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Abstract. We propose a homogeneous model for the class of mixed horizontal linear comple-
mentarity problems. The proposed homogeneous model is always solvable and provides the solution
of the original problem if it exists, or a certificate of infeasibility otherwise. Our formulation pre-
serves the sparsity of the original formulation and does not reduce to the homogeneous model of
the equivalent standard linear complementarity problem. We study the properties of the model and
show that interior-point methods can be used efficiently for the numerical solutions of the homoge-
neous problem. Numerical experiments show convincingly that it is much more efficient to use the
proposed homogeneous model for the mixed horizontal linear complementarity problem than to use
known homogeneous models for the equivalent standard linear complementarity problem.
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1. Introduction. A nonlinear complementarity problem (NCP) over the non-
negative orthant consists of finding vectors x ∈ Rn and s ∈ Rn satisfying

xs = 0, s = f(x), x, s ≥ 0, (1.1)

where f : Rn → Rn is a given differentiable function. Here, xs is the componentwise
product of x and s, xs = [x1s1 ;x2s2 ; . . . ;xnsn], also known as the Hadamard prod-
uct. The complementarity problem (1.1) is called monotone if (u−v)T (f(u)−f(v)) ≥
0 for any u, v ∈ Rn++. In this paper we consider the more general notion of a mixed
nonlinear complementarity problems (MNCP) of the form

xs = 0, F (x, s, y) = 0, x, s ≥ 0, (1.2)

where F : R2n+m → Rn+m is a differentiable mapping. The term mixed indicates
the presence of the free variables y ∈ Rm that are not subject to complementarity
conditions and sign constraints. We say that a point (x, s, y) is feasible if it satisfies
both the feasibility equations and the sign constraints. If f is an affine mapping then
(1.1) becomes a linear complementarity problem in standard form (SLCP),

xs = 0, s = Mx+ b, x, s ≥ 0. (1.3)

Similarly, by considering an affine mapping in (1.2) we obtain the mixed horizontal
linear complementarity problem (MLCP)

xs = 0, Ax+Bs+ Cy = b, x, s ≥ 0. (1.4)
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Here A,B ∈ R(m+n)×n, C ∈ R(m+n)×m, and b ∈ Rn+m. If no free variables are
present, we obtain a horizontal linear complementarity problem (HLCP)

xs = 0, Qx+Rs = b, x, s ≥ 0, (1.5)

where Q,R ∈ Rn×n and b ∈ Rn. MLCP (1.4) is said to be monotone if

Au+Bv + Cw = 0 implies uT v ≥ 0, for any u, v ∈ Rn and w ∈ Rm. (1.6)

In particular, HLCP (1.5) is monotone if

Qu+Rv = 0 implies uT v ≥ 0, for any u, v ∈ Rn. (1.7)

Since SLCP (1.3) is obtained by taking Q = M and R = −I in (1.5), it follows that
SLCP (1.3) is monotone if and only if M is positive semidefinite.

In this paper we introduce a homogenization technique that can be applied to
any monotone MLCP and yields a monotone MNCP of the form (1.2) with a homoge-
neous F (·). In the context of interior-point methods, homogenization generally refers
to an artificial transformation of a given (complementarity or constrained optimiza-
tion) problem to a homogeneous problem. The homogeneity causes the transformed
problem to have nicer properties than those of the original problem, such as a trivial
feasible starting point and solvability in any circumstances. The solution sets of the
two problems are related however: once the homogeneous problem is solved, a solu-
tion to the original problem or a certificate that a solution does not exist is readily
available.

Certificates of infeasibility for linear programming are produced with the simplex
method by detecting the unboundedness of either the primal or dual problem. How-
ever, the simplex method can be applied only to linear programming; its extension for
linear complementarity problems (e.g., Lemke’s method) does not offer such certifi-
cates. Standard interior-point algorithms do not offer certificates of infeasibility either.
Moreover, numerical issues arise with the interior-point-based implementations when
solving an infeasible problem, since some of the problem’s variables diverge. Over the
past fifteen years, interior-point methods that provide infeasibility certificates always
have been used in conjunction with a homogenization mechanism.

Having a proof of infeasibility is important for two reasons. First, the model
that gives rise to the infeasible problem may be defective. For example, obtaining
infeasible problems in modeling physical phenomena would indicate such a situation.
Second, the problem may be infeasible because of invalid data or human error in the
input process.

The homogenization of a constrained optimization problem is a concept that has
been used with interior-point methods since their appearance, not necessarily as a
technique that detects infeasibility. Karmakar’s algorithm [12], generally considered
to be the first efficient interior-point algorithm, transforms the original linear problem
into a homogeneous linear problem (called “canonical form”) in order to obtain a fea-
sible starting point. Anstreicher [4] used homogenization to devise a polynomial-time
interior algorithm that solves a linear program with no assumptions of a non-empty
interior of the primal and/or dual problem. Because a Phase I-Phase II technique
is employed, and the solution of a linear system twice larger than with conventional
methods needs to be found at each iteration, Anstreicher’s algorithm is expensive in
practice.

The homogeneous interior-point algorithm for linear programming introduced by
Ye, Todd, and Mizuno [21] uses a self-dual embedding technique to incorporate the
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original linear problem together with its dual problem in a larger homogeneous linear
problem that turns out to be self-dual. This algorithm was the first homogeniza-
tion technique capable of providing certificates of infeasibility of the original problem
and has become a standard for homogeneous interior-point methods because of its
properties:

• It solves the problem without any regularity assumptions concerning the ex-
istence of optimal, feasible or interior feasible points.

• It can start at any positive point, feasible or infeasible.
• Each iteration requires the solution of a linear system whose dimension is

almost the same as for standard (primal-dual) interior-point algorithms.
• If the problem has a solution, the algorithm will find it; if the problem is

infeasible or unbounded, then the algorithm will detect this situation by pro-
viding a ”certificate” of infeasibility for at least one of the primal or dual
problems.

• It is a one-phase algorithm and has O(
√
nL)-iteration complexity.

In addition, the method improves the behavior and computational cost of Anstre-
icher’s algorithm.

Ye [20] showed that this technique is also suitable for monotone SLCP. The homog-
enization yields a self-dual homogeneous monotone linear complementarity problem
that possesses the same properties as the model for linear programming. The homo-
geneous linear complementarity problem is self-dual in the sense that if the original
linear complementarity problem arises from a linear program, then the homogeneous
linear complementarity problem represents the self-dual embedding of the linear pro-
gram.

A homogeneous model was proposed in [2] for nonlinear complementarity prob-
lems, more specifically for NCP (1.1), in the form

xs = 0
τκ = 0
s = τf(x/τ)
κ = −xT f(x/τ)

x, s, τ, κ ≥ 0.

(1.8)

This model is also called augmented since it contains two additional one-dimensional
complementarity variables. The homogenization preserves the monotonicity of the
problem, but the homogeneous model is nonlinear even if the original complementar-
ity problem is linear. For example, if applied to SLCP (1.3) it yields the following
homogeneous NCP:

xs = 0
τκ = 0
s = Mx+ τb
κ = −xTMx/τ − xT b

x, s, τ, κ ≥ 0.

(1.9)

Although considerable research has been devoted to homogenization of SLCP, to
the best of our knowledge, no homogenization technique exists that can be applied
directly to MLCP (1.3), in spite of the fact that many problems from science and
engineering are naturally formulated in this form. On the other hand, MLCP (1.4)
can be transformed into an SLCP of the form (1.3) (see, for example, [3, 9, 10]. While
the matrices defining MLCP (1.4) are sparse, the matrix M from (1.3) becomes dense,
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thus considerably increasing the computational cost of solving the SLCP, in terms of
both execution time and memory requirements. The primary objective of this paper
is to provide a monotone homogeneous augmented model for MLCP with preservation
of the sparsity structure, which can be efficiently solved by means of path-following
interior-point methods.

The paper is organized as follows. Section 2 discusses the connection between
the MLCP (1.4) and HLCP (1.5). Section 3 introduces the homogeneous model for
MLCP (1.4). Its properties are studied in Section 4. Several well known results on
the existence and properties of central path for nonlinear monotone complementarity
are reviewed in Section 5 and used in Section 6 to show that our homogeneous model
possesses the desirable properties characteristic of homogenization techniques. The
numerical algorithm and the simulation results are presented in Sections 7 and 8,
respectively. Section 9 summarizes the findings of our analysis and numerical experi-
ments and discusses future research directions.

