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Abstract

Lexicographic derivatives developed by Nesterov and directed subdifferen-
tials developed by Baier, Farkhi, and Roshchina are both essentially noncon-
vex generalized derivatives for nonsmooth nonconvex functions and satisfy
strict calculus rules and mean-value theorems. This article aims to clarify
the relationship between the two generalized derivatives. In particular, for
scalar-valued functions that are locally Lipschitz continuous, lexicographic
smoothness and directed subdifferentiability are shown to be equivalent,
along with the necessary optimality conditions corresponding to each. For
such functions, the visualization of the directed subdifferential—the Rubinov
subdifferential—is shown to include the lexicographic subdifferential, and is
also shown to be included in its convex hull. Implications of these results are
discussed.
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1. Introduction

Several set-valued generalized derivatives have been developed for locally
Lipschitz continuous functions f : X C R"” — R™ that are not differentiable
everywhere, for use in methods for equation solving and optimization. These
generalized derivatives include Clarke’s generalized Jacobian [1] and the var-
ious generalized subdifferentials described in [2, 3, 4, 5, 6]. As summarized
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by Mordukhovich [3], Clarke’s generalized Jacobian is the smallest convex-
valued generalized derivative that satisfies certain desirable properties and an
inclusion-based sum rule; roughly, 9[f 4+ ¢](x) C df(x) 4+ dg(x). Notably, two
types of nonconvex generalized derivative have been proposed that satisfy cal-
culus rules as equalities instead: the lexicographic subdifferential developed
by Nesterov [7, 8] and the directed and Rubinov subdifferentials developed
by Baier, Farkhi, and Roshchina [9, 10]. This article aims to clarify the re-
lationship between these two approaches to constructing useful generalized
derivatives and thereby to obtain new properties of each.

Intuition suggests that such a relationship ought to exist. Inspection
of the directed subdifferential shows that it is motivated similarly to the
lezicographic-directional (LD-)derivative described by Khan and Barton [11];
each is defined through the recursive application of directional derivatives,
and each obeys similar sharp calculus rules. The LD-derivative is essentially
a variant of the lexicographic derivative that satisfies calculus rules similarly
to the classic directional derivative. Inspection of [12, Equation 21] and
the construction of the directed subdifferential in [9, 10] suggests that the
directed subdifferential is in some sense analogous to a collection of LD-
derivatives. These observations motivate the developments in this article.

The main results obtained in this article are as follows. For scalar-valued
locally Lipschitz continuous functions, lexicographic smoothness is shown to
be equivalent to directional subdifferentiability, the necessary optimality con-
ditions developed for lexicographic derivatives [8, Theorem 8| and directed
subdifferentials [10, Equation 8] are shown to coincide, and the Rubinov sub-
differential is shown to include the lexicographic subdifferential while being
included in its convex hull. Various implications of these results are discussed.

This article is structured as follows. Section 2 presents relevant defini-
tions, Section 3 develops the main results of the article, and Section 4 presents
concluding remarks.

2. Mathematical background

Notational conventions used in this article are as follows. The space R™
is equipped with the Euclidean norm and inner product, which are denoted
as || - || and (-, -), respectively. The unit sphere in R" is then S,_; := {d €
R™ : ||d|| = 1}. The zero vector in R"™ will be denoted as 0,,. The column
space of a matrix A € R™*" is R(A) := {Ad : d € R"}.



Given an open set X C R" and a function f : X — R™, the following
limit, if it exists, is the directional derivative of f at x € X in the direction

d e R":
o+ 1d) ~ (@)

The function f is directionally differentiable at © € X if f'(x;d) exists in R™
for each d € R™. In this case, the mapping f’(x;-) is positively homogeneous
on R™. If f'(x;-) is linear, then f is (Gateaux) dzﬁerentzable at x, with J f(x)
denoting the correspondmg (Gateaux) derivative of f at z.

The Fréchet subdifferential and Fréchet superdifferential are described in
detail by Kruger [6]; in particular, if X C R™ is open and f : X — R is
directionally differentiable at x € X, then the Fréchet subdifferential of f at
T 1is

Orf(zr)={aeR": f'(z;d) > (a,d), VdeR"},
and the Fréchet superdifferential of f at x is

OF f(x) ={a eR": f'(z;d) < (a,d), VdeR"}.

Observe that if both O f(z) and d f(z) are nonempty, then f is differentiable
at x.

