
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

AutoMOMML: Automatic Multi-Objective Modeling
with Machine Learning1

Prasanna Balaprakash, Ananta Tiwari, Stefan M. Wild,
Laura Carrington, and Paul D. Hovland

Mathematics and Computer Science Division

Preprint ANL/MCS-P5421-1015

October 2015

1This work was supported by the U.S. Department of Energy, Office of Science, Advanced
Scientific Computing Research program under contract number DE-AC02-06CH11357.

AutoMOMML: Automatic Multi-Objective Modeling with Machine Learning

Prasanna Balaprakash∗†, Ananta Tiwari‡, Stefan M. Wild∗, Laura Carrington‡, and Paul D. Hovland∗
∗ Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA

{pbalapra, wild, hovland}@mcs.anl.gov
† Leadership Computing Facility, Argonne National Laboratory, Argonne, IL, USA

‡ Performance Modeling and Characterization Lab, San Diego Supercomputer Center, La Jolla, CA, USA
{tiwari, lcarring}@sdsc.edu

Abstract—In recent years, automatic data-driven modeling
with machine learning has received considerable attention as
an alternative to analytical modeling for many modeling tasks.
While ad hoc adoption of machine learning approaches has ob-
tained success, the real potential for automation in data-driven
modeling has yet to be achieved. We propose AutoMOMML,
an end-to-end, machine-learning-based framework to build
predictive models for objectives such as performance, power,
and energy. The framework adopts statistical approaches to
reduce the modeling complexity and automatically identifies
and configures the most suitable learning algorithm to model
the required objectives based on hardware and application
signatures. The experimental results using PAPI hardware
counters as these signatures show that the median prediction
error of performance, processor power, and DRAM power
models are 13%, 2.3%, and 8%, respectively.

I. INTRODUCTION

Modeling objectives such as performance, failures of
critical subcomponents, power, and energy as functions of
application and platform characteristics play a central role
in managing extreme-scale computing goals. These models
can be used to quantify meaningful differences across the
decision space and to provide error bounds/distributions
associated with their predictions; to offer a convenient
mechanism for exposing near-optimal spots in the decision
space; and to prune the decision space and search-related
tasks in autotuning. In a nutshell, multi-objective models
can help compilers, operating systems, and runtime systems
to make decisions proactively and/or reactively in order to
best map applications to target platforms.

Analytical performance models based on first-principle,
closed-form mathematical expressions may not be suffi-
ciently accurate for all objectives of interest. In such settings,
data-driven (or “empirical”) modeling can bridge the gap.
In this approach, application and platform characteristics
and their corresponding objectives are collected directly
on the target platform, and a predictive model is built
for each objective using statistical/machine-learning (ML)
approaches.

The empirical models presented in the high performance
computing (HPC) literature have been guided primarily
by the expertise of the human modeler. It has become
increasingly evident in the ML literature that success with

ML algorithms depends not merely on the adoption of the
suitable learning approach for a given data set, but also
on the mastery of a more complex feature and algorithm
engineering process [5]. Challenges in predictive modeling
can be attributed to two major factors: the modeling com-
plexity and the degrees of freedom modelers encounter when
developing predictive models. Crucial aspects in predictive
model development comprise variable selection, model se-
lection, parameter tuning, cross-validation techniques, and
background knowledge in disciplines such as machine learn-
ing, statistics, and mathematical optimization.

We propose as a solution to the aforementioned problem
an automated, end-to-end modeling framework called Au-
toMOMML (for Automatic Multi-Objective Modeling with
Machine Learning). AutoMOMML employs a pipeline of
statistical approaches in a systematic way to automate the
predictive modeling process. The framework identifies the
important variables, and selects and tunes the learning algo-
rithms to model the required objectives based on hardware
and application characteristics. Applications are character-
ized by using a set of performance hardware counters, which
are simple counts of microarchitectural events (e.g., L1
cache misses). To generate training data, AutoMOMML uses
a series of prepackaged microkernels to “probe” a target
system in order to develop a comprehensive understand-
ing of the degree to which application characteristics and
hardware configurations affect component-level power draw
and performance. That understanding is then encapsulated in
models by using ML algorithms. The end-to-end framework
greatly reduces the barrier to entry in model development
for software developers, run-time designers, and hardware
engineers and has the potential to bring modeling into the
mainstream workflow of software and hardware stakehold-
ers.

The models presented in this paper can be used either
within higher-level autotuning frameworks or within the
introspective and adaptive runtime systems envisioned for
future extreme-scale systems [7]. The models can be used
to gather architectural insights in terms of which compo-
nents (e.g., front-end, branch unit and memory hierarchy)
bottleneck the performance in a given system. The models
also provide feedback in terms of how the power resource is

divided across different architectural components and how
this division changes with a change in application charac-
teristics and hardware settings. These insights can then be
used within a multi-objective tuning framework [3, 15, 25]
to steer systems towards stipulated goals for energy and per-
formance. Although integrating the models within a tuning
framework is out of the scope of this paper, we will highlight
attractive features of the models for this purpose.

The key contribution of the paper is the general-
purpose multi-objective modeling framework that comprises
a pipeline of effective ML algorithms. We demonstrate the
use of the framework for offline-modeling of performance
and power. In addition to being automatic and end-to-end,
the framework is designed to produce analysis results after
each stage of the pipeline that help understand what archi-
tectural factors affect the objectives, and how application
signatures and objectives relate to each other.

II. THE PROBLEM AND SETUP

Given a target platform, the task of multi-objective mod-
eling is to find a function

F (x) = [F1(x), . . . , Fm(x)] : x ∈ D ⊂ Rn, (1)

where x is a vector of size n that parameterizes a hardware
and application signature and D is a domain of possible
values for x. The unknown function F takes the signature
vector x as input and returns a vector [F1(x), . . . , Fm(x)]
quantifying m objectives, where each component corre-
sponds to an objective of interest.