Throughout this paper we use the MATLAB-like notation [u ; v ; w ] to denote
the column vector [uT vTwT ]T . Also, we denote by [ABC], or [A, B, C], the matrix
formed by columns of the matrices A, B, and C in that order. Given a matrix P , we
denote by RanP its range (or column space) and by KerP its kernel (or null space).

2. Equivalence between MLCP and HLCP. In this section we show that MLCP

(1.4) is equivalent to an HLCP of the form

xs = 0
ETAx+ ETBs = ET b

x, s ≥ 0,
(2.1)

for any matrix E whose columns form a basis of Ker (CT ). As mentioned in the intro-
duction, the equivalence between different formulations of the linear complementarity
problems is well studied. However, we give a simple proof in order to clarify notation
and to highlight some properties to be used in later sections. The feasible sets of the
linear complementarity problems (1.4) and (2.1) are denoted respectively by

F = {(x, s, y) ∈ R2n+m ; Ax+Bs+ Cy = b, x ≥ 0, s ≥ 0}, (2.2)

FE = {(x, s) ∈ R2n ; ETAx+ ETBs = ET b, x ≥ 0, s ≥ 0}, (2.3)

and the solutions sets by

F∗ = {(x∗, s∗, y∗) ∈ F ; x∗T s∗ = 0}, F∗E = {(x∗, s∗) ∈ FE ; x∗T s∗ = 0}. (2.4)

Lemma 2.1.
(i) (x, s) ∈ FE if and only if there is y ∈ Rm such that (x, s, y) ∈ F .

(ii) (x∗, s∗) ∈ F∗E if and only if there is y∗ ∈ Rm such that (x∗, s∗, y∗) ∈ F∗.
(iii) MLCP (1.4) is monotone if and only if HLCP (2.1) is monotone.
(iv) [A B C ] is full row rank if and only if [ETA ETB ] is full row rank.
Proof. (i) and (ii) follow from the observation that z ∈ RanC ⇔ ET z = 0.

(iii) The monotonicity of (1.4) can be equivalently expressed as xT s ≥ 0 whenever
Ax + Bs ∈ RanC. Since the last relation holds if and only if ETAx + ETBs = 0,
it follows that the monotonicity of (1.4) implies the monotonicity of (2.1) and vice-
versa.
(iv) Suppose that [A B C ] is full row rank and that uT [ETA ETB ] = 0 for some
vector u ∈ Rk, where k = dim KerCT . If we denote v = Eu, then vT [A B C ] = 0;
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and since [A B C ] is full row rank, we must have v = 0. Because the columns of
E are linearly independent, this implies u = 0, showing that [ETA ETB ] is full row
rank. Conversely, let us assume that [ETA ETB ] is full rank and v̄T [A B C ] = 0
for some vector v̄ ∈ Rm+n. It follows that v̄TC = 0, so that there is ū ∈ Rk such
that v̄ = Eū. But then ūT [ETA ETB ] = 0. Since [ETA ETB ] is full row rank, this
implies ū = 0. Therefore v̄T [A B C ] = 0 implies v̄ = 0, so [A B C ] is full row rank.

Lemma 2.1 shows that unless k = n, the MLCP (1.4) is equivalent to an overdeter-
mined HLCP. Therefore we assume k = n, so that dim RanC = (m+n)−dim KerCT =
m.

Assumption 2.2. The matrix C has full column rank.
MLCPs of the form (1.4) satisfying Assumption 2.2 are also present in the study of
Monteiro and Pang [16] on the behavior of path-following interior-point algorithms.
Overdetermined horizontal forms were studied by Güler in [10] in the context of
maximal monotone operators; the author concludes that in the monotone case interior-
point methods can be used to solve such forms if and only if Assumption 2.2 is satisfied.
Under Assumption 2.2, the matrices ETA and ETB from (2.1) have n+m rows and
n columns, so HLCP (2.1) has the same form as HLCP (1.5).

Lemma 2.3 (cf. Theorem 11 of [19]). HLCP (1.5) is monotone if and only if
Q+R is nonsingular and −QRT is positive semidefinite.

Lemma 2.4 (cf. Corollary 18 of [19]). If HLCP (1.5) is monotone and feasible,
then it is solvable.

Corollary 2.5. If Assumption 2.2 is satisfied, then MLCP (1.4) is monotone if
and only if −ETABTE is positive semidefinite for any matrix E whose columns form
a basis of KerCT .

Lemma 2.6. If Assumption 2.2 is satisfied and MLCP (1.4) is monotone, then the
matrix [A B C ] is full row rank.

Proof. Since HLCP (2.1) has the same form as HLCP (1.5), Corollary 2.5 and
Lemma 2.3 imply hat HLCP (2.1) is also monotone. Then according to a result of
[5], it follows that [ETA ETB ] is full row rank. But then according to Lemma 2.1
so is [A B C ].

In view of these results we will assume for the remainder of this paper that
MLCP (1.4) is monotone and that Assumption 2.2 is satisfied.

3. Augmented homogeneous model. We propose the following augmented
mixed homogeneous complementarity problem (HMCP) related to MLCP (1.4):

xs = 0
τκ = 0

Ax+Bs+ Cy − τb = 0
x̄T s̄/τ + κ = 0
x, τ, s, κ ≥ 0,

(3.1)

where

[x̄ ; s̄ ; ȳ] = PKer[ABC] [x ; s ; y] + τ b̄, (3.2)

b̄ = [u∗ ; v∗ ; w∗ ] = [ABC]
T

(AAT +BBT + CCT )−1b. (3.3)

We note that b̄ is the least-squares solution of Ax+Bs+ Cy = b.
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HMCP (3.1) contains two additional complementary variables τ and κ and one
additional equation (constraint). The latter is not linear and therefore the augmented
model can be written as an MNCP of the form (1.2) with F : Rn+×R++×Rn+×R+×
Rm → Rn+m+1,

F ([x; τ ], [s;κ], y) = F (x, τ, s, κ, y) =

[
Ax+Bs+ Cy − τb

x̄T s̄/τ + κ

]
. (3.4)

Notation and terminology. The concepts of feasibility and solvability as defined
for the mixed linear complementarity problem are not applicable for our augmented
complementarity problem because the homogenization process causes the domain of
the problem not to be a closed set anymore. Indeed, the second component of F
from (3.4) is not defined for τ = 0. Therefore it is useful to recall the concepts of
asymptotic feasibility and solvability for the generic MNCP (1.2), in case the map F is
not necessarily defined on the boundary of Rn+×Rn+×Rm, so that Rn++×Rn++×Rm ⊆
dom (F ) ⊆ Rn+×Rn+×Rm. These notions have been considered also for more general
problems in [22].

Definition 3.1. MNCP (1.2) is called asymptotically feasible if there is a bounded
sequence {(xk, sk, yk)} ⊆ Rn++ × Rn++ × Rm such that

lim
k→∞

F (xk, sk, yk) = 0.

Moreover, any limit point (x∗, s∗, y∗) of the sequence {(xk, sk, yk)} is called an asymp-
totically feasible point.

Definition 3.2. MNCP (1.2) is called asymptotically solvable if there is an
asymptotically feasible point (x∗, s∗, y∗) such that x∗s∗ = 0.

Observe that both asymptotic feasibility and asymptotic solvability would be
equivalent to the corresponding concepts defined for MLCP (1.4) if the domain of the
problem were closed.

The study of nonlinear mixed complementarity in the context of interior-point
methods employs several concepts not present in the linear case. The definitions
given below were initially introduced by Monteiro and Pang in the context of implicitly
defined mixed nonlinear complementarity problems over the nonnegative orthant [16]
and the cone of positive semidefinite matrices [17]. Yoshise [22] has adapted the
concepts to work in an asymptotic approach needed for the study of a homogenization
technique for explicit nonlinear monotone complementarity problems over symmetric
cones.

Definition 3.3. The map F (x, s, y) is called (x, s)-equilevel-monotone on its
domain if for any (x, s, y) and (x′, s′, y′) that lie in the domain of F and satisfy
F (x, s, y) = F (x′, s′, y′), it holds that (x− x′)T (s− s′) ≥ 0.

