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Abstract. We present a limited memory method for maximum-likelihood-based state estimation
of hidden Markov models. We reduce the memory storage requirements by expressing the optimal
states as a function of checkpoints bounding a shooting interval. All states can then be recomputed
as needed from a recursion stemming from the optimality conditions. The matching of states at
checkpoints are imposed, in a multiple shooting fashion, as constraints on the optimization problem
which is solved with an augmented Lagrangian method. We prove that for nonlinear systems un-
der certain assumptions the condition number of the Hessian matrix of the augmented Lagrangian
function is bounded above with respect to number of shooting intervals. Hence the method is stable
for increasing time horizon. The assumptions include satisfying the observability conditions of the
linearized system on a shooting interval. We also propose a recursion-based gradient evaluation al-
gorithm for computing the gradient, which in turn allows the algorithm to proceed by storing at any
time only the checkpoints and the states on a shooting interval. We demonstrate our findings with
simulations in different regimes for Burgers’ equation.
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1. Introduction. Data assimilation is the process of estimating the underlying
states of a physical system based on reconciliation of observations and physical laws
governing its evolution [4, 6, 13]. The setup is most commonly described by a hidden
Markov model with stochastic normal model error and measurement noise [13]

x0 = xB + ηB , xj+1 = Mj(xj) + ηj , yj = Hj(xj) + εj ,(1.1)

ηB ∼ N (0J , QB), ηj ∼ N (0J , Qj) εj ∼ N (0L, Rj).(1.2)

where xj ∈ RJ , yj ∈ RL. The mapping Mj(·) : RJ → RJ models the physical law
governing the evolution of the system dynamics, typically discretizations of partial
differential equations. We assume Mj(·) is at least twice continuously differentiable.
The random variable ηj models the stochastic model error and is normally distributed
with mean 0J and covariance Qj ∈ RJ×J . The random variable ηB models the
distribution of the initial state as normal with mean xB and covariance QB ∈ RJ×J .
The function Hj(·) : RJ → RL maps the states into observed quantities whereas εj
models measurement error that has mean 0L and covariance Rj ∈ RL×L. We also
assume all covariance matrices to be positive definite.

With these definitions, we are interested in the state estimation problem [23]:
We are given the background mean state xB , evolution function Mj(·), measurement
operator Hj(·), measured quantities yj , as well as covariance matrices for background
error, QB , model error, Qj for j = 0, 1, . . . , N − 1, and measurement error, Rj for
j = 0, 1, . . . , N at N + 1 equally spaced time points. We want to determine the state
trajectory x0, x1, . . . , xN that best explains the data yj under these assumptions.
The problem is also equivalently named data assimilation or 4DVar [4, 6, 13, 17] in
atmospheric sciences applications, when Mj(·) is obtained from the discretization of
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3D dynamics. In particular, we will focus on the circumstance where we are memory-
limited, and thus we may be unwilling to simultaneously store the entire trajectory
vector due to the O(JN) memory requirements.

In the limiting case of Qj = 0J×J , and thus, ηj = 0J , the system is called
”strongly constrained” in the sense that every state is determined by the previous one
and all states are functions of only the initial state x0. However, many sources like
discretization and parametrization can contribute to model errors that have nonnegli-
gible effects [5, 24, 25]. The explicit inclusion of the model error term in the physical
evolution [8, 19, 20] leads precisely to (1.1)–(1.2). This paradigm is called a hidden
Markov model (HMM) [21, 22], and it is one of the most studied state estimation
paradigms [13]. It has generated a large number of methods to solve it, including
Kalman filters, extended Kalman filters, and particle methods [7, 13]. However, such
methods may not be suitable to the kind of problems described here because of reliance
on linearity of Mj(·) (Kalman filters) [12]; memory that increases superlinearly with
the dimension of x (extended Kalman filters) [10]; and slow convergence, particularly
when interested primarily in best estimates (particle methods) [3].