Approaches available for modeling F can be grouped into
analytical and empirical modeling. The former deals with
developing analytical approximations for each component
function Fj using expert knowledge. The latter adopts sta-
tistical or ML methods to derive a surrogate model Sj ≈ Fj

using a set of training points T = {(x1, y1), . . . , (xl, yl)} =
{X,Y } obtained from microkernels. Each point in the
training set comprises the signature vector x(.) and its
corresponding multi-objective vector y(.) ∈ Rm.

Modeling with ML typically requires a pipeline of meth-
ods such as data preprocessing, variable importance analysis,
variable selection, and model selection. The complexity of
employing an effective ML pipeline is beyond most HPC
users because of the algorithmic choices available for each
method; therefore, users tend to resort to rules of thumb,
which often result in nonrobust models. We develop a
methodology that automatically selects an ML pipeline for
the multi-objective modeling problem.

In this paper we focus on a signature vector consisting
primarily of hardware performance counters exposed by the
underlying hardware and collected by using the Performance
Application Programming Interface (PAPI) [26]. Hardware
counters provide a convenient mechanism to measure the ex-
tent to which applications utilize/stress different architectural
elements. For example, counters that measure the number

Figure 1. Overview of AutoMOMML framework. Multiple arrows after
correlation analysis indicate that subsequent models are run for each
objective.

of branch instructions can be used to assess the level of
stress that different applications put on the branch prediction
units. As such, a vector of hardware counters can be used to
describe an application. In addition, a given application’s
power and performance behavior are affected by power-
and performance-related hardware settings (e.g., CPU clock
frequency, duty cycles, and power capping). Consequently,
we add CPU clock frequency to the signature vector.

III. PROPOSED APPROACH

AutoMOMML consists of a pipeline of algorithmic mod-
ules (as depicted in Figure 1) that can be grouped into two
main stages. The first stage is the dimension reduction stage,
which reduces the number of inputs and outputs required
for modeling via correlation analysis, input importance,
and input selection algorithmic modules. This stage plays
a critical role in reducing the modeling complexity. The
second stage in the pipeline is the model selection stage,
where several supervised-learning methods are evaluated and
fine-tuned on the training set; high-performing methods are
then composed to obtain the multi-objective models.

A. Dimension reduction

Data preprocessing: Different entries in the signature vec-
tor x can take different ranges of values. For example,
instruction-cache-related counts (e.g., L1 instruction cache
misses) are usually orders of magnitude smaller than data-
cache-related counts (e.g., L1 data cache misses). This
difference in the range of values that entries in x can
take affects several algorithmic modules in the pipeline.
AutoMOMML adopts range transformation [10] to scale the
values of each column in X to [0, 1].
Correlation analysis: This module computes the pairwise
correlation to check for correlation among inputs. Given two
input columns j and j′ of X , the Pearson product-moment
correlation coefficient ρ ∈ [−1.0, 1.0] is given by the ratio
of the covariance between j and j′ to the product of the
standard deviations of j and j′. When the value of |ρ| is
greater than a user-defined cutoff parameter ccoff, the
input xj

′
that corresponds to column j′ is removed from

Figure 2. Example decision tree for predicting DRAM power.

further analysis. The same analysis is applied on the output
matrix Y to reduce the dimension of the output space.

For each uncorrelated output u, AutoMOMML creates an
output-specific training set Tu. It comprises all uncorrelated
inputs and the output u. After this analysis, the subsequent
algorithmic modules are run for each Tu; consequently, each
Tu can be tackled independently.
Balanced sampling: Heavily skewed distribution of re-
sponse u in Tu can lead to unbalanced training points. When
these points are used for predictive modeling, the model
will have high prediction accuracy in high (probability)
density regions but not in other areas. Two strategies can be
adopted to address this issue: (1) under sampling, in which
training points from high-frequency ranges are discarded,
and (2) over sampling, in which training points are sampled
repeatedly from low-frequency ranges. Although the latter
artificially increases the number of training points (and
eventually the training time and memory footprint), it is
desirable in offline settings because it makes full use of the
available data.

The over sampling strategy that we adopt proceeds as fol-
lows. Given an output-specific set Tu, we consider E equal-
sized intervals for the output u. Let Emax be the number of
points that belong to the high-frequency interval. For each of
the remaining intervals, the number of points is increased to
Emax by repeatedly sampling (with replacement) from that
interval. Consequently, for each output, the total number of
points in the training set will be E × Emax. We denote the
resulting balanced training set by T ′u.
Input importance: This module analyzes the impact of the
uncorrelated inputs on the output and tries to remove some
inputs from further consideration. The results can be used
to understand (and rank) the application characteristics that
affect the power and performance responses the most.

For this purpose, the random forest (rf) method [11],
a state-of-the-art supervised-learning method for nonlinear
regression, is adopted. The rf method uses a decision-tree-
based approach that recursively partitions the multidimen-
sional input space D into hyperrectangles such that inputs
with similar output values fall within the same hyperrect-
angle. Partitions give rise to a decision tree of if-else rules

as shown in Figure 2. The tree shows that DRAM power is
highly dependent on how the codes utilize on-chip and off-
chip instruction and data caches, along with the behaviors
of the TLB and branch predictor. High DRAM power is
associated with a higher number of accesses to slower caches
(L2 and beyond) and more TLB misses (more on this in
Sec. V). The depth of the tree is determined by a parameter
dpt, which controls the learning ability of the tree.

Typically, a constant value is assigned to the leaf of
the tree and is given by the mean of output values that
fall within the same hyperrectangle. Prediction for a new
input x∗ is obtained by finding the hyperrectangle to which
this point belongs using the decision tree and returning the
constant value at the associated leaf. The strength of the rf
method lies in using a collection of decision trees because
the ensemble corrects the instability of the individual trees.
The predicted value for x∗ is given by the average of leaf
values obtained from each generated tree.