Definition 3.4. The map F (x, s, y) is called (x, s)-everywhere-monotone on the
domain of F if there exist continuous functions φ from the domain of F to the set
Rn+m and c : Rn+m × Rn+m → R such that c(r, r) = 0 and

(x− x′)T (s− s′) ≥ (r − r′)T (φ(x, s, y)− φ(x′, s′, y′)) + c(r, r′)

holds for any (x, s, y) and (x′, s′, y′) in the domain of F satisfying F (x, s, y) = r and
F (x′, s′, y′) = r′.

By taking r = r′, it follows that (x, s)-everywhere-monotonicity implies (x, s)-
equilevel-monotonicity.
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Definition 3.5. The map F (x, s, y) is called y-bounded on its domain if for any
sequence {(xk, sk, yk)} in its domain such that both {(xk, sk)} and {F (xk, sk, yk)} are
bounded sequences, the sequence {yk} is also bounded.

Definition 3.6. The map F (x, s, y) is called y-injective on its domain if for any
(x, s, y) and (x, s, y′) lying in the domain of F and satisfying F (x, s, y) = F (x, s, y′),
we have y = y′.

We remark that the above two definitions are satisfied by MLCP (1.4) only under
Assumption 2.2, which is assumed to hold together with the monotonicity of (1.4).

4. Properties of the augmented HMCP. This section presents the properties
of HMCP (3.1). First, we prove that the augmented problem is an (everywhere-) mono-
tone nonlinear homogeneous complementarity problem possessing the y-bondedness
and y-injectiveness properties. Second, we show that the HMCP (3.1) is solvable un-
der the assumption of monotonicity of MLCP (1.4) and its solution can be used as a
certificate of the solvability or infeasibility of the original problem.

The orthogonal projection of [x ; s ; y ] onto Ker [ABC] is essential for ensuring
that the transformation from MLCP (1.4) to HMCP (3.1) preserves monotonicity, as
shown in the following lemma.

Lemma 4.1. The mapping F defined by (3.2)-(3.4) is as follows
(i) continuous and homogeneous (of degree 1) on its domain;

(ii) (x, s)-equilevel-monotone on its domain;
(iii) y-bounded on its domain;
(iv) y-injective on its domain;
(v) (x, s)-everywhere-monotone on its domain.
Proof. (i) We first show that the mappings [x ; τ ; s ; κ ; y ] 7→ x̄,

[x ; τ ; s ; κ ; y ] 7→ s̄, and [x ; τ ; s ; κ ; y ] 7→ ȳ are linear in [x ; τ ; s ; κ ; y ]. This is
obvious once we write

[ x̄ ; s̄ ; ȳ ] = P [x ; s ; y ] + τ b̄ =
[
P b̄ 0

]
[x ; s ; y ; τ ; κ ].

The continuity of F readily follows from the above observation and from the fact
that τ > 0 on the domain of F .

Now since x̄ and s̄ are linear functions of [x ; τ ; s ; κ ; y ], we have

F (tx, tτ, ts, tκ, ty) =

[
Atx+Bts+ Cty − tτb

tx
T
ts/(tτ) + tκ

]
= tF (x, τ, s, κ, y), ∀t ∈ R

and hence F is homogeneous.
(ii) is a consequence of (v).
(iii) Consider the sequence {(xk, τk, sk, κk, yk)} in the domain of F such that

{(xk, τk, sk, κk)} and {F (xk, τk, sk, κk, yk)} are bounded.
Since C has full column rank, we can write

‖yk‖ = ‖(CTC)−1CTCyk‖ ≤ ‖(CTC)−1CT ‖‖Cyk‖
= ‖(CTC)−1CT ‖‖(Axk +Bsk + Cyk − τkb)− (Axk +Bsk − τkb)‖
≤ ‖(CTC)−1CT ‖

(
‖Axk +Bsk + Cyk − τkb‖+ ‖Axk +Bsk − τkb‖

)
≤ ‖(CTC)−1CT ‖ (M1 + ‖ [AB − b] ‖M2) ,

where M1 and M2 are the bounds for {‖F (xk, τk, sk, κk, yk)‖} and {‖(xk, τk, sk, κk)‖},
respectively. Therefore {yk} is bounded, implying that F is y-bounded according to
Definition 3.5.
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(iv) If F (x, τ, s, κ, y) = F (x, τ, s, κ, y′), then Cy = Cy′, implying that y = y′ since
C is assumed to have full column rank.

(v) Consider (x, τ, s, κ, y) and (x′, τ ′, s′, κ′, y′) in the domain of F and let

[r ; γ] = F (x, τ, s, κ, y) =
[
Ax+Bs+ Cy − τb ; x̄T s̄/τ + κ

]
,

[r′ ; γ′] = F (x′, τ ′, s′, κ′, y′) =
[
Ax′ +Bs′ + Cy′ − τ ′b ; x̄′

T
s̄′/τ ′ + κ′

]
.

Since

PKer[ABC] = I − [ABC]
T
G [ABC] , G := (AAT +BBT + CCT )−1, (4.1)

equation (3.2), which defines (x̄, s̄, ȳ), is equivalent to

[ x̄ ; s̄ ; ȳ ] = [x ; s ; y ]− [ABC]
T
G(Ax+Bs+ Cy) + τ b̄

= [x ; s ; y ]− [ABC]
T
G(Ax+Bs+ Cy − τb) = [x ; s ; y ]− [ABC]

T
Gr,

where the expression (3.3) of b̄ was used to obtain the second equality. Therefore we
can write

[x− x′ ; s− s′ ; y − y′ ] = [ x̄− x̄′ ; s̄− s̄′ ; ȳ − ȳ′ ] + [ABC]
T
G(r − r′),

which gives

(x− x′)T (s− s′) =
(
x̄− x̄′ +ATG(r − r′)

)T (
s̄− s̄′ +BTG(r − r′)

)
=(

x̄− x̄′
)T (

s̄− s̄′
)

+ (r − r′)T G
(
A(s− s′) +B(x− x′)−ABTG (r − r′)

)
. (4.2)

By multiplying (3.2) with [ABC] and using (3.3), we obtain

Ax̄+Bs̄+ Cȳ = τb, Ax̄′ +Bs̄′ + Cȳ′ = τ ′b.

We can then write

Ax̄/τ +Bs̄/τ + Cȳ/τ = b = Ax̄′/τ ′ +Bs̄′/τ ′ + Cȳ′/τ ′,

and the monotonicity of MLCP (1.4) implies
(
x̄/τ − x̄′/τ ′

)T (
s̄/τ − s̄′/τ ′

)
≥ 0. Mul-

tiplying the previous inequality with ττ ′ and manipulating the terms, we get

τ ′

τ
x̄T s̄+

τ

τ ′
x̄′
T
s̄′ ≥ x̄′T s̄+ x̄′

T
s̄. (4.3)

Using (4.3) and the expressions of γ and γ′, we deduce successively that

(τ − τ ′)(κ− κ′) = (τ − τ ′)(γ − γ′)− (τ − τ ′)(x̄T s̄/τ − x̄′T s̄′/τ ′)

= (τ − τ ′)(γ − γ′)− (x̄T s̄+ x̄′
T
s̄′) + (

τ ′

τ
x̄T s̄+

τ

τ ′
x̄′
T
s̄′)

≥ (τ − τ ′)(γ − γ′)− (x̄T s̄+ x̄′
T
s̄′) + x̄′

T
s̄+ x̄′

T
s̄

= (τ − τ ′)(γ − γ′)− (x̄− x̄′)T (s̄− s̄′). (4.4)

Adding (4.2) and (4.4) and using the expressions of r and r′, we obtain

[x− x′ ; τ − τ ′]T [s− s′ ; κ− κ′]
≥ [r − r′ ; γ − γ′]T (φ(x, τ, s, κ, y)− φ(x′, τ ′, s′, κ′, y′)) ,
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where φ :
(
Rn+ × R++ × Rn+ × R+

)
× Rm → Rn+m+1 is given by

φ(x, τ, s, κ, y) =
[
G(As+Bx)−GABTG(Ax+Bs+ Cy − τb) ; τ

]
. (4.5)

The function φ is clearly continuous; and by taking c := 0 it follows that F is (x, s)-
everywhere-monotone on

(
Rn+ × R++ × Rn+ × R+

)
×Rm, according to Definition 3.4.