2.1. Lexicographic smoothness

Lexicographic derivatives were developed by Nesterov [8], and are defined
as follows.

Definition 1 (from [8]). Given an open set X C R™ and a function f :
X — R™ that is Lipschitz continuous near x € X, f is lexicographically
(L-)smooth at  if, for each p € N and each matrix M = [mu) -+ mg)] €
R™P the following directional derivative mappings are well-defined

FO R R™ d e f/(23d),
Jih RS BT 2 d s [f0] (mey; d),



In this case, if R(M) = R"™, then fip JQ is linear, and the lexicographic

(L-)derivative of f at = in the directions M is Jp f(z; M) = Jf;%(on) €
R™ ™ The lexicographic (L-)subdifferential of f at x is then

Ouf(x) = {Juf(x; M) : p €N, M € R"™? R(M) = R"} € R™*",

For notational consistency with the other generalized derivatives in this ar-
ticle, when m = 1, the elements of Jf(x) will be transposed and will be
considered to be elements of R™.

The class of L-smooth functions is closed under composition and in-
cludes all continuously differentiable functions, convex functions on open
sets, parametric integrals with L-smooth integrands [8], solutions of para-
metric ordinary differential equation systems with L-smooth right-hand side
functions [13], and functions that are piecewise differentiable [11] in the sense
of Scholtes [14]. This article will show that quasidifferentiable functions are
also L-smooth. Observe that L-smoothness is defined for vector-valued func-
tions.

2.2. Directed subdifferentiability

Directed subdifferentials were introduced by Baier et al. for delta-convex
functions [15] and were ultimately extended to the class of directed subdiffer-
entiable functions [9, 10]. Although directed subdifferentials were developed
in the framework of directed sets [12], this article proceeds instead in terms
of the Fréchet subdifferential, the Fréchet superdifferential, and the Rubinov
subdifferential that is described in [16] as the wisualization of the directed
subdifferential.

As an intermediate construct, for any n € {2,3,...} and ¢ € S,_1, let

IL,_1, € R™=Dx7 denote a fixed matrix whose columns constitute an or-
thonormal basis for the subspace {d € R™ : (¢,d) = 0}. Thus,

[} Hn,ng = Onfl, and
o I}, )M 1ed=d—(d, ()¢ for each d € R".

Let P,_1, denote the linear transformation z — II,,_; ;2.

The following definition of directed subdifferentiability is the special case
of [9, Definition 5.1] in which the functions considered are locally Lipschitz
continuous. In this case, the various continuity and boundedness require-
ments of the original definition are shown to hold in [14, Chapter 3]. The
Rubinov subdifferential is described subsequently.
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Definition 2 (adapted from [9, 10]). Consider any open set X C R™ and
any function f : X — R that is Lipschitz continuous near x € X. If n =1,
then f is directed subdifferentiable at x if f is directionally differentiable at
x. If n > 1, then f is directed subdifferentiable at x if both of the following
conditions are satisfied:

e f is directionally differentiable at z, and

e for each £ € §,_y, the function f, : R"™' - R:d— f'(z;0+1I}_, ,d)
is directed subdifferentiable at 0,_.

Certain functions that are not locally Lipschitz continuous may also be di-
rected subdifferentiable according to [9] but are not considered in this article.
Observe that all directed subdifferentiable functions are scalar valued.

Definition 3 (adapted from [10] and Definitions 4.4 and 4.8 in [16]).
Consider any open set X C R™ and any locally Lipschitz continuous func-
tion f : X — R that is directed subdifferentiable at x € X. Define sets

=

M, (0f(x)),0rf(x) C R"™ recursively over n € N as follows. If n = 1, then
My(f(z)):=0 and  8af(z):= dpf(z)Ud} f(x).
If n > 1, then
Mo (3f(2)) = {10y + f(2;0) 00 € Spry y € rfel0,-1) }
\(@r f(x) U 9 f(x)),
and  Opf(x) := Opf(x) UL f(z) UM, (3f(z)).
The set Og f(z) is the Rubinov subdifferential of f at x.

Again, although not considered in this article, the Rubinov subdifferential
is also defined in [10] for directed subdifferentiable functions that are not
locally Lipschitz continuous.