AutoMOMML deploys the permutation accuracy impor-
tance of rf. For a given training set T ′u, by randomly per-
muting the values of column j in X , the original relationship
between input xj and the response u will be broken. When
X with permuted xj is used to predict u, the prediction
accuracy decreases substantially as compared with that of
the original dataset with nonpermuted xj . The impact of an
input parameter xj on the output o is computed as follows.
For each tree, the random subsample X ′ ⊂ X is split into in-
bag and out-of-bag. The in-bag is used for building the tree,
and the mean squared error (MSE) on the out-of-bag data
is computed before and after permuting xj in in-bag. The
differences between the two are then averaged over all trees
and normalized by the standard deviation of the differences.
A significant increase in MSE after permuting values of
xj indicates that xj has significant impact on u. When the
increase in MSE is small (e.g., <5%), xj is removed from
the set of inputs required for predicting u. Compared to other
sensitivity analysis methods, this approach covers the impact
of each input both individually and in combination with
other inputs. Moreover, each tree is constructed only from a
fraction of random inputs, thereby reducing the number of
training points required. The resulting training set is denoted
as T ′′u , which comprises only the significant inputs for output
u.

Input selection: Given the training set T ′′u and a set S of
input sizes, this module tries to find an input size s ∈ S
for predicting the output u. As shown in Algorithm 1, input
selection is done in two phases.

The first phase is K-fold cross-validation (lines 1–11).
Training points are partitioned into K equal-sized folds by
using random sampling without replacement. Out of the
K folds, a single fold is retained as an out-of-bag set for
validation; the remaining K − 1 folds are used as in-bag
points for training. Importance of each input in the in-bag

Algorithm 1 Model-based input selection.
Input: Number of folds, K, for cross-validation, training points T ′′u , a set

S of subset sizes, error tolerance percentage δ%, set Iu of inputs
/* cross-validation phase */

1 create K folds {T ′′u1, · · · , T ′′uK} from T ′′u
2 for k = 1 : K do
3 Tout ← T ′′uk; Tin ← T ′′u \Tout
4 uobsr ← observed output in Tout
5 Mrf ← fit(Tin, I′′u)
6 compute permut. acc. importance of I′′u
7 for each s ∈ S do
8 Is ← s most important inputs from I′′u
9 Mrf ← fit(Tin,Is)

10 upred ← predict(Mrf , Tout)
11 errks ← RMSE(uobsr , upred)
12 end for
13 end for

/* subset selection phase */

14 errs ←
∑K

k=1 errks

K
15 err∗ ← mins∈S errs
Output: sbest = argmin{s ∈ S : errs ≤ err∗ × (1 + δ%)}

points is obtained with the permutation accuracy importance
of rf. For each candidate value s ∈ S, an rf model is
retrained with the s most important inputs, and the root-
mean-squared error (RMSE) for the prediction is obtained
from the out-of-bag points. This process is repeated so that
each of the K folds is used exactly once as out-of-bag.

The second phase of input selection consists of analyzing
the results from the K folds to compute a single best subset
size. The mean prediction error errs for each s ∈ S is
obtained by averaging the prediction error over K folds. The
algorithm chooses the smallest s ∈ S whose prediction error
errs is not more than δ% of the minimal mean prediction
error err∗. Smaller s values are preferred because they
reduce the input space and can improve the predictive power
of the model. Note that the sbest inputs for each fold can
be different because the training points are different. This
module handles such cases by computing the average rank
of each input over all K folds and selects the top sbest inputs
using the aggregated rank value.

Although Alg. 1 relies heavily on the rf method, it
has been shown that for a number of modeling tasks input
selection from the rf method is robust, and can improve
the accuracy of other supervised-learning methods [20].

B. Model selection

The model selection module consists of finding an ap-
propriate method (and associated parameters) from a set of
supervised-learning methods. A supervised-learning method
that performs well on some predictive modeling tasks could
be a bad choice for other tasks [10, 5]. Moreover, choos-
ing appropriate parameter settings for a given supervised-
learning method is critical because it balances the bias-
variance tradeoff [10]: High bias produces simpler models
but leads to poor prediction accuracy, while high variance
results in complex models with high prediction accuracy on

Algorithm 2 Model selection.
Input: number K, training points T , set Z of methods, set Q of parameter

configurations for each method in Z
/* cross-validation */

1 create K folds {Tu1, · · · , TuK} from Tu
2 for k = 1 : K do
3 Tout ← Tuk; Tin ← Tu\Tout
4 uobsr ← observed output in Tout
5 for each z ∈ Z do
6 Qz ← subset of param configs in Q for z
7 for each q ∈ Qz do
8 Mz ← fit(Tin, q)
9 upred ← predict(Mz , Tout)

10 errkzq ← RMSE(uobsr , upred)
11 end for
12 end for
13 end for

/* select best parameter setting for each method */
14 for each z ∈ Z do
15 for each q ∈ Qz do
16 errzq ←

∑K
k=1 errkzq

K
17 end for
18 qz ← argminq∈Qz errzc
19 end for

/* select best method(s) using statistical test */
20 z∗ ← argminz∈Z errzqz
21 for each z ∈ Z do
22 if t-test(err(.)zqz , err(.)z∗qz∗) cannot reject then
23 Mz ← fit(T , qz)
24 end if
25 end for
Output: M = ∪zMz

the training set but can have poor prediction accuracy on the
testing set.

Model selection is a difficult optimization problem. In
ML research, this task has been traditionally tackled by
using a trial-and-error process. New algorithmic methods
have begun to emerge and have proven to be more effective
than default settings and manual model selection [5]. The
model selection module of AutoMOMML considers a set of
supervised-learning methods of varying complexities, tunes
the parameters of each method, and combines the high-
performing models to form a single model.