Theorem 4.2. HMCP (3.1) is asymptotically feasible and every asymptotically
feasible point is an asymptotically complementarity solution.

Proof. One can easily verify that HMCP (3.1) is asymptotically feasible by consid-
ering the sequence (xl, τ l, sl, κl, yl) := ((1/2)le, (1/2)l, (1/2)le, (1/2)l, 0) and letting
l→∞.

Let (x, τ, s, κ, y) be any asymptotically feasible point of HMCP (3.1). Hence, there
is a sequence {(xk, τk, sk, κk, yk)} ⊆ Rn++ × Rn++ × Rm such that

lim
k→∞

(xk, τk, sk, κk, yk) = (x, τ, s, κ, y), lim
k→∞

F (xk, τk, sk, κk, yk) = 0.

It follows that

Ax+Bs+ Cy − τb = 0
x, τ, s, κ ≥ 0

lim
k→∞

x̄k
T
s̄k/τk + κ = 0

(4.6)

From (3.2) it follows that the limit [ x̄ ; s̄ ; ȳ ] = lim
k→∞

[ x̄k ; s̄k ; ȳk ] exists. Using the

notation from (4.1), we have

[ x̄ ; s̄ ; ȳ ]− [x ; s ; y ] = τ b̄− (I − P )[x ; s ; y ] = τ b̄− PRan[ABC]T [x ; s ; y ]
= [A B C]TG(τb−Ax+Bs+ Cy).

The first feasibility equation from (4.6) implies x = x̄, s = s̄ and y = ȳ, while the
third equation from (4.6) yields the complementarity condition xT s+ τκ = 0.

The next theorem shows that the maximal asymptotic complementarity solutions
to HMCP (3.1) represent certificates of solvability or infeasibility of the MLCP (1.4).
Moreover, when MLCP (1.4) is solvable, a solution is obtained from the solution of
the HMCP (3.1) at no cost. We recall that a solution is maximal if the number of
positive components of the vectors subject to nonnegativity and complemenatarity
constraints in the solution is as large as possible. Note that the indexes of those
positive components are invariant among all maximal solutions for HMCP (3.1) (see
[10])

Theorem 4.3. Let (x∗, τ∗, s∗, κ∗, y∗) be a maximal asymptotic complementarity
solution of HMCP (3.1) corresponding to MLCP (1.4). Then the following statements
hold:

(i) MLCP (1.4) has a solution if and only if τ∗ > 0. In this case, a solution of
MLCP (1.4) is given by (x∗/τ∗, s∗/τ∗, y∗/τ∗).

(ii) MLCP (1.4) is infeasible if and only if κ∗ > 0.
Proof. (i) If (x∗, τ∗, s∗, κ∗, y∗) is a maximal asymptotic complementarity solution

of the HMCP (3.1) with τ∗ > 0, then

Ax∗/τ∗ +Bs∗/τ∗ + Cy∗/τ∗ = τ∗b/τ∗ = b, (x∗/τ∗)T (s∗/τ∗) =
x∗T s∗

τ∗2
= 0,
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so that (x∗/τ∗, s∗/τ∗, y∗/τ∗) is solution for MLCP (1.4). Now let (x̂, ŝ, ŷ) be a solution
for MLCP (1.4), and define τ̂ = 1, κ̂ = 0. We show that (x̂, τ̂ , ŝ, κ̂, ŷ) is a solution
HMCP (3.1). The two complementarity conditions of HMCP (3.1) are obviously sat-
isfied as well as the first feasibility condition. As in the proof of Theorem 4.2, we
can show that the first feasibility condition for (x̂, τ̂ , ŝ, κ̂, ŷ) implies ¯̂x = x̂, ¯̂s = ŝ and
¯̂y = ŷ. Therefore we can write

¯̂xT ¯̂s

τ̂
+ κ̂ =

x̂T ŝ

1
+ 0 = x̂T ŝ = 0,

which proves that the second feasibility equation of the HMCP (3.1) holds. Since
(x̂, τ̂ , ŝ, κ̂, ŷ) is a solution of HMCP (3.1) and τ̂ = 1, it follows that any maximal
solution (x∗, τ∗, s∗, κ∗, y∗) of HMCP (3.1) must have τ∗ > 0.

(ii). First we show that if (x∗, 0, s∗, κ∗, y∗), with κ∗ > 0, is an asymptotic solution
for HMCP (3.1), then MLCP (1.4) is infeasible. Assume the opposite, namely, that there
exist x ≥ 0, s ≥ 0 and y ∈ Rm such that Ax + Bs + Cy = b. Since (x∗, 0, s∗, κ∗, y∗)
asymptotically solves HMCP (3.1), we can consider the sequences xk > 0 with xk → x∗,
τk > 0 with τk → 0, sk > 0 with sk → s∗, yk → y∗ and κk > 0 with κk → κ∗ > 0
satisfying

Axk +Bsk + Cyk → τkb, x̄k
T
s̄k/τk → −κ∗. (4.7)

As in the proof of Theorem 4.2, (4.7) implies

x̄k → x∗ and s̄k → s∗. (4.8)

According to (3.2), the left multiplication of [ x̄k ; s̄k ; ȳk ] with [ABC] causes the
orthogonal projection term to vanish and we have

[ABC][ x̄k ; s̄k ; ȳk ] = τk[ABC]b̄ = τkb.

Since τk > 0, we deduce that

Ax̄k/τk +Bs̄k/τk + Cȳk/τk = b.

Then we can write A(x̄k/τk − x) + B(s̄k/τk − s) + C(ȳk/τk − y) = 0, which implies
(x̄k/τk−x)T (s̄k/τk−s) ≥ 0 by the monotonicity of MLCP (1.4), and therefore τkxT s−
(xT s̄k + sT x̄k) ≥ −x̄kT s̄k/τk. By considering the limit when τk → 0 and taking into
account (4.7) and (4.8), we obtain κ∗ ≤ −(xT s∗ + sTx∗) ≤ 0, which contradicts the
fact that κ∗ is positive.

Conversely, assume that MLCP (1.4) is infeasible. We want to prove that there
is a complementarity solution (x∗, τ∗, s∗, κ∗, y∗) of the HMCP (3.1) that has κ∗ > 0.
Consider the set

P = {Ax+Bs+ Cy − b : x, s ∈ Rn+, y ∈ Rm}.

One can easily verify that P is closed and convex. The infeasibility of MLCP is
equivalent to 0 /∈ P. Then there is a separating hyperplane between 0 and P, that is,
there is a vector a ∈ Rm+n, a 6= 0 and ξ > 0 so that

aT (Ax+Bs+ Cy − b) ≥ ξ > 0, ∀x, s ≥ 0, ∀y ∈ Rm. (4.9)

Let us take s = 0 and y = 0 in (4.9). Then for any x ≥ 0 we must have xTATa =
aTAx ≥ ξ + aT b. If the jth component of ATa is negative, then xTATa can be made
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smaller than ξ + aT b by taking xi = 0 for i 6= j and xj sufficiently large. Hence,
ATa ≥ 0. Similarly, BTa ≥ 0. Taking x = s = 0 in (4.9) leads to yTCTa ≥ ξ+aT b for
any y ∈ Rm. This implies that CTa = 0, so that a ∈ KerCT . Therefore we can write
a = Eu with u ∈ Rn, where E ∈ R(m+n)×n is the matrix introduced in Lemma 2.1
whose columns form basis of KerCT . We have (ATa)T (BTa) = uTETABTEu ≤ 0,
since −ETABTE is positive semidefinite (see Corollary 2.5). On the other hand
(ATa)T (BTa) ≥ 0. Thus

(ATa)T (BTa) = 0. (4.10)

According to Corollary 2.5, equation (4.10) indicates that the nonegative function
q 7→ −qTETABTEq vanishes at q = u. This implies by the first-order optimality con-
ditions that ETABTEu+(ETABTE)Tu = 0, or, equivalently, ET (ABTa+BATa) =
0. Hence ABTa+BATa ∈ RanC. Therefore we have ABTa+BATa+Cy′ = 0, with
y′ ∈ Rm. Denoting x′ = BTa and s′ = ATa, we can write that

Ax′ +Bs′ + Cy′ = 0, with x′, s′ ≥ 0, y′ ∈ Rm and (x′)T s′ = 0. (4.11)

Now consider

x(t) = x′ + t2e, τ(t) = t, s(t) = s′ + t2e, y(t) = y′, t > 0.