3. Main results

This section presents the main results of this article: that L-smoothness
and directed subdifferentiability are equivalent for locally Lipschitz continu-
ous functions, that the corresponding optimality conditions are also equiva-
lent, and that the L-subdifferential is related to the Rubinov subdifferential
in a certain way.



3.1. Relating lexicographic smoothness and directed subdifferentiability

The following theorem shows that L-smoothness and directed subdiffer-
entiability are equivalent for locally Lipschitz continuous functions. This
theorem is proved at the end of the subsection.

Theorem 3.1. Given an open set X C R"™ and a function f : X — R, f is
L-smooth at some x € X if and only if f is both Lipschitz continuous near x
and directed subdifferentiable at x.

The following result was claimed in [8], under the assumption that any
quasidifferentiable function is also delta-convex. Although Baier et al. [16,
Example 3.5] provide a counterexample for this assumption, Theorem 3.1
yields the desired conclusion nevertheless.

Corollary 3.2. Given an open set X C R", any quasidifferentiable function
f: X — R is L-smooth.

Proor. Quasidifferentiable functions are both locally Lipschitz continuous
and directed subdifferentiable and thus satisfy the hypotheses of Theorem 3.1.

The following corollary generalizes similar results in [10, Section 4] and
follows immediately from Theorem 3.1 and [11, Proposition 2.2].

Corollary 3.3. Given open sets X C R" and Y C R and locally Lipschitz
continuous functions g : X —Y and f :Y — R, suppose that g is directed
subdifferentiable at x € X and that f is directed subdifferentiable at g(z). The
composite function h : X — R : z — f(g(z)) is also directed subdifferentiable
at x.

Similarly, Theorem 3.1 implies that the various examples of L-smooth func-
tions provided in [8, 13, 11] are all directed subdifferentiable.

The following corollary shows that if an objective function in an uncon-
strained optimization problem is locally Lipschitz continuous, then necessary
optimality conditions developed by Baier et al. and by Nesterov coincide.

Corollary 3.4. Given an open set X C R", consider an L-smooth function
f: X — R, and choose & € X. The point T satisfies the necessary optimality
condition given by [10, Equation 8] if and only if it satisfies the necessary
optimality condition given by [8, Theorem §].



ProOF. By Theorem 3.1, f is directed subdifferentiable on X. The required
result follows from inspection of the recursive definitions of the “>" relation
in [8] and the “>" relation for directed sets in [10] and from inspection of
the two necessary optimality conditions.

The following lemma is similar in spirit to [10, Proposition 2.4] and will
be used in the subsequent proof of Theorem 3.1.

Lemma 3.5. Given an open set X C R™ and a locally Lipschitz continuous
function f : X — R, if f is directed subdifferentiable at x € X, then the
directional derivative mapping f'(x;-) is both directed subdifferentiable and
Lipschitz continuous on R™.

PROOF. For notational convenience, define ¢ := f’(x;-). The lemma will be
proved by induction on n € N. As the base case of the inductive argument,
if n = 1, then ¢(d) can be computed directly for any d € R to be

_ | f1)d, if d >0,
old) = { —f'(x; =1)d, ifd<0.

Thus, ¢ is piecewise linear in the sense of Scholtes [14] and is therefore
Lipschitz continuous and directionally differentiable on R, as required.

Next, as the inductive step, suppose that n := m > 1, and assume that
the lemma has been demonstrated for the case in which n := m — 1. The
function ¢ is Lipschitz continuous according to [14]; it remains to be shown
that ¢ is also directed subdifferentiable at some arbitrary y € R™. If y = 0,,,
then this result follows immediately from [10, Proposition 2.4]. Thus, assume
that y # 0,,, in which case there exist § > 0 and ¢ € S,,_; for which y = g¢.
Define a mapping f; as in Definition 2; since f is directed subdifferentiable
at x, f, is directed subdifferentiable at 0,,_; and is Lipschitz continuous
according to [14].

To establish the directional differentiability of ¢ at y, choose any d € R™.
Define o := (¢, d) € R and v := d—al € R™, and observe that (¢,v) = 0. For
any sufficiently small ¢ > 0, (8 + ta)) > 0, and so the positive homogeneity
of ¢ yields

Oy + td) — o(y)
= (B+ta) (80 + (545)0) — 6(0)) +ta ()
(ol Gtz o1 d) = FolOmo) ) +16(0) (€. ).