Algorithm 2 shows the model selection module. In addi-
tion to K and T , it requires a set Z of supervised-learning
methods and a subset Qz ∈ Q of parameter configurations
for each method z ∈ Z. The module comprises three phases.
First, for each method z ∈ Z and for each parameter
configuration q ∈ Qz , the cross-validation phase consists of
configuring z with q, training on the in-bag points and com-
puting the prediction error on the out-of-bag points (lines
1–13). The second phase identifies the best configuration
qz for each method z by comparing the mean prediction
error. In the third phase, the module selects the method z∗

(configured with qz∗) with minimal mean prediction error
as a baseline and adopts the statistical t-test to check the
prediction errors of a method z (err(.)zqz) is different from
the baseline z∗ (err(.)z∗qz∗). The method z gets eliminated
when the t-test rejects the null hypothesis that the difference

is equal to zero. The methods that survive the elimination are
configured with their corresponding best parameter setting
and trained on all training points. The resulting models are
returned as candidate models. For a given output, when there
is more than one candidate model, the predictive value of a
new testing point is given by the average of predicted values
from each candidate model.

In addition to rf, we consider five supervised-learning
methods. A brief summary of each method is given below.
Linear regression (lm) is perhaps the simplest and the most
well known. It takes the form h(x) = c +

∑M
i=1 α

i × xi,
where c is a constant and αi is the coefficient of the input
xi. Training the model consists in finding the appropriate
value of (c, α). This is obtained by minimizing the sum of
differences between observed values in the training set and
the corresponding values provided by the model.
K-nearest-neighbor (knn) regression [10] computes the
mean of the outputs of the K nearest (we adopt the Euclidean
distance metric) points in the training set.
Support vector machines (svm) [22] for nonlinear re-
gression project the input space of the training points into
a higher-dimensional feature space and performing linear
regression in that space. Training the svm consists of solving
a quadratic programming problem. We adopt the widely
used Gaussian radial basis function (RBF) as our kernel
function. The cost v of constraint violation in the quadratic
programming problem and the window parameter σ of the
RBF provide tradeoffs between bias and variance.
Cubist (cbt) [1] is similar to rf but with the following
differences. The nt trees are built sequentially such that the
model of the bth tree is adjusted to correct the prediction
error of the (b − 1)th tree on the whole training set. This
correction is obtained by adding the residuals of the (b−1)th
tree to the response vector and fitting a new tree. Given a
new testing point x∗, each tree can predict a value and nt
predictions are averaged to give a final prediction. During
prediction, it performs additional corrections based on nn
nearest neighbors in the training set.
Stochastic gradient boosting (sgb) [17] is similar to cbt,
in which nt trees are built sequentially but on a random
subset of the training points. Each tree is generated with
depth dpt and its leaves have at least mino observations.
At the bth iteration, a tree model is built to minimize the
prediction error of the (b− 1)th model. The key idea is that
the residuals of the (b−1)th model are used as the negative
gradient of the squared error loss function being minimized.
Similar to gradient-descent algorithms, sgb generates a new
model at the bth iteration by adding the bth tree that fits the
negative gradient to the (b − 1)th model. The bth model is
multiplied by a parameter 0 < λ ≤ 1.0 to control the bias-
variance tradeoff.

Except lm, all other supervised-learning methods require
user-specified values for their respective parameters. Since
promising values for each parameter are available for knn,

svm, rf, cbt, and sgb, we define the set Qz of parameter
configurations for the method z using a grid. For example,
if the method z has two parameters with 3 and 5 values,
respectively, then we consider all possible combinations
(|Qz| = 3× 5). The set Qz over all z ∈ Z forms Q, which
is given as input to Algorithm 2.

IV. EXPERIMENTAL SETUP

We now describe the hardware testbed, benchmarks and
applications, data collection techniques, and other method-
ological decisions made for data collection.

Hardware Testbed Specifications: The testbed is a dual-
processor node with two 8-core Intel Xeon E5-2650v2 (Ivy
Bridge) processors. Each core has a 64 KB L1 cache (32
KB instruction cache and 32 KB data cache), a 256 KB
combined L2 cache, and a 20 MB shared, last-level cache.
The system has 64 GB of DDR3 DRAM. Hyperthreading
and turbo boost are disabled for all the experiments. Each of
the processors can be independently clocked at frequencies
of 2.60 GHz to 1.20 GHz (at 100 MHz intervals). Processor
clock frequency is changed by using the cpufreq-utils
package available with many popular Linux distributions.

We use the RAPL (Running Average Power Limit) in-
terface [16] to measure component-level power draw. For
the processor, we collect “package power,” which consists
of power drawn by cores, the last-level cache and memory
controller. We also collect power drawn by DRAM.

Model Training Benchmarks: AutoMOMML comes
prepackaged with microkernels that exercise a target sys-
tem’s architectural components (e.g., CPU, and memory
subsystem) in different ways1. Together, these computational
kernels can be used to create power and performance profiles
of the system and to learn what hardware events correlate
with those profiles. These microkernels have different pat-
terns of computation and memory access, and are highly
prevalent in large-scale applications. Our hypothesis is that
a sufficiently diverse set of computational kernels can be
used as the basis for a general understanding of the impact
that different computational properties have on performance
and power draw.

Our suite draws compute kernels from a variety of scien-
tific domains. Some of the kernels are modified versions of
microkernels from the Polybench [32] and SPAPT suites [4],
both of which are used to evaluate compiler-driven auto-
tuning strategies [29]. Such kernels include matrix-matrix
and matrix-vector operations, stencil kernels, and correlation
and covariance calculation kernels. We also use the source
code transformation framework CHiLL [14] to generate
alternative implementations of a subset of Polybench kernels
(dsyrk, dsyr2k, mm, mvt, and trmm). We apply cache
tiling and loop unrolling code-transformation techniques to
generate these variants.

1We will make the packages and the framework available on our website
(http://www.sdsc.edu/∼tiwari/AutoMOMML) at the time of publication.