Using (4.11), we obtain

lim
t→0

(Ax(t) +Bs(t) + Cy(t)− τ(t)b) = lim
t→0

(
t2(A+B)e− tb

)
= 0 (4.12)

and  x(t)

s(t)

y(t)

 = P

 x′ + t2e
s′ + t2e
y′

+ t

 u∗

v∗

w∗

 =

 x′

s′

y′

+ t

 u∗

v∗

w∗

+ t2P

 e
e
0

 ,
with the first equality being the definition (3.2) and the last equality holding because
[x′ ; s′ ; y′ ] ∈ Ker [ABC] (see (4.11)). From the last equation in (4.11) it follows that

lim
t→0

x(t)
T
s(t)

t
= (s′)Tu∗+ (x′)T v∗ = aT (Au∗+Bv∗) = aT (Au∗+Bv∗+Cw∗) = aT b.

By taking x,s, and y to be zero in (4.9) we deduce that κ∗ = −aT b ≥ ξ > 0. Thus,
(x∗, τ∗, s∗, κ∗, y∗) = (BTa, 0, ATa,−aT b, y′) is an asymptotic solution of HMCP (3.1)
with κ∗ > 0.

If (x∗, τ∗, s∗, κ∗, y∗) is a maximal complementarity solution to HMCP (3.1), then
we must have either τ∗ > 0 and κ∗ = 0, or τ∗ = 0 and κ∗ > 0. Indeed, if τ∗ = 0 and
κ∗ = 0, then according to Theorem 4.3 the MLCP (1.4) is feasible but not solvable;
this cannot happen in the monotone case however, because, according to Lemma 2.4,
feasibility implies solvability. The fourth alternative, both τ∗ > 0 and κ∗ > 0, cannot
hold because of the complementarity condition.

Thus any maximal complementarity solution (x∗, τ∗, s∗, κ∗, y∗) of HMCP (3.1)
provides either a solution or a certificate of infeasibility for MLCP (1.4) . Table 4.1
displays all possible combinations of τ∗ and κ∗ and the corresponding solvability
status of the MLCP (1.4). “NA” stands for “not available” (or not possible).
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τ∗ \ κ∗ = 0 > 0
= 0 NA infeasibility certificate for MLCP

> 0 (x∗, s∗, y∗)/τ∗ solution of MLCP NA

Table 4.1
Solvability and infeasibility certificates given by τ∗ and κ∗

5. General theory of the existence of central paths for nonlinear com-
plementarity problems. In this section we briefly present several results concern-
ing the properties of an interior-point mapping, which we later use to characterize
the central path of HMCP (3.1). The results are part of a framework introduced by
Monteiro and Pang [16] to study nonlinear monotone implicitly defined complemen-
tarity problems over the non-negative orthant and over the cone of symmetric positive
semidefinite matrices [17]. Yoshise [22, 13] proved the same type of results for non-
linear monotone implicitly defined complementarity problems over symmetric cones.
While the analysis from [16, 17] requires the complementarity problem to be defined
on the entire cone, the results from [22] can be used for complementarity problems not
defined on the boundary of the cone. Yoshise’s results hold for symmetric cones. Here
we specialize them to the nonnegative orthant, which is a symmetric cone. Consider
a nonlinear complementarity problem in implicit form,

xs = 0, F (x, s, y) = 0, x, s ≥ 0, (5.1)

where F : dom (F ) → Rm+n is a continuous map satisfying Rn++ × Rn++ × Rm ⊆
dom (F ) ⊆ Rn+ × Rn+ × Rm. The trajectory of the interior point map H : Rn++ ×
Rn++ × Rm → R2n+m given by

H(x, s, y) = [xs ; F (x, s, y)] (5.2)

is characterized by means of homeomorphic continuous maps in the following theorem.
Theorem 5.1 (cf. Theorem 3.10 of [22]). Suppose that the continuous map F

is (x, s)-equilevel-monotone, y-bounded, and y-injective on its domain. Then the map
H defined by (5.2) satisfies the following properties:

(i) H is proper with respect to Rn++ × F
(
Rn++ × Rn++ × Rm

)
.

(ii) H maps Rn++ × Rn++ × Rm homeomorphically onto
Rn++ × F

(
Rn++ × Rn++ ×Rm).

Under the (x, s)-everywhere monotonicity assumption on F , the set F
(
Rn++×

Rn++ × Rm) is convex and open, as shown by the following theorem. The convexity
of this set turns out to be a key property in Section 6 in proving crucial properties of
the central path associated with our homogeneous model.

Theorem 5.2 (cf. Theorem 3.12 of [22]). Suppose that the continuous map F is
(x, s)-everywhere-monotone, y-bounded, and y-injective on its domain. Then the set
F
(
Rn++ × Rn++ × Rm

)
is an open convex set.

6. Existence and properties of the central path for HMCP. In this section
we prove the existence, uniqueness and convergence of the central path for HMCP (3.1).
We also show that the sequences of interior points generated by path-following interior-
point algorithms have limit points that are solutions to HMCP (3.1). Consider the map

H(x, τ, s, κ, y) = [xs ; τκ ;F (x, τ, s, κ, y)] , (6.1)
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and choose a strictly feasible initial point (x0, τ0, s0, κ0, y0). For simplicity we set
(x0, τ0, s0, κ0, y0) := (e, 1, e, 1, 0). Define

[p̂0 ; r̂0] := H(x0, τ0, s0, κ0, y0) = [e ; 1 ;F (e, 1, e, 1, 0)] .

Theorem 6.1. If MLCP (1.4) is monotone, then the following statements hold
for HMCP (3.1):

(i) For any t ∈ (0, 1] there exist x(t) > 0, τ(t) > 0, s(t) > 0, κ(t) > 0, and
y(t) ∈ Rm such that

H(x(t), τ(t), s(t), κ(t), y(t)) = t[p̂0 ; r̂0]. (6.2)

(ii) The set C containing all the points (x(t), τ(t), s(t), κ(t), y(t)) given by (i)
forms a bounded path in Rn+1

++ × Rn+1
++ × Rm. Moreover, any accumulation

point (x(0), τ(0), s(0), κ(0), y(0)) of C is an asympotic solution of HMCP (3.1).
Proof. (i) According to Lemma 4.1, F satisfies the conditions of Theorem 5.2.

Thus, the set F
(
Rn+1

++ × Rn+1
++ × Rm) is open and convex. Since

H
(
Rn+1

++ × Rn+1
++ × Rm

)
= Rn+1

++ × F
(
Rn+1

++ × Rn+1
++ × Rm

)
,

we obtain that H
(
Rn+1

++ × Rn+1
++ × Rm) is also open and convex. HMCP (3.1) is

asymptotically feasible by Theorem 4.2, i.e., 0 ∈ cl
(
F
(
Rn+1

++ × Rn+1
++ × Rm)). Since

cl
(
H
(
Rn+1

++ × Rn+1
++ × Rm

))
= Rn+1

+ × cl
(
F
(
Rn+1

++ × Rn+1
++ × Rm

))
,

we have 0 ∈ cl
(
H
(
Rn+1

++ × Rn+1
++ × Rm

))
. H

(
Rn+1

++ × Rn+1
++ × Rm) being open and

convex implies t[p̂0 ; r̂0] ∈ H
(
Rn+1

++ × Rn+1
++ × Rm

)
for all t ∈ (0, 1]. Then the con-

clusion from (i) follows from the fact that the map H is a homeomorphism from
Rn+1

++ × Rn+1
++ × Rm onto H

(
Rn+1

++ × Rn+1
++ ×Rm) (according to Theorem 5.1).

(ii) The homeomorphism of H also implies that C is a path in Rn+1
++ ×Rn+1

++ ×Rm.
We now prove the boundedness of C. Assume (x(t), τ(t), s(t), κ(t), y(t)) ∈ C. Then
F (x(t), τ(t), s(t), κ(t), y(t)) = tr̂0 = tF (x0, τ0, s0, κ0, y0); and by the homogeneity
of F we obtain F (x(t), τ(t), s(t), κ(t), y(t)) = F (tx0, tτ0, ts0, tκ0, ty0). According to
Lemma 4.1, F is equilevel-monotone, so that

(x(t)− tx0)T (s(t)− ts0) + (τ(t)− tτ0)(κ(t)− tκ0) ≥ 0,

or equivalently

x(t)T s0 + s(t)Tx0 + τ(t)κ0 + κ(t)τ0 ≤ x(t)T s(t)

t
+
τ(t)κ(t)

t
+ t(x0)T s0 + tτ0κ0.