= (B +ta)



Since f, is directionally differentiable at 0,,_1, the above equation implies

that
i QW +td) — 9(y)

t—0t t

= [fe (Om15 Tp1,0 d) + G(£) (£, d). (1)

Since d was chosen arbitrarily, the directional differentiability of ¢ at y is
thereby established.

It remains to be shown that for any h € S,,,_1, the mapping ¢, : R™1 —
Rz ¢/ (y; h+1I1},_, , 2) is directed subdifferentiable at 0,,_;. Thus, choose
any h € S,,_1, and define the affine transformations:

Ty :R™ ' R": 2z h+10),_ 1,2z and T, :R™ > R:z e ¢(0)((, 2).

Since fy is Lipschitz continuous and directed subdifferentiable at 0,,_1, the
mapping [f]'(0,,_1;) is Lipschitz continuous and directed subdifferentiable
on R™ ! according to the inductive assumption. Propositions 2.6 and 4.3
in [10] then imply that the mapping

VR™ 5 Rz [[fi] (On-1;0)] © Preie 0 Tu(2) + Ty 0 Ty (z)

is also directed subdifferentiable at 0,,—1. Inspection of (1) and the defini-
tions of f, and ¢, show that v is equivalent to ¢, and so ¢, is directed
subdifferentiable at 0,, ;. This completes the inductive step.

PrROOF OF THEOREM 3.1. First, suppose that f is L-smooth at x € X, in
which case f is both Lipschitz continuous near z and directionally differen-
tiable at x. It will be shown by induction on the domain dimension n € N
that f is also directed subdifferentiable at x. The n = 1 case is trivial. Thus,
suppose that n > 1. As the inductive assumption, suppose that given any
open set Y C R"! and function g : Y — R, if ¢ is L-smooth at some y € Y,
then g is also directed subdifferentiable at y. It remains to be shown that for
arbitrary ¢ € S,,_1, f; is directed subdifferentiable at 0,_;. Define the affine
transformation
Tp: R SR :d—(+1I, ,, d

’fl*l,y )

and observe that f, = [f'(x;-)] o Tr. Since f is L-smooth at z, f'(x;-)
is L-smooth on R"; Theorem 5 in [8] then implies that f, is L-smooth on
R"~!. The inductive assumption, applied with ¢ := f,, shows that f, is
directed subdifferentiable on 0,_;. This completes the inductive argument
and thereby demonstrates the “only if” claim of the theorem.



Next, for the “if” claim of the theorem, suppose that f is both Lips-
chitz continuous near z and directed subdifferentiable at x. Consider any
p € Nand M € R™?. It will be shown by induction on k£ € {0,1,...,p}

that the directional derivative fi% is well defined, Lipschitz continuous, and

directed subdifferentiable on R"™. Since fi,og/[ = f'(z;-), the k = 0 case is

demonstrated by Lemma 3.5. For the inductive step, assume that fﬁ A}l) is
well defined, Lipschitz continuous, and directed subdifferentiable on R™ for
some j € {1,...,p}. Combined with this inductive assumption, Lemma 3.5
shows that fa(f ])V[ = | féj A_Jl) ]/(m(j); -) is well defined, Lipschitz continuous, and
directed subdifferentiable on R™, as required. This completes the inductive
argument.

3.2. Relating the lexicographic and Rubinov subdifferentials

The following theorem relates the lexicographic and Rubinov subdifferen-
tials for L-smooth functions. It is motivated by the similar properties of the
LD-derivatives described in [11] and the directed subdifferential described
in [9, 10]. This theorem is proved at the end of the subsection.

Theorem 3.6. Given an open set X C R™ and a function f: X = R, if f
15 L-smooth at x € X, then

OoLf(x) C Orf(x) C conv Oy f(z).

The inclusion Oy, f(z) C Or f(x) may be strict; for example, with f: R —
R defined as the absolute-value mapping = — |x|, one can readily verify that
oLf(0) = {—1,41} and Orf(0) = [—1,1]. Since the Rubinov subdifferen-
tial is the visualization of the directed subdifferential, Example 3.20 in [17]
suggests that the Rubinov subdifferential of a delta-convex function can be
nonconvex; if this is indeed the case, then the inclusion g f(z) C conv dy, f(x)
would also be strict. Nevertheless, the following corollary is an immediate
consequence of Theorem 3.6.

Corollary 3.7. Given an open set X C R™ and a function f: X — R that
is L-smooth at x € X, Or f(x) = conv O f(z) if and only if Or f(x) is convex.