The kernels are configured to run in an embarrassingly
parallel mode using MPI and using all cores available on
the testbed. Each MPI process initializes its own set of data
structures and waits on a barrier for all the processes to
finish initialization; all processes then do the exact same
calculation. This configuration was motivated by two factors.
First, RAPL power measurements can be made only at the
per-socket level; per-core-level measurements are not avail-
able. Second, since our goal is to use the models to make
performance and power draw predictions for real parallel
workloads, using the node-level view is more appropriate
since real workloads usually fully subscribe the available
cores. Furthermore, running parallelized workloads also en-
ables the models to take contention on shared resources (e.g.,
last-level cache and DRAM) into consideration.

Each kernel in our training suite is configured to run either
in single or double precision. We also configure each of
the kernels to work off of different levels in the memory
hierarchy; that is, for each kernel, we have multiple working
set sizes that fit in L1, L2, and last-level caches and main
memory. This results in a total of eight configurations for
each computational kernel.

Model Validation Applications: To validate the models,
we use five application benchmarks (CG, FT, LU, MG,
and SP) from the NAS parallel Benchmarks (NPBs) [2]
and two co-design mini-applications from the Mantevo suite
(miniGhost and CoMD) [23]. For all NPBs, we consider
class C problems. We include all four stencil operations
(5-, 7-, 9-, and 27-point) available in miniGhost in our
evaluation. We consider both the Lennard-Jones (LJ) and
embedded atom method (EAM) within CoMD. For all
versions of miniGhost and CoMD, we consider a 1283-sized
grid for our evaluations. We compiled all our tests with gcc-
4.6.3 and the -O2 flag.

For all the application benchmarks, we first profile the
codes to determine hot-spot loops. We then manually instru-
ment the source code to collect hardware counters around
such loops. Intel’s documentation states that RAPL counters
are updated once every millisecond. However, others have
noted that such updates do not occur at such intervals [21].
To ensure we have a sufficient number of power readings
for each of the hot loops, we only consider loops that have
per-visit lengths of more than 5 ms.

Tools: To measure the hardware counters, we wrote
a simple library-based tool that allows us to “register”
compute loops in kernels and applications for hardware
counter data collection. Internally, the tool uses PAPI to
collect the hardware counters. Each MPI process produces
its own output file, and the outputs are merged to generate
the node-level characterization for computations.

Data Collection: The models developed in this work
are based on performance hardware counters. These counters
are available on all modern processors and record low-
level microarchitectural events (e.g., number of L1 cache

accesses, number of mis-predicted branches) and are acces-
sible via special-purpose model-specific registers. Hardware-
level parameters (e.g., CPU clock speed and power caps on
CPU and DRAM) also affect power draw and performance
of computations. To also encapsulate the effects of those
parameters, we measure power and performance of compu-
tations at different CPU frequencies.

Training kernels and application loops are instrumented to
measure all PAPI-supported hardware counters. Hardware
counter collection can be a noisy process, and care must
be taken to reduce the noise in the measurements. We take
two steps to limit this noise. First, we limit the number of
hardware counters that we measure at a time to the number
of counters that can be measured without multiplexing.
This means measuring at most 11 compatible counters at
a time on the Ivy Bridge testbed. Second, we measure
each hardware counter five times; from among these five
measurements, we take the average of the three values that
are closest to each other and discard the remaining two.

Component-level power draw is measured by using PAPI.
We reset the RAPL energy counters at the start of each
computational loop. At the completion of the loop, the
counters are read again to capture the per-component energy
required to run the loop. To derive power, we divide the
energy measurements with time. We express performance
as cycles per instruction (cpi).

Model Evaluation Metrics: To evaluate the predictive
accuracy of the models, we rely on a set of metrics. The
first of these is the arithmetic mean absolute prediction
error (AMAPE), a simple and widely reported metric in
the HPC literature. The main drawback of AMAPE is that
it is sensitive to outliers and can even lead to misleading
conclusions [36]. Given that the kernels and applications in
our prediction set are diverse and have wide a range of run
times and power draws, the distribution of prediction errors
can be skewed. Therefore, we also rely on geometric mean
absolute prediction error (GMAPE) and median absolute
prediction error (MedAPE). We also report the usual ML
metrics such as RMSE and R2.

V. EXPERIMENTAL RESULTS

We adopt a robust out-of-sample model validation strat-
egy; first, from among all the microkernels, we select 75%
for training (≈ 150 microkernels) and use them as the kernel
training set—this is given as training data set I to the
AutoMOMML. The remaining points in the kernel data set
are tagged as the kernel testing set, which is then used to
validate the models. This setting is based on an exploratory
study in which we tested 25%, 50%, 75%, and 90% for
kernel training set and selected reasonable data points in
the kernel testing set. Note that sampling is done by using
the names of the microkernels, which will ensure that all
configurations of any given microkernel (single- and double-
precision versions with working set sizes that fit in the L1,

Figure 3. Correlation analysis for output metrics.

L2 and last-level caches and memory) belong to either the
training or test set. Furthermore, we validate the models
by using all points from the mini-applications, which are
referred to as the application testing set.

AutoMOMML comprises few high-level component level
parameters that can potentially affect the tradeoff between
accuracy and the model building time. Based on component-
level exploratory studies on the kernel training set, we set
and recommend the following settings as default. The cutoff
value in the correlation module is set to 0.90, and the number
E of intervals in the balanced sampling module is set to 10.
For the input selection, the number of folds K is set to 10,
and the tolerance level, δ, is set to 1%. For each output,
we generate 10 subset sizes by generating a sequence of 10
equally spaced values from from 3 to |Is|. When the equally
spaced value is not an integer, it is rounded off to the nearest
integer.