Moreover, any point on the path must have x(t)s(t) = te and τ(t)κ(t) = t. Observe
that the first equality gives x(t)T s(t) = tn. Also, we have (x0)T s0 = n and τ0κ0.
Since x(t) > 0, τ(t) > 0, s(t) > 0, κ(t) > 0, the above inequality implies

‖ [x(t); τ(t); s(t);κ(t)] ‖1 = [x(t); τ(t); s(t);κ(t)]
T

[e; 1; e; 1] ≤ (n+ 1)(t+ 1) ≤ 2(n+ 1),

which proves the boundedness of [x(t); τ(t); s(t); κ(t) ]. Because 0 < t ≤ 1, we have

‖F (x(t), τ(t), s(t), κ(t), y(t))‖ = t‖r̂0‖ ≤ ‖r̂0‖.
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Using y-boundedness of F we deduce that y(t) is bounded as well (see Lemma
4.1). Hence the set C is bounded. Therefore, at least one accumulation point
(x(0), τ(0), s(0), κ(0), y(0)) must exist. According to (6.2) and Definition 3.2, we
conclude that any accumulation point is an asympotic solution of HMCP (3.1).

The following theorem proves that any solution to HMCP (3.1) found by means
of a path-following interior-point algorithm possesses the maximal complementarity
property.

Theorem 6.2. If z∗ := (x∗, τ∗, s∗, κ∗, y∗) is an asymptotic solution of HMCP (3.1)
and z(0) := (x(0), τ(0), s(0), κ(0)), y(0)) is an accumulation point of the path C, then
z∗i > 0 implies [z(0)]i > 0, for any i ∈ {1, 2, . . . , 2n+ 2}.

Proof. Consider t ∈ (0, 1], and the corresponding point
z(t) := (x(t), τ(t), s(t), κ(t)),y(t)) ∈ C for which we have

[r(t) ; γ(t)] := F (x(t), τ(t), s(t), κ(t), y(t)) = t[r0 ; γ0]
x(t)s(t) = te
τ(t)κ(t) = t,

(6.3)

where [r0 ; γ0] = r̂0. Since (z∗, y∗) is an asympotic solution of HMCP (3.1), there is a
sequence {zk} := {(xk, τk, sk, κk, yk)} ⊂ Rn+1

++ × Rn+1
++ × Rm such that

(xk, τk, sk, κk, yk) → (x∗, τ∗, s∗, κ∗, y∗)[
rk ; γk

]
:= F (xk, τk, sk, κk, yk) → 0

xksk → x∗s∗ = 0
τkκk → τ∗κ∗ = 0.

(6.4)

The sequence {zk} is bounded since it is convergent. Moreover, by Theorem 6.1 the
set C is also bounded; therefore, there must be ε > 0 such that

‖zk‖ ≤ 1/ε, ∀k and
‖z(t)‖ ≤ 1/ε, ∀t ∈ (0, 1] .

(6.5)

For a fixed t ∈ (0, 1], (6.4) also implies that there exists a k(t) positive integer such
that

xki s
k
i < tε/(n+ 1), i ∈ {1, 2, . . . , 2n+m+ 2},

τkκk < tε/(n+ 1), ∀k ≥ k(t),
‖rk‖ < tε,

which implies

(xk)T sk + τkκk < tε and ‖rk‖ < tε, ∀k ≤ k(t). (6.6)

Since F is everywhere-monotone, we can write[
xk − x(t) ; τk − τ(t)

]T [
sk − s(t) ; κk − κ(t)

]
≥
[
rk − r(t) ; γk − γ(t)

]T (
φ(zk)− φ(z(t))

)
,

where φ is the continuous linear function given by (4.5). By manipulating the terms
in the above inequality, we obtain

s(t)Txk + x(t)T sk + κ(t)τk + τ(t)κk ≤ (xk)T sk + x(t)T s(t) + τkκk + τ(t)κ(t)

+
[
rk − r(t) ; γk − γ(t)

]T (
φ(z(t))− φ(zk)

)
.



A Homogeneous Model for Mixed Horizontal LCPs 15

By using [x(t)]i[s(t)]i = t, i ∈ {1, 2, . . . , 2n + 2}, and τ(t)κ(t) = t given by (6.3), we
can transform the previous inequality to

t(zk)T z(t)−1 ≤ (xk)T sk + tn+ τkκk + t+
[
rk − tr0 ; γk − tγ0

]T (
φ(z(t))− φ(zk)

)
≤ (xk)T sk + τkκk + t(n+ 1) + ‖

[
rk − tr0 ; γk − tγ0

]
‖‖φ(zk)− φ(z(t))‖

≤ (xk)T sk + τkκk + t(n+ 1) +

+
(
‖
[
rk ; γk

]
‖+ t‖

[
r0 ; γ0

]
‖
)
‖φ‖

(
‖zk‖+ ‖z(t)‖

)
(by linearity of φ)

≤ tε+ t(n+ 1) + t
(
ε+ ‖

[
r0 ; γ0

]
‖
)
‖φ‖ (1/ε+ 1/ε) ,

where the last inequality follows by applying (6.5) and (6.6).
To conclude, we have proved that

∀t ∈ (0, 1],∃k(t) such that (zk)T z(t)−1 ≤ µ̄, ∀k ≥ k(t),

where µ̄ := n+ 1 + ε+ 2
(
ε+ ‖

[
r0 ; γ0

]
‖
)
‖φ‖/ε does not depend on either t or k(t).

By the convergence of {zk} to z∗, we obtain that

(z∗)T z(t)−1 ≤ µ̄, ∀t ∈ (0, 1]. (6.7)

Consider z∗i > 0. If the accumulation point z(0) of P satisfies [z(0)]i = 0, then a
sequence {tl} of positive numbers converging to 0 and satisfying lim

l→∞

[
z(tl)

]
i

= 0

exists. It follows that {z∗i /
[
z(tl)

]
i
} is unbounded. But this is a contradiction, since

z∗i /
[
z(tl)

]
i
≤ (z∗)T z(tl)−1 ≤ µ̄ according to (6.7). Hence [z(0)]i > 0.

Corollary 6.3. If (x∗, τ∗, s∗, κ∗, y∗) is an asymptotic solution of HMCP (3.1)
with τ∗ > 0 (κ∗ > 0), then any accumulation point (x(0), τ(0), s(0), κ(0), y(0)) of the
path C satisfies τ(0) > 0 (κ(0) > 0, respectively).

As we have shown in Section 4, the HMCP (3.1) always has a solution for which the
pair (τ∗, κ∗) possesses strict complementarity. Corollary 6.3 shows that the solutions
found by path-following algorithms are valid certificates (in the sense of Theorem
4.3) of solvability or infeasibility of the original MLCP (1.4). In addition, in the case
when the original MLCP has a solution, Theorem 6.2 indicates that path-following
algorithms for the HMCP retrieve maximal complementarity solutions to the MLCP.

7. Numerical method for solving HMCP. The interior-point method used in
this work is similar to Mehrotra’s predictor-corrector algorithm for linear programing
problems [15]. Mehrotra’s algorithm emerged in the last decades as the practical
interior-point method for solving linear programming problems, being implemented in
optimization solvers such as OB1 [14], HOPDM [8], PcX [6], LIPSOL [25], OOQP [7].
It has been also successfully generalized for convex quadratic programming [7], as well
as for standard monotone linear complementarity problems [24].

Our adaptation of Mehrotra’s algorithm is listed in Algorithm 7 and is aimed at
solving the HMCP (3.1) as a monotone nonlinear complementarity. An alternative
class of algorithms is the homogeneous interior point algorithms (e.g., [2, 11, 23]),
which are specialized for the solution of the homogeneous models. The design and
analysis of such algorithm for HMCP (3.1) are outside the scope of this work and will
be considered in future work.