In this work we focus on variational methods: methods that aim to express the
minus loglikelihood of the HMM model (1.1)–(1.2) and then minimize it with deter-
ministic methods, such as limited-memory BFGS [18]. The objective function of that
minimization is the following weakly constrained function [15, 16, 25, 26, 27]:

Γ(x0:N ) =
1

N

N−1∑
j=0

(γj(xj) + φj (xj , xj+1)) + γN (xN )

(1.3)

where φj(xj , xj+1) = (xj+1 −Mj(xj))
T
Q−1
j (xj+1 −Mj(xj)) /2, 0 ≤ j ≤ N − 1

γj(xj) = (yj −Hj(xj))
T
R−1
j (yj −Hj(xj)) /2, 1 ≤ j ≤ N

γ0(x0) = (x0 − xB)TQ−1
B (x0 − xB)/2 + (y0 −H0(x0))

T
R−1

0 (y0 −H0(x0)) /2

Best estimation of the states x0, x1, . . . , xN then amounts to minimizing (1.3)
which is equivalent to maximizing the likelihood of the hidden Markov model. In the
strongly constrained case, only x0 is a free variable. Using adjoint approaches for
the minimization of (1.3) in that limiting case with a checkpointing strategy results
in storage requirements of about O(J log(N)) with a recomputation effort that is
relatively bounded with J and N [9]. In the presence of model error, however, it
is no longer possible to constrain the states using model propagation, and hence the
storage is N+1 fold larger as all states x0, x1, . . . , xN are free variables. In the case of
a large J or N , to which we are increasingly getting towards in atmospheric sciences
as more refined physics models are coming online, the sheer amount of storage makes
applications to real systems with higher resolution out of practical reach.

To this end, our recent work [1] proposes to reduce memory by using the con-
straints of the optimality conditions themselves

0 = ∇x0φ0(x0, x1) +∇x0γ0(x0)(1.4)

0 = ∇xjφj(xj , xj+1) +∇xjφj−1(xj−1, xj) +∇xjγj(xj), 1 ≤ j ≤ N(1.5)

0 = ∇xN
φN−1(xN−1, xN ) +∇xN

γN (xN )(1.6)

Enforcing optimality conditions (1.4) and (1.5) gives a recursion for computing x1 in
terms of x0 and xi+1 in terms of xi and xi−1 for 1 ≤ i ≤ N − 1. Hence each state
effectively is reduced to a function of just the initial state by using the optimality
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conditions as constraints; we call this recursively computable function λi(x0), i =
1, 2, . . . , N . The objective function then becomes

(1.7) Γ̂(x0) =
1

N

(
N−1∑
i=0

γi (λi(x0)) + φi (λi(x0), λi+1(x0)) + γN (λN (x0))

)
.

Quasi-Newton methods like L-BFGS can be used to minimize (1.7).
The recursive nature of the method opens the door for instability when time

horizon increases or under certain model parameters, as also discussed in [1]. That
is, the recursion may exhibit rapid exponential increase of the solution resulting in
numerical overflow. Numerical experiments show that in the presence of large model
error, large observation gap, large time step or increased time horizon, the method
may encounter such stability issues and fail to progress. The method that minimizes
(1.7) in [1] uses essentially a single shooting idea. Each initial state x0 determines
the whole trajectory through λi(x0) and the optimality is found by satisfying the
optimality condition at the end ∇xN

φN−1 + ∇xN
γN = 0. We propose a multiple

shooting approach for which multiple restart points across the whole horizon are used.
We call such restart point checkpoints, given their identical functionality in adjoint
calculations [9]. Each checkpoint sequence determines a “shooting” segment of the
trajectory and optimality is achieved by both minimization of the resulting function
and matching at each checkpoint. To compute the function and its gradients on a
shooting interval we will use a recursion like (1.5) restarted at the last checkpoint
– a “shooting” approach. At the cost of modestly increased storage, we expect the
method to improve stability by reducing the length of recursion on each segment.

The rest of this article is organized as follows. Section 2 describes the low mem-
ory multiple shooting method and proves the consistency of the solution with the
full memory data assimilation method. In Section 3, we show that for nonlinear sys-
tems within a certain regime, the condition number of multiple shooting method is
bounded above with respect to the number of shooting intervals. Section 4 describes a
recursive limited memory algorithm to evaluate the descent direction of the resulting
optimization problem in preparation for numerical experiments. Section 5 presents
numerical experiments that implement multiple shooting method for Burgers’ equa-
tion under different parameter settings. Improvements and limitations are discussed
in the conclusion.