A. Modeling Complexity Reduction

Data Preprocessing, Correlation Analysis, and Bal-
anced Sampling: We observe that several inputs are highly
correlated. Among the 40 PAPI counters, only 20 counters
are uncorrelated. Highly correlated counters include data
cache misses on L1 and L2 data cache accesses. These
sets of counters effectively measure the same underlying
phenomenon. The results from the correlation analysis mod-
ule for the outputs are shown in Figure 3. Of 7 out-
puts, only 3 outputs are uncorrelated—dram_0_power
and proc_0_power values are highly correlated to
dram_1_power and proc_1_power, respectively. This
is to be expected because we run the exact same workload
(recall that we do so in an embarrassingly parallel mode)
on both sockets of the testbed. Therefore, given dram
and processor power for one socket, it will be straightfor-
ward to predict the values for the other socket. From this
phase, AutoMOMML applies the rest of the modules in the

����

�����

����

�����

����

�����

��

�����

�� ���� ���� ���� ���� �� ���� ���� ����

�
�
��
�
�
��
�
��
��
�
�
��
�
�
��
��
�

�������������������������

Figure 5. Memory performance at different CPU clock frequencies.

pipeline for each of the three outputs (dram_0_power,
proc_0_power, and cpi) independently.

Input Importance and Input Selection: Figure 4 shows
the results from the input importance module. The plots
show the impact of the input on the three outputs us-
ing permutation accuracy importance of the rf method.
The x-axis shows percentage increase in MSE (%In-
cMSE) after permuting the input column xi in the train-
ing set. For dram_0_power, we observe that on-chip
(L1 and L2) and off-chip (L3) cache-related activities
(reads/writes/accesses/misses for both data and instructions)
emerge as the most significant inputs. CPU clock frequency
(freq) appears as the second most important input. To explain
this counterintuitive observation, we took note of previous
work [33] and used the lmbench benchmark [28] to measure
memory read bandwidth across different CPU clock frequen-
cies on our testbed. The results are plotted in Figure 5.
The curve shows that memory performance (measured in
terms of the read bandwidth) degrades by roughly 26%
when CPU clock frequency is reduced to 1.2 GHz from 2.6
GHz. The power drawn by DRAM at 1.2 GHz is roughly
7% lower than the power drawn at 2.6 GHz CPU clock
frequency. A particularly interesting entry in the rankings
is the branch mispredicted event. We attribute this to the
potential of branch mispredictions to increase instruction
cache misses by fetching the wrong instruction streams [1].
If the instruction footprint is larger than the exclusive L1
instruction cache, the trips to memory for instructions can
significantly increase if instructions cached in inclusive L2
(and L3) caches are frequently evicted because of contention
with data. TLB data misses also contribute to the DRAM
power draw. Each TLB miss (on data or instruction) triggers
a load from main memory in addition to a page walk. TLB
misses will, therefore, also have implications for the cpi.

For the proc_0_power, the most significant parameter
is freq, which is followed by memory, floating point, TLB,
and cache-related events. For cpi, events related to memory
(loads and stores) and branch units are the most significant.
Memory and branch units contribute heavily to CPU stalls
(or wasted cycles). Memory-related stalls are mainly due to
poor data locality, which leads to poor cache usage. The
performance of branch units is important because more than
10% of the total instructions in the microkernels, on average,
are branch instructions. Whether or not a given branch is

Figure 4. Input importance with permutation accuracy importance.

accurately predicted therefore has a significant impact on
performance. Even though branch predictor units in modern
Intel processors are highly accurate, branch mispredictions
incur a high penalty by requiring a complete flush of the
deep instruction pipeline.

Using the results from this module, AutoMOMML re-
moves inputs that do not have significant impact on the
output. For each output, when %IncMSE for an input xi

is less than 5%, it is removed from the predictor list for the
corresponding output. Nevertheless, the results show that no
input is insignificant for the three outputs. Note that the rf
method is effective in identifying impactful parameters but
it has limitations in detecting insignificant inputs [20].

Figure 6 shows the results from the input selection mod-
ule. Algorithm 1 is run for each output with 10 subset sizes.
The general trend is that increasing the number of inputs
decreases RMSE, but the reduction becomes insignificant
after a certain number of inputs. The results also show the
number of inputs under various tolerance levels. For the
adopted default tolerance of 1%, AutoMOMML selects 8,
6, and 13 inputs for dram_0_power, proc_0_power,
and cpi, respectively. The selected j inputs for an output
correspond to the top j inputs for the same output in Figure
4.

B. Model Selection

Each learning method is configured to run with 30 param-
eter configurations. The best parameter setting is obtained
from the 10-fold cross-validation, as described in Algorithm
2. Figure 7 shows the box plots obtained from 10 RMSE
values of each method with its best parameter setting.
As evidenced by the box plot, the t-test establishes
different model combinations based on the given output: for
dram_0_power, rf and sgb are selected for bagging;
for cpi rf, cbt, and sgb require being combined; for
proc_0_power, sgb outperforms all other models.

To build the final predictive models, for each output, the
selected methods are configured with their corresponding

best parameter setting and retrained with the kernel training
set (150 microkernels). Given an unseen point, the predicted
value is given by the arithmetic mean of predicted values
from the corresponding models — e.g., cpi prediction is
given by the mean of predicted values from rf, cbt, and
sgb models.

C. Model Validation

Table I summarizes the validation results on kernel and
application testing set. On the kernel testing set, we ob-
serve a high prediction accuracy for dram_0_power and
proc_0_power with AMAPE, GMAPE, and MedAPE
values within 5%. MAPE’s sensitivity to a few outliers is
evident in the case of cpi. While the MAPE for cpi
is 17.4%, GMAPE and MedAPE values are 8.57% and
13.3%, respectively. We also note that R2 value for cpi is
0.93, which suggests that the model accurately captures the
relationship between inputs and outputs well and that the
model can be effective in comparing two competing code
optimization strategies in an autotuning (e.g., selection of
code variants) or run-time environment (e.g., selection of
CPU clock frequency).