The predictor direction (7.1) from Algorithm 7 is a pure Newton direction for
H(x, τ, s, κ, y) = 0. The corrector step (7.2) aims to improve centrality and to com-
pensate for the errors made by the predictor step because of the nonlinearity of the
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Algorithm 1 A path-following predictor-corrector algorithm for solving HMCP (3.1)

Set (x0, τ0, s0, κ0, y0) = (e, 1, e, 1, 0) and let k = 0.
repeat

Let (x, τ, s, κ, y) ← (xk, τk, sk, κk, yk).
Let µ = [x ; τ ]T [ s ; κ ]/(n+ 1);

(stopping criteria)
Return (x, τ, s, κ, y) if ‖H(x, τ, s, κ, y)‖ ≤ 10−8 and µ ≤ 10−8.

(predictor step)
Compute (up, αp, vp, βp, wp) from

S 0 X 0 0
0 κ 0 τ 0
A −b B 0 C
dTx dTτ dTs 1 dTy



u
α
v
β
w

 =


−xs
−τκ

τb−Ax−Bs− Cy
− 1
τ x̄

T s̄− κ

 . (7.1)

Compute θp = arg max{θ ∈ (0, 1] : (x, τ, s, κ) + θ(up, αp, vp, βp) ≥ 0}.
Let µp = ([x ; τ ] + θp[up ; αp ])T ([ s ; κ ] + θp[ vp ; βp ])/(n+ 1).
Let centering parameter σ = (µp/µ)3.

(corrector step)
Compute (u, α, v, β, w) from

S 0 X 0 0
0 κ 0 τ 0
A −b B 0 C
dTx dTτ dTs 1 dTy



u
α
v
β
w

 =


σµe− xs− upvp
σµ− τκ− αpβp

τb−Ax−Bs− Cy
− 1
τ x̄

T s̄− κ

 . (7.2)

Compute θmax = max{θ : [x; τ ; s; κ ] + θ[u; α; v; β ] ≥ 0}.
Compute steplength θc ∈ (0, θmax) according to Algorithm 7.
Let (xk+1, τk+1, sk+1, κk+1, yk+1) ← (xk, τk, sk, κk, yk) + θc(u, α, v, β, w).
Let k ← k + 1.

continue

complementarity equations in H(x, τ, s, κ, y) = 0. The former aim is achieved by
incorporating σµe − xs and σµ − τκ terms in the right-hand side of (7.2), and the
latter is achieved by the second-order correction terms −upvp and −αpβp. The point
[σµe ; σµ ] on the central path targeted by the corrector is controlled by the centering
parameter σ, which is a trade-off between optimality (σ close to zero) and central-
ity (σ close to one), depending on the progress toward optimality made along the
predictor direction.

The linear systems (7.1) and (7.2) are obtained by linearizing the interior point
map H given by (5.2). The vectors dx, ds, and dy are given by

[dx ; ds ; dy] =
1

τ
PKer[ABC][ s̄ ; x̄ ; ȳ ]

and

dτ =
1

τ
[ s̄ ; x̄ ; 0 ]b̄− 1

τ2
x̄T s̄.
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The projection of a given vector z onto Ker [ABC] is computed based on

PKer[ABC]z = (I − PRan[ABC]T )z = z − [ABC]
T

(AAT +BBT + CCT )−1 [ABC]
T
z.

For this we perform a Cholesky factorization of AAT + BBT + CCT once and solve
with the Cholesky factors each time (AAT +BBT + CCT )−1 needs to be applied to

the vector [ABC]
T
z.

We compute the steplength along the corrector direction by enforcing decrease in
the merit function

φ(x, τ, s, κ, y) = ζ(xT s+ τκ) + ‖F (x, τ, s, κ, y)‖. (7.3)

Here ζ is a positive parameter used to balance between complementarity xT s and
feasibility ‖F (x, τ, s, κ, y)‖. Clearly, if the point (x, τ, s, κ, y) satisfies φ(x, τ, s, κ, y) =
0, then (x, τ, s, κ, y) is a complementarity solution. One can easily prove that the
corrector direction is a descent direction for φ(x, τ, s, κ, y).

Algorithm 2 Procedure for computing the step size θc.

Set θc ← θmax;
Set k ← 0 ;
Repeat

Set [x+ ; τ+ ; s+ ; κ+ ; y+ ] = [x ; τ ; s ; κ ; y ] + θc[u ; α ; v ; β ; w ];
If (7.4) and (7.5) are satisfied then

Accept and return θp;
Else

θc = c2
k

3 θc;
If θc ≤ c4 then

Return error;
Set k ← k + 1 ;

continue

The use of the ‖F (x, τ, s, κ, y)‖ term in the merit function is a departure from
the original Mehrotra algorithm and is required by the nonlinearity of F (x, τ, s, κ, y).
When F is linear, as is the case for linear complementarity, including linear pro-
gramming and convex quadratic programming, the feasibility improves along the en-
tire corrector direction (under monotonicity assumption). For nonlinear problems
the corrector direction is only a locally descent direction for F (x, τ, s, κ, y), assum-
ing monotonicity. For this reason we use the Armijo rule for enforcing a “sufficient
decrease” in the merit function; namely, we require the corrector step length θc to
satisfy

φ(x+, τ+, s+, κ+, y+) ≤ c1θc∇φ(x, τ, s, κ, y)T [u ; α ; v ; β ; w ], (7.4)

where [x+ ; τ+ ; s+ ; κ+ ; y+ ] = [x ; τ ; s ; κ ; y ]+θc[u ; α ; v ; β ; w ] is the candidate
for update, and c1 is a constant of the algorithm. Additionally we enforce a “away
from boundary” condition on the corrector step length that has the role of preventing
the iterates from converging prematurely toward the boundary of the nonnegative
orthant, which can cause serious numerical difficulties. This condition takes the form

x+
i s

+
i ≥ c2µ

+, for i = 1, 2, . . . , n, and τ+κ+ ≥ c2µ+, (7.5)
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where µ+ = ((x+)T s+ + τ+κ+)/(n + 1), and c2 is a constant of the algorithm. The
complete procedure for computing the step length is presented in Algorithm 2. A sim-
ilar line-search technique has been used for the numerical solution of the homogeneous
model for standard monotone linear complementarity problems [1].

8. Numerical experiments. In this section we report on the performance of
the homogenization technique on a class of randomly generated monotone MLCPs.
The predictor-corrector algorithm presented in the previous section was implemented
in MATLAB 7.9. The runs have been performed on a machine equipped with a
Intel dual-core 2.0 GHz CPU and 4 gigabytes of memory. The parameters of the
Algorithm 2 are c1 = 10−4, c2 = 10−6, c3 = 0.85, c4 = 10−4, and ζ = 1/

√
n+ 1.

8.1. Test problems. We apply the homogenization technique to a class of ran-
domly generated sparse MLCPs. Our generation technique initially generates a sparse
SLCP of the form (1.3) by generating a random positive semidefinite M . M does not
necessarily have to be symmetric. The vector b can chosen such that the problem has
or does not have a solution. An SLCP with a unique solution is obtained by generating
a positive definite M . Then, the SLCP is transformed to an HLCP of the form (1.5)
by multiplying equation (1.3) with a sparse nonsingular matrix and rearranging the
variables. We obtain a monotone MLCP of the form (1.5) with A = GnQ, B = GnR,
C = GmK, and the right-hand Gnb by generating a sparse matrix G ∈ R(m+n)×(m+n)

whose columns represent an orthonormal basis of R(m+n) and a sparse m ×m non-
singular matrix K. Matrices Gn and Gm denote the first n and last m columns of
G, respectively. The solution of the resulting MLCP has the same properties as the
solution of the initial SLCP, which allows straightforward generation of MLCPs with
no solution, unique solution, or multiple solutions. We refer the reader to [18] for a
detailed presentation and validation proofs of this generation technique.

n m τ κ µ ||r||
500 125 1.51e+000 4.11e-010 1.95e-009 2.00e-014
1000 250 1.17e+000 3.69e-009 9.90e-009 2.90e-013
1500 375 1.11e+000 8.27e-010 2.26e-009 3.00e-014
2000 500 1.10e+000 3.01e-009 7.90e-009 3.90e-013
2500 625 1.13e+000 1.49e-009 3.96e-009 4.00e-014
3000 750 1.19e+000 1.67e-009 4.63e-009 6.40e-013
3500 875 1.22e+000 8.95e-010 2.79e-009 7.00e-014
4000 1000 1.26e+000 5.82e-010 1.93e-009 1.20e-013
4500 1125 1.32e+000 6.93e-010 2.10e-009 1.20e-013
5000 1250 1.27e+000 1.59e-009 4.92e-009 5.20e-013

Table 8.1
Certificates of solvability (τ > 0, κ = 0) are properly retrieved by solving HMCP for feasible

MLCPs. The number of the complementarity variables and free variables of the MLCP is denoted
by n and m, respectively. The left two columns show the complementarity measure µ and the norm
of the feasibility residual for the retrieved solution of the MLCP.