2. A Multiple Shooting Approach. We note that the recursion defining xj+1

through (1.5) is a two-term recursion, therefore a checkpointing approach here would
need two consecutive states. In the following, d pairs of checkpoints {xP1−1, xP1 ,
. . . , xPd−1, xPd

} ∈ R2dJ are equally spaced across the entire state. To simplify the
disscussion, we will assume that the number of states on each shooting interval is
constant, let k = N/(d+ 1) be that number. We also denote P0 = 0 and Pd+1 = N .
For each shooting interval [xPi

, xPi+1
] define by Γ̂i the component of the objective

function (1.3) attached to that interval

Γ̂0(x0) =
1

N

P1−1∑
j=0

γj(x̃j(x0)) + φj(x̃j(x0), x̃j+1(x0))

 ,(2.1a)

Γ̂i(xPi−1, xPi
) =

1

N

(
Pi+1−1∑
j=Pi

γj(x̃j(xPi−1, xPi
))(2.1b)
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+φj(x̃j(xPi−1, xPi
), x̃j+1(xPi−1, xPi

))

)
, 1 ≤ i ≤ d− 1

Γ̂d(xPd−1, xPd
) =

1

N

(
N−1∑
j=Pd

γk(x̃j(xPi−1, xPi))(2.1c)

+φj(x̃j(xPi−1, xPi
), x̃j+1(xPi−1, xPi

)) + γN (x̃N (xPd
))

)
.

The mappings x̃j(xPi−1, xPi
) are defined implicitly from the optimality conditions

(1.4) and (1.5). This is possible as soon as ∇xjφ(xj , xj+1) = ∇xjMj(xj)Q
−1
j (xj+1 −

Mj(xj)) is invertible in xj+1. This is equivalent to requiring that ∇xj
Mj(xj)Q

−1
j be

an invertible matrix. Since Mj(·) are propagating operators, they can be assumed
invertible from properties of dynamical systems (see also discussion at the beginning
of [1, §3]). Since the covariance matrix Qj is assumed positive definite, it immediately
follows that the recursion (1.5) is uniquely solvable in xj+1.

At points immediately following the checkpoints the mappings x̃Pi+1(xPi−1, xPi
)

are the solution of the optimality conditions (1.4) and (1.5) at checkpoint Pi

0 = ∇x0
γx0

(x0) +∇x0
φP0

(x0, x̃1)(2.2)

0 = ∇xPi
φPi−1

(xPi−1, xPi
) +∇xPi

γPi
(xPi

) +∇xPi
φPi

(xPi
, x̃Pi+1)(2.3)

for i = 1, . . . , d. At all other points, x̃j(xPi−1, xPi) is defined recursively from
x̃j−1(xPi−1, xPi) and x̃j−2(xPi−1, xPi) using the optimality conditions (1.5) as fol-
lows:

0 = ∇xjφj−1(x̃j−1, x̃j) +∇xjγj(x̃j) +∇xjφj(x̃j , x̃j+1)(2.4)

for Pi < j ≤ Pi+1 − 1, i = 0, . . . , d. Under model (1.1), the recursions (2.2)–(2.4) can
be written at points immediately following checkpoints as

x̃1(x0) = M0(x0) +Q0∇−TM0(x0)Q−1
B (x0 − xB)(2.5)

− Q0∇−TM0(x0)∇TH0(x0)R−1
0 (y0 −H0(x0)),

x̃Pi+1(xPi
, xPi−1) = MPi

(xPi
) +QPi

∇−TMPi
(xPi

)Q−1
Pi−1(xPi

−MPi−1(xPi−1))(2.6)

− QPi
∇−TMPi

(xPi
)∇THPi

(xPi
)R−1

Pi
(yPi
−HPi

(xPi
)),

for i = 1, 2, . . . , d. At all other points between checkpoints we obtain

x̃j+1(x̃j , x̃j−1) = Mj(x̃j) +Qj∇−TMj(x̃j)Q
−1
j−1(x̃j −Mj−1(x̃j−1))(2.7)

− Qj∇−TMj(x̃j)∇THj(x̃j)R
−1
j (yj −Hj(x̃j)).