The following lemmas provide intermediate results that are used in the
proof of Theorem 3.6.



Lemma 3.8. Given an open set X C R™ and a function f : X — R that is
L-smooth at v € X,

O f(x) UL f(x) C convdy, f(z).

PROOF. Choose any a € Jpf(z). To obtain a contradiction, suppose that
a ¢ conv Jy, f(x). Since conv dy, f(z) is closed and convex, there exists h € R"
for which (a,h) > sup{(g,h) : g € Onf(x)}. According to [8, Lemma 10],
then, (a,h) > f'(x;h). This implies that a ¢ Opf(x), contradicting the
choice of a. Thus, dpf(z) C convdy,f(x). A similar argument shows that
Of f(x) C conv Iy, f(x) as well.

Lemma 3.9. Givend € R™ and a positively homogeneous function f : R" —
R™ that is L-smooth at 0, f is also L-smooth at d, O f(d) C . f(0,), and
1 (0,;d) = f(d) = Ad for each A € O, f(d).

PROOF. Since f = f'(0,;-), the L-smoothness of f at d and the inclusion
oLf(d) C d.f(0,) follow from the L-subdifferential’s satisfaction of [8, Ax-
iom 2]. Next, choose any A € 0, f(d); by definition of the L-subdifferential,
there exists p € N and a matrix M € R™? for which fg ]34(1)) = Av for each
v € R™. Define a matrix N := [d M} € R+ the positive homogeneity
of f implies that fé% = éi?N, and so f(p) (v) = éfj;)(v) for each v € R™.
Thus, fdp H)( d) = Ad; the definition of N, the positive homogeneity of f,
and Lemma 2.1 in [13] then yield

Ad = f750(d) = f5)n(d) = ['(0n;d) = f(d),
as required.

Lemma 3.10. Let e(y) denote the leftmost column of the identity matriz I €
R™*™. Gwen ¢ € §,_1 and a positively homogeneous function f : R* — R™
that s L-smooth at 0,,,

of(0) C {If(0n; M): M e RV M"M =1, Megy = (}.

PROOF. Choose any A € J,f(¢). For some p € N and B € R™P with
R(B) =R", fg(ﬁg(d) = Ad for each d € R". Define a matrix N := [¢ B] €
R™*®+D): evidently R(N) = R™. The positive homogeneity of f implies
that f;” = fVy, and so f5) = f""). Thus, A = J.f(0,;N). Since the
leftmost column of N is £ € S,,_ 1, Lemma 4 in [§] implies the existence of an
orthonormal matrix M € R™*" that satisfies Mey = ¢ and A = Jy, f(0,; M).
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With these intermediate results, Theorem 3.6 can be proved as follows.

PRrROOF OF THEOREM 3.6. According to Theorem 3.1, f is both Lipschitz
continuous near x and directed subdifferentiable at z. Inspection of the defi-
nitions of the lexicographic and Rubinov subdifferentials shows that o, f (x) =
oL[f'(x;)](0,) and Or f(z) = Or[f'(x;-)](0,). Thus, it will be assumed with-
out loss of generality that f is positively homogeneous, X = R", and z = 0,,.
Since f is positively homogeneous, f = f'(0,;-).

If n = 1, then, using the positive homogeneity of f, one may compute
the Fréchet subdifferential and superdifferential of f at 0 directly to be

oes10) = { [0S0 om0 I < 1)

0 otherwise,

1] otherwise.

% £(0) = { [£(1), —f(=1)] = conv aL£(0), if —f(=1)> f(1),

Thus, dr f(0) = dr f(0) Ut f(0) = conv dy, f(0) D Iy f(0), as required.
Next, the inclusion dp,f(0,) C Orf(0,) will be proved by induction on
n € N; the case in which n = 1 was established in the previous paragraph.
Suppose that n := m > 1, and assume that the inclusion has already been
established for the case in which n := m — 1. Choose any a € 9, f(0,,); it
will be shown that a € O f(0,,). If a € I f(0,n) U I f(0,,), then this result
is trivial; hence, assume that a ¢ 9p f(0,,) U 07 £(0,,). It will be shown that

a € My (9f(0,)) C Orf(0,). Since a € dy,f(0,,), Lemma 4 in [8] implies that
there exists an orthonormal matrix M € R™*™ for which fo(:?)M(v) = (a,v)
for each v € R™. Define £ € S,,,_1 to be the leftmost column of M, and define

b:=1I, 1,0 € R™'. Lemma 3.9 and the definition of IT,,_; , then yield
a=1 1,0+ {a,0) =T b+ f'(0n;0) L.