8.2. HMCP certificates and solution to MLCP. Our first set of experiments
solves HMCPs corresponding to randomly generated MLCPs. Our homogeneous tech-
nique was applied to MLCPs having multiple solutions and to infeasible MLCPs of
various sizes. A solution to the MLCP was always retrieved in the solvable case, and
a certificate of infeasibility, that is, κ > 0, was found for all infeasible instances, as
shown in Table 8.1 and Table 8.2. We also found that the solution to MLCP found
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by rescaling the HMCP solution with 1/τ is accurate. This is shown by the last two
columns of Table 8.1, where we list the complementarity measure µ and the norm of
the feasibility residual ‖r‖ = ‖Ax+Bs+ Cy − b‖ of the MLCP’s solution.

n m τ κ
500 125 5.33e-008 5.93e+000
1000 250 1.11e-007 1.27e+001
1500 375 1.05e-007 1.90e+001
2000 500 1.43e-008 2.23e+001
2500 625 1.85e-007 2.01e+001
3000 750 5.11e-007 1.52e+001
3500 875 5.66e-007 1.75e+001
4000 1000 7.60e-007 1.57e+001
4500 1125 9.57e-007 1.48e+001
5000 1250 9.85e-007 2.11e+001

Table 8.2
Certificates of infeasibilty (τ = 0, κ > 0) are properly retrieved by solving HMCPs for infeasible

MLCPs. The number of the complementarity variables and free variables of the MLCP are denoted
by n and m, respectively.

8.3. Performance comparison with other homogeneous models. To the
best of our knowledge, the homogeneous model proposed in this work is the first
homogenization technique that can be applied directly to monotone horizontal lin-
ear complementarity problems. Alternatively, one can transform a given monotone
MLCP or HMCP to a monotone SLCP and can apply the homogenization technique of
Andersen and Ye [2]. In this section we compare these two approaches in terms of
computational cost, both execution time and memory usage.

A monotone MLCP can be transformed to an equivalent monotone SLCP by first
removing the free variables using the technique from Lemma 2.1, yielding a monotone
HLCP. The orthonormal basis of CT required by Lemma 2.1 is found by performing a
sparse singular value decomposition of CT . The monotone HLCP then is transformed
to a monotone SLCP by using the reduction method from [9]. The reduction requires
finding a maximal set of linear independent columns of the SLCP’s matrix Q. Let
Qi1 , Qi2 , . . . , QiL denote this set, where subscripts denote columns of matrices. Also
define the matrices S and T by

Sj =

{
Qj , if j ∈ {i1, i2, . . . , iL}
Rj , otherwise

and Tj =

{
Rj , if j ∈ {i1, i2, . . . , iL}
Qj , otherwise

.

One can easily show that the matrix C is invertible and SLCP(S−1T, S−1b) is mono-
tone [9]. Additionally, the solutions to the SLCP coincide with the solutions to the
HLCP modulo a rearrangement of the variables. Our implementation uses an LU
factorization to find the maximal set of linear independent columns of Q. The ma-
trix S−1T is computed by solving for each column of T and is close to being dense,
irrespective of the sparsity of the MLCP’s data.

We compare our HMCP homogenization approach of MLCP with the homogeniza-
tion technique of Andersen and Ye [2] for SLCP. For this we have implemented in
MATLAB the homogeneous interior-point proposed by the authors for the solution of
their homogeneous model for SLCPs. This implementation is denoted “Homog−SLCP,”
while our implementation is denoted “HMCP−MLCP.” For the Homog−SLCP approach
we report execution times obtained with sparse and dense linear algebra, in order to
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rule out possible cases where the sparse linear solvers can still take advantage of the
(precarious) sparsity of SLCP matrices and be faster than dense linear solvers. Ad-
ditionally, we report the execution time spent in the transformation of the MLCP to
SLCP, which is denoted by “Conv.” We chose not to include in the Homog−SLCP time,
even though the transformation contributes to total execution in the Homog−SLCP
approach. Tables 8.3 and 8.4 show these execution times as well as the number of
iterations of each algorithm on the test problems used in Section 8.2.

HMCP−MLCP Conv Homog−SLCP
n m iter t t iter tsparse tdense

500 125 12 1.29 1.94 13 44.96 4.31
1000 250 12 7.76 12.30 15 608.90 28.27
1500 375 13 26.42 39.93 13 3187.58 72.79
2000 500 12 59.11 98.95 14 8284.77 164.53
2500 625 12 114.70 201.80 11 14550.27 243.53
3000 750 12 247.08 363.57 14 36358.05 515.56
3500 875 12 361.29 577.16 12 OOM 846.33
4000 1000 12 552.47 869.26 OOM OOM
4500 1125 12 861.67 1205.81 OOM OOM
5000 1250 11 1089.22 1699.90 OOM OOM

Table 8.3
HMCP is applied to sparse MLCPs (HMCP−MLCP), while the Andersen&Ye homogenization

algorithm solves an equivalent SLCP (Homog−SLCP). Solvable MLCPs are used in this study. We
report the execution times (in seconds) and the number of iterations, denoted “iter,” needed by
the two algorithms. Execution times obtained with both sparse (tsparse) and dense (tdense) linear
algebra kernels are listed for Homog−SLCP. We also list the execution times of the transformation
from MLCP to SLCP.

HMCP−MLCP Conv Homog−SLCP
n m iter t t iter tsparse tdense

500 125 13 1.34 1.80 12 41.48 3.99
1000 250 12 7.48 12.52 13 363.46 24.80
1500 375 12 29.20 40.22 13 2257.53 73.06
2000 500 12 60.08 98.33 13 8689.07 155.90
2500 625 12 123.84 201.74 11 16256.95 246.69
3000 750 12 214.75 369.63 11 28970.54 409.69
3500 875 12 448.54 577.56 11 OOM 724.17
4000 1000 12 674.99 876.33 OOM OOM
4500 1125 12 959.86 1194.37 OOM OOM
5000 1250 12 1311.67 1612.35 OOM OOM

Table 8.4
Same experiment as in Table 8.3 is performed for infeasible sparse MLCPs.

A first observation is that the transformation from MLCP to SLCP is more expen-
sive than solving the MLCP with HMCP. The overhead is caused by the expensive
linear algebra requirements of the transformation and the loss of sparsity that grad-
ually occurs during the transformation process.

The Homog−SLCP implementation is significantly slower than HMCP − MLCP,
despite a similar number of iteration of the two algorithms. This is the consequence
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of the sparsity loss occurring during the transformation; HMCP−MLCP solves sparse
linear systems, while Homog−SLCP solves dense linear systems. Also, the storage
requirement of Homog−SLCP grows rapidly with the problem sizes, and the algorithm
runs out of memory (OOM) even for moderately sized problems, which is not the case
for HMCP−MLCP.

9. Concluding remarks. In this paper we have introduced a new homogeniza-
tion technique for monotone horizontal mixed linear complementarity problems. We
have proved that the transformed problem offers an infeasibility certificate or pro-
vides a solution of the original problem. We have also shown that interior-point
path-following methods can be used effectively to obtain the numerical solutions of
the homogeneous problem and safely retrieve the certificates of infeasibility or solv-
ability. Numerical experiments performed on randomly generated problems show
that the proposed numerical method is considerably faster and can solve larger prob-
lems than with previously proposed homogenization methods. The proposed solution
procedure, an algorithm based on the well-known Mehrotra predictor-corrector, per-
forms well in practice. Future work will be devoted to the design and analysis of
a path-following numerical homogeneous algorithm possessing provable convergence
and O(

√
nL) iteration-complexity that is achieved by homogeneous algorithms for

standard monotone complementarity problems.
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