Repeated use of (2.7) together with (2.5) and (2.6) result in computing all mappings
x̃j(xPi−1, xPi

)
Then, by gathering the objective function components (2.1), and by imposing

matching constraints at the checkpoint pairs, we obtain the following multiple shoot-
ing optimization problem.

min Γ̃(x0, xP1−1, xP1
, . . . , xPd−1, xPd

)
∆
= Γ̂0(x0) +

d∑
i=1

Γ̂i(xPi−1, xPi
)(2.8a)
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s.t. c1(x) = xP1
− x̃P1

(x0) = 0(2.8b)

g1(x) = xP1−1 − x̃P1−1(x0) = 0(2.8c)

ci+1(x) = xPi+1
− x̃Pi+1

(xPi−1, xPi
) = 0, 1 ≤ i ≤ d− 1(2.8d)

gi+1(x) = xPi+1−1 − x̃Pi+1−1(xPi−1, xPi
) = 0, 1 ≤ i ≤ d− 1(2.8e)

The Lagrangian associated with the constraint problem (2.8) is

(2.9) L(x, λ, ψ) = Γ̃(x)−
d∑
i=1

λTi ci(x)−
d∑
i=1

ψTi gi(x),

where x = (x0, xP1−1, xP1
, . . . , xPd−1, xPd

) and λi ∈ RJ , ψi ∈ RJ are Lagrange multi-
pliers for the equality constraints ci(x) = 0 and gi(x) = 0, i = 1, 2, . . . , d.

We also define the full memory form of the objective functions for each shooting
interval as follows:

(2.10)

Γi(xPi:Pi+1) =
1

N

Pi+1−1∑
j=Pi

γj(xk) + φj(xj , xj+1)

 , 0 ≤ i ≤ d,

Γd(xPd:N ) =
1

N

N−1∑
j=Pd

γj(xj) + φj(xj , xj+1) + γN (xN )

 .

We now define a list of symbols frequently used in the rest of the article.
Definition 2.1. For 1 ≤ i ≤ d and 0 ≤ j ≤ N , define
(a)

βj(xj , xj+1) = ∇xj
γj(xj) +∇xj

φj(xj , xj+1), 0 ≤ j ≤ N − 1

αj(xj−1, xj) = ∇xj
φj−1(xj−1, xj), 1 ≤ j ≤ N

θj(xj−1, xj , xj+1) = αj(xj−1, xj) + βj(xj , xj+1), 1 ≤ j ≤ N − 1

θ0(x0, x1) = β0(x0, x1); θN (xN−1, xN ) = αN (xN−1, xN ) +∇xN
γN (xN )

Note that for Γi defined in (2.10), we have(
∂Γi

∂(xPi:Pi+1
)

)T
=
[
βTPi

, θTPi+1, . . . , θ
T
Pi+1−1, α

T
Pi+1

]
, 0 ≤ i ≤ d− 1(

∂Γd
∂(xPd:N )

)T
=
[
βTPd

, θTPd+1, . . . , θ
T
N−1, θ

T
N

]
.

(b)

L
(0)
j (x0) = ∇x0 x̃j(x0), 0 ≤ j

L
(Pi−1)
j (xPi−1, xPi

) = ∇xPi−1
x̃j(xPi−1, xPi

), Pi − 1 ≤ j

L
(Pi)
j (xPi−1, xPi) = ∇xPi

x̃j(xPi−1, xPi), Pi − 1 ≤ j

(c) Let Λi(xPi−1, xPi) be (k+ 1)J × 2J dimensional, and Λ0(x0) be (k+ 1)J × J
dimensional matrices so that

Λi(xPi−1, xPi
) =

∂(x̃Pi:Pi+1
)

∂(xPi−1, xPi
)

=


L

(Pi−1)
Pi

(xPi−1, xPi
) L

(Pi)
Pi

(xPi−1, xPi
)

L
(Pi−1)
Pi+1 (xPi−1, xPi

) L
(Pi)
Pi+1(xPi−1, xPi

)
...

...

L
(Pi−1)
Pi+1

(xPi−1, xPi
) L

(Pi)
Pi+1

(xPi−