Thus, in order to show that a € M,,(9f(0,)), it suffices to show that
b € Orfe(0,,_1). The inductive assumption implies 9, f¢(0,,-1) C IR fe(0m_1),
so it suffices in turn to show that b € 9y, f¢(0,,_1). Applying [8, Theorem 5]
to the definition of f; yields O fe(0p—1) = {p_1,v : v € OLf(£)}. More-
over, Lemma 3.10 shows that a € oy f(¢); thus, b = IL,,_1,a € OLfi(0m—1),
as required. This completes the inductive step and thereby establishes the
inclusion dg, f(0,,) C Or f(0,).

Lastly, the inclusion Og f(0,,) C conv d, f(0,,) will be proved by induction
on n € N; the case in which n = 1 has already been established. For the
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inductive step, suppose that n := m > 1, and assume that the inclusion
has already been established for the case in which n := m — 1. Choose any
a € Orf(0y,); it will be shown that a € convdyf(0,,). If a € Opf(0,,) U
o7 £(0,,), then Lemma 3.8 implies that a € dy,f(0,,), as required. Otherwise,
suppose that a & dp f(0,,) U0 £(0,), in which case a € M, (9f(0,,)). Since
f is positively homogeneous, f'(0,,;-) = f, which implies the existence of
e S,y and b € Og fi(0,,—1) for which

a = H;L—l,f b + f/(om, g) g = HTTrL—l,K b + f(g) g

By the inductive assumption, Og f¢(0,,—1) C conv Iy, fe(0p—1), and so b €
conv O, fy(0n—1). Applying the Carathéodory Theorem, one has \; € R,
and by € Onfi(Om—1) for each i € {1,...,m}, for which > A\, = 1 and
> oivy Aibuy = b. For each i € {1,...,m}, define

agy =y by + f(0) £ (2)

it follows that > ", \;ag) = a. Now, to obtain a contradiction, suppose
that a ¢ conv oy f(0,,). Consequently, a¢;y ¢ conv o, f(0,,) for some j €
{1,...,m}. Since conv J, f(0,,) is convex and closed, there exists h € R™ for
which

(agjy, h) > sup{(g, h) : g € conv L f(0,)} > sup{(g,h) : g € OLf(0n)}. (3)

Applying [8, Theorem 5| to the definition of f,, one obtains dp f,(0,,) =
{IL,—10v : v € Of(¢)}. Thus, there exists ¢ € 9 f(¢) for which by =
I,,—1¢ c. Substituting this expression for b(;) into (2) with 7 := j yields:

<a(j)’ h> = <H;Fn—1,€ Hm—l,é C, h) + f(f) <€7 h> = <Cv h) - <C> f) <£’ h> + f(ﬂ) <€> h>

Lemma 3.9 shows that (c,¢) = f(¢) and ¢ € OLf(0,,); these observations
and the above equation imply that (a(;),h) € {(g,h) : g € Onf(0,,)}, which
contradicts (3). So, a € conv Iy, f(0,,), as required.

4. Conclusion

Theorem 3.1 demonstrates the equivalence between L-smoothness and
directed subdifferentiability for scalar-valued functions that are locally Lips-
chitz continuous. Moreover, Theorem 3.6 shows that the Rubinov subdiffer-
ential is a particular superset of the L-subdifferential. These results suggest
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that the various benefits of each type of generalized derivative could be ex-
tended to the other, in the vein of Corollaries 3.2 and 3.3. For example, the
class of L-smooth functions includes vector-valued functions and is known to
include a broad variety of nonsmooth functions, such as convex functions on
open sets [8] and the solutions of parametric ordinary differential equations
with L-smooth right-hand side functions [13]. On the other hand, directed
subdifferentiability extends to functions that are not locally Lipschitz con-
tinuous. Moreover, according to [18], when f : R? — R is the difference of
two sublinear functions, the Rubinov subdifferential is identical to the Mor-
dukhovich symmetric subdifferential [3], giving hope that L-subdifferentials
and the various Mordukhovich subdifferentials could also be related.
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