The results with the application testing set are promising
and show a trend similar to that of kernel testing set. In par-
ticular, for cpi and proc_0_power, AMAPE, GMAPE,
MedAPE, and R2 values are similar to the values observed
in the kernel testing set. Despite the fact that AMAPE for
dram_0_power is 15.9%, GMAPE and MedAPE are not
more than 8%. The RMSE value shows that, on average,
the prediction is off only by 2.36 W. Closer examination of
the results for dram_0_power prediction reveals that one
instance of the NAS Parallel Benchmark, FT, shows a rather
high prediction error (∼30%). Compared to other mini-
applications and kernel testing set, FT’s computational loops
tend to have large number of function calls, which can affect
instruction cache performance and execute significantly large
number of branch instructions.

Figure 6. Model-based input selection results.

Figure 7. Model selection results.

Table I
MODEL VALIDATION (BAGGING) RESULTS

Response R2 RMSE AMAPE MedAPE GMAPE
(%) (%) (%)

Kernel Testing Set
proc_0_power 0.99 0.84 1.41 0.94 0.76
dram_0_power 0.89 1.00 4.60 1.23 1.50

cpi 0.93 0.19 17.4 13.3 8.57
Application Testing Set

proc_0_power 0.95 1.98 3.11 2.30 1.87
dram_0_power 0.45 2.36 15.9 8.00 7.16

cpi 0.91 0.47 15.5 12.9 7.63

VI. RELATED WORK

The closest related work is the MuMMI [38] end-to-end
automatic multi-objective modeling framework. It requires
that training and testing points come from the same ker-
nel/application. Hence it uses linear correlation for input
selection and a linear model to capture the relationship
between PAPI counters and performance, power, and energy.

From a methodological perspective, in [30] six
supervised-learning methods are used to learn the
relationship between hardware counters, source-code
transformation parameters (tiling, parallelization,
vectorization, and data locality improvement) and
performance. It is a semi-automatic approach because
input importance and selection and model selection are
manually driven. In [35], kernel-specific surrogate models

built by using artificial neural networks were used to
model the relationship between compiler transformation
parameters and objectives such as power draw, execution
time, and energy usage of HPC kernels.

Research in model-guided autotuning has focused on
developing online surrogate models for performance [31,
18, 27, 34]. In [12, 37, 13, 19], the authors developed
online surrogate models for several scientific kernels on
multicore architectures. In [6], the authors adopted boosted
regression trees for obtaining online surrogate models for a
GPU implementation of an image-filtering kernel.

Performance counters have been used to develop predic-
tive power models in multiple research projects [8, 24, 9].
Bertran et al. [8] use the notion of “power components”
(closely related architectural elements), develop microker-
nels that stress those components separately, identify a set
of performance counters that can be used to quantify such
stress, and use those performance counters to develop linear-
regression-based power models. Isci and Martonosi [24]
use a similar approach to identify a set of performance
counters that can used to approximate the activities within
key architectural components. The hardware counters are
then used to develop component-level power models. Bircher
and John [9] use performance hardware counters to develop
power models that can predict system level power usage as

a combination of component-level power usage.

VII. CONCLUSION

Automated modeling techniques have the potential to
provide valuable hints for proactive and/or reactive steer-
ing of extreme scale systems towards better energy effi-
ciency and reliability. Towards that end, this paper presented
the AutoMOMML framework, a general-purpose machine-
learning based framework for modeling multiple objectives.
We applied the framework to model power and performance
on a widely used Intel architecture and showed that the
framework is capable of 1) producing highly accurate mod-
els for real-world application benchmarks, and 2) providing
valuable information on how the modeled objectives relate
to the properties of applications and power and performance
related hardware parameters. Our work in this area is only
beginning. We are currently pursuing multiple exciting re-
search avenues – 1) incorporating AutoMOMML within an
autotuning framework, and 2) incorporating the framework
within an energy-aware computing framework.

REFERENCES
[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs on

a modern processor: Where does time go? In Proc. Int. Conf. Very
Large Data Bases, VLDB ’99, pages 266–277, San Francisco, 1999.

[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga.
The NAS parallel benchmarks–summary and preliminary results. In
Proc. ACM/IEEE Conf. Supercomp., SC ’91, New York, 1991.

[3] P. Balaprakash, A. Tiwari, and S. M. Wild. Multi objective op-
timization of HPC kernels for performance, power, and energy.
In High Performance Computing Systems. Performance Modeling,
Benchmarking and Simulation, pages 239–260. Springer, 2014.

[4] P. Balaprakash, S. Wild, and B. Norris. SPAPT: Search problems in
automatic performance tuning. Proc. Comp. Sci., 9:1959–1968, 2012.

[5] J. Bergstra and Y. Bengio. Random search for hyper-parameter
optimization. J. Mach. Learn. Res., 13(1):281–305, 2012.

[6] J. Bergstra, N. Pinto, and D. Cox. Machine learning for predictive
auto-tuning with boosted regression trees. In Innovative Parallel
Computing (InPar’12), pages 1–9. IEEE, 2012.

[7] M. Berry, T. E. Potok, P. Balaprakash, H. Hoffmann, R. Vatsavai, and
Prabhat. Machine learning and understanding for intelligent extreme
scale scientific computing and discovery. Technical report, 2015.

[8] R. Bertran, M. González, X. Martorell, N. Navarro, and E. Ayguadé.
A systematic methodology to generate decomposable and responsive
power models for CMPs. IEEE Trans. Comp., 62(7):1289–1302, 2013.

[9] W. L. Bircher and L. K. John. Complete system power estimation: A
trickle-down approach based on performance events. In Int. Sym. on
Perf. Anal. of Sys. & Soft., ISPASS ’07, pages 158–168. IEEE, 2007.

[10] C. M. Bishop. Pattern Recognition and Machine Learning, volume 1.
Springer, New York, 2006.

[11] L. Breiman. Random forests. Mach. Learn., 45(1):5–32, Oct. 2001.
[12] E. A. Brewer. High-level optimization via automated statistical

modeling. ACM SIGPLAN Notices, 30(8):80–91, 1995.
[13] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. O’Boyle, and

O. Temam. Rapidly selecting good compiler optimizations using
performance counters. In IEEE Int. Symp. Code Gen. Opt. (CGO’07),
pages 185–197, 2007.

[14] C. Chen, J. Chame, and M. W. Hall. CHiLL: A framework for
composing high-level loop transformations. TR 08-897, Univ. of
Southern California, Jun 2008.

[15] R. S. Chen and J. K. Hollingsworth. Angel: A hierarchical approach
to multi-objective online auto-tuning. In Int. Workshop on Runtime
and Operating Systems for Supercomp., ROSS ’15, pages 4:1–4:8,
New York, NY, USA, 2015. ACM.

[16] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le. Rapl:
Memory power estimation and capping. In Low-Power Electronics
and Design (ISLPED), 2010 ACM/IEEE International Symposium on,
pages 189–194, Aug 2010.

[17] J. H. Friedman. Stochastic gradient boosting. Comput. Stat. Data
Anal., 38(4):367–378, 2002.

[18] G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov,
A. Zaks, B. Mendelson, E. Bonilla, J. Thomson, H. Leather, et al.
MILEPOST GCC: Machine learning based research compiler. In GCC
Summit, 2008.

[19] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan,
and D. Patterson. Predicting multiple metrics for queries: Better
decisions enabled by machine learning. In IEEE Int. Conf. Data
Engineering (ICDE’09), pages 592–603, 2009.

[20] R. Genuer, J.-M. Poggi, and C. Tuleau-Malot. Variable selection using
random forests. Pattern Recognition Letters, 31(14):2225–2236, 2010.

[21] M. Hähnel, B. Döbel, M. Völp, and H. Härtig. Measuring energy
consumption for short code paths using rapl. SIGMETRICS Perform.
Eval. Rev., 40(3):13–17, Jan. 2012.

[22] M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf.
Support vector machines. IEEE Intel. Sys. App., 13(4):18–28, 1998.

[23] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich. Improving performance via mini-applications. Sandia
National Laboratories, Tech. Rep. SAND2009-5574, 2009.

[24] C. Isci and M. Martonosi. Runtime power monitoring in high-
end processors: Methodology and empirical data. In International
Symposium on Microarchitecture, MICRO 36, pages 93–, Washington,
DC, USA, 2003. IEEE Computer Society.

[25] H. Jordan, P. Thoman, J. J. Durillo, S. Pellegrini, P. Gschwandtner,
T. Fahringer, and H. Moritsch. A multi-objective auto-tuning frame-
work for parallel codes. In Proc. ACM/IEEE Conf. Supercomp., SC
’12, pages 10:1–10:12. IEEE Computer Society Press, 2012.

[26] K. London, S. Moore, P. Mucci, K. Seymour, and R. Luczak. The
PAPI cross-platform interface to hardware performance counters. In
Dept. Defense Users’ Group Conf. Proc., pages 18–21, 2001.

[27] A. Magni, C. Dubach, and M. F. P. O’Boyle. A large-scale cross-
architecture evaluation of thread-coarsening. In Proc. Int. Conf. High
Perf. Comp. Networking Storage Anal., SC ’13, 2013.

[28] L. McVoy and C. Staelin. lmbench: portable tools for performance
analysis. In USENIX Annual Tech. Conf., ATEC ’96, pages 23–23,
Berkeley, CA, USA, 1996. USENIX Association.

[29] B. Norris, A. Hartono, and W. Gropp. Annotations for productivity
and performance portability. In Petascale Computing: Algorithms and
Applications, pages 443–462. Chapman & Hall, 2007.

[30] E. Park, J. Cavazos, L.-N. Pouchet, C. Bastoul, A. Cohen, and
P. Sadayappan. Predictive modeling in a polyhedral optimization
space. Int. J. Parallel Programming, 41(5):704–750, 2013.

[31] E. Park, S. Kulkarni, and J. Cavazos. An evaluation of different
modeling techniques for iterative compilation. In ACM Int. Conf.
Compilers Arch. Synth. Embed. Sys., pages 65–74, 2011.

[32] L.-N. Pouchet. PolyBench: The polyhedral benchmark suite, 2012.
http://www.cse.ohio-state.edu/∼pouchet/software/polybench/.

[33] R. Schöne, D. Hackenberg, and D. Molka. Memory performance at
reduced CPU clock speeds: an analysis of current x86 64 processors.
Proc. USENIX Conf. Power-Aware Comp. Sys., 2012.

[34] O. Spillinger, D. Eliahu, A. Fox, and J. Demmel. Matrix multiplication
algorithm selection with support vector machines. 2015.

[35] A. Tiwari, M. A. Laurenzano, L. Carrington, and A. Snavely. Model-
ing power and energy usage of HPC kernels. In IEEE Int. Conf. Par.
Distrib. Proc. Symp. Workshops (IPDPSW12), pages 990–998, 2012.

[36] C. Tofallis. A better measure of relative prediction accuracy for model
selection and model estimation. J. Oper. Res. Soc., 2014.

[37] R. Vuduc, J. Demmel, and J. Bilmes. Statistical models for empirical
search-based performance tuning. Int. J. High Perf. Comput. Appl.,
18(1):65–94, 2004.

[38] X. Wu, C. Lively, V. Taylor, H.-C. Chang, C.-Y. Su, K. Cameron,
S. Moore, D. Terpstra, and V. Weaver. Mummi: Multiple metrics
modeling infrastructure. In ACIS Int. Conf. Softw. Engin., Artif. Intel.
Network. Parallel/Distributed Comp. (SNPD), pages 289–295, 2013.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy
Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said article to reproduce, prepare deriva-
tive works, distribute copies to the public, and perform publicly and display publicly,
by or on behalf of the Government.

