching policy can be
implemented in a similar way: the data staging thread may
prefetch blocks sequentially or depending on user hints. In
this paper we present an evaluation of the flush policy. Cu-
rrent work concentrates on prefetching.

4.5 Consistency issues

In the presented solution, in order to insure consistency,
each file system block can be cached only at one I/O node.
Therefore, each file block assigned to one I/O node must be
gathered/scattered at aggregators located at the pset corre-
sponding to the same I/O node. This constraint is imposed
by the fact that a compute node can transfer I/O related traf-
fic only to its master I/O node. View-based I/O naturally
addresses this constraint, as the file blocks can be mapped
in a user-defined way to aggregators (the default mapping
is round-robin). The blocks assigned to aggregators are
mapped to local I/O nodes, where they can be cached.

An alternative solution is based on cooperative caches of
the I/O nodes. As in the previous solution, each file block is
assigned to exactly one I/O node. However, if one compute
node writes data to a block assigned to an I/O node from
a different pset, the data is sent first to the own I/O node,
who forwards it to the destination I/O node. Ongoing work
concentrates in the implementation of this solution under
the AHPIOS parallel I/O system [7].

5 Experimental results

The experiments presented in this paper have been per-
formed on the Blue Gene/L system from Argonne National
Lab. The system has 1024 dual-core 700 MHz PowerPC
440 processors with 512 MB of RAM. Data is transferred
between compute nodes and I/O nodes over the a global



tree network with a bandwidth of 2.8Gb / link. Each pset
of 32 compute nodes is served by one I/O node. All 32 I/O
nodes are interconnected to 14 storage nodes though a Gi-
gabit Ethernet interface. The storage nodes provide mass
storage for the BlueGene/L system. Each storage node con-
tains a ServeRAID 6i+ SCSI RAID Controller, which con-
nects to six internal 146.8 GB 10K SCSI HDDs for a total
of 880 GB raw storage per server or 14 TB total raw storage
(11.7 TB usable). Requests to storage nodes are served by
4 xSeries 346 servers with dual 3.4 GHz Xeon processors,
4 GB RAM. All the experiments were run in coprocessor
mode (one MPI process per node).

5.1 Contiguous access

We have implemented a benchmark that simulates the
behavior of parallel applications. The benchmark consists
of alternating compute phases and I/O phases. The com-
pute phases are simulated by idle spinning. In the I/O phase
all the processors write non-overlapping contiguous records
to a file. The number of alternating phases was 20. The
maximum file size produced by 512 processes and record
size of 1MB was 10GB. The compute nodes do not use any
caching. We compare four cases: IBM’s CIOD-based solu-
tion, ZOID without cache, ZOID with cache and zero-time
compute phase and ZOID with cache with a 2 seconds com-
pute phase. The I/O node thread starts flushing data to the
file system, when more than half of the cache contains dirty
blocks.

In one setup we have fixed the record size (we report two
cases: 128KB and 1MB) and varied the number of proces-
sors from 32 (one pset) to 512 (16 psets). In the second
setup we use a fixed number of processors (we report two
cases: 64 and 512 processors) and vary the record size from
1KB to 1MB. Figures 3, 4, 5, and 6 display the results: in
the upper row the aggregate throughput of all nodes and
in the lower row the file close times. The file close times
are relevant because the remaining dirty blocks of I/O node
cache are flushed to the file system at close time.

As expected, we can notice that ZOID solutions caching
file data at I/O nodes significantly outperform the CIOD and
ZOID without cache. The close times of caching solutions
is larger than for non-caching solutions. However, the close
time pays off when compared with the benefit in terms of
aggregate throughput. The close time is smaller for the
2-seconds compute phase, as the cache is asynchronously
flushed to the file system while the computing proceeds.

The aggregate throughput is especially large for small
records for both 64 processors and 512 processors. For
small records the file system latencies are large, therefore,
the effects of latency hiding have a substantial impact.
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Figure 3. Performance of contiguous access
for a fixed record size of 128KB.
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Figure 5. Performance of contiguous access
for different record sizes and 64 processors.
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for different record sizes and 512 processors.

5.2 BTIO benchmark

NASA’s BTIO benchmark [24] solves the Block-
Tridiagonal (BT) problem, which employs a complex do-
main decomposition across a square number of compute
nodes. Each compute node is responsible for multiple
Cartesian subsets of the entire data set. The execution al-
ternates computation and I/O phases. Initially, all compute
nodes collectively open a file and declare views on the rele-
vant file regions (a subcube in the Cartesian domain). After
each five computing steps the compute nodes write the solu-
tion to a file through a collective operation. At the end, the
resulting file is collectively read and the solution verifiedfor
correctness. In this paper we report the results for the MPI
implementation of the benchmark, which uses MPI-IO’s co-
llective I/O routines.

We have run the BTIO benchmark with three diffe-
rent variants of collective I/O techniques: two-phase I/O
(the original collective I/O implementation from ROMIO),
view-based I/O with no cache on the I/O node and view-
based I/O with a cache of 128 MBytes on the I/O nodes.
All collective I/O implementation were using the ZOIDFS
module. All nodes acted as aggregators. Figures 7 and 8
show the total write time and total application time for the
class C (writing around 4 GBytes of data). The upper row
depicts the total write time and the lower row the overall
application times. Figure 9 displays the write times of all of
the 40 I/O steps. The file write time seen by the application
is significantly lower for both cached and uncached cases
of view-based I/O than for two-phase I/O. This is due to the
caching at the compute nodes. However, the improvement
in total application time is lower, because this compute node
cache can not be flushed asynchronously due to the lack of
threads support on Blue Gene/L architecture. For 64 proces-
sors the graph shows an increase in access times when the
compute node cache becomes full. In the case of 256 pro-
cessors, the file fits completely in the cache of the compute
nodes and no change in performance was noted. It can be
noticed also that two phase I/O has a higher cost in the first
access and that, subsequently, flushes the collective buffer
at each file access.

5.3 Discussion

Blue Gene/L presents two limitations that affect the effi-
ciency of our solution. First, the compute nodes do not sup-
port multi-threading. Therefore, the data flushing from the
collective buffers cannot be flushed asynchronously to the
I/O nodes. Second, because the L1 caches are not coherent,
the I/O nodes run all the ZOID threads on the same proces-
sor. Therefore, it is not possible to overlap communication
and file transfer. However, our solution allows to overlap
computation and file transfer: while the applications are
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sors.

running, the file cache on the I/O node is asynchronously
flushed to the file system over the Gigabit Ethernet network.

The limitations discussed above have been removed from
the Blue Gene/P architecture: multi-threading is supported
on the compute nodes and the L1 caches of the four cores
are cache coherent. Therefore, we expect that our solution

will offer an additional performance benefit on Blue Gene/P
systems.

6 Conclusion and future work

In this paper we have proposed a novel file I/O solution
for Blue Gene systems based on MPI-IO and ZeptoOS. Our
solution is based on a multi-tier cache strategy and an asyn-
chronous data staging strategy that hides the latency of data
transfer between cache tiers. We have shown that file sys-
tem latency hiding may provide parallel applications a sig-
nificant performance benefit and scalability.

We have ported the solution presented on this paper to
Blue Gene/P systems and we are currently performing ex-
perimental evaluations. We are also implementing prefetch-
ing techniques for both I/O and compute node caches.
Initial evaluation demonstrate significant performance im-
provements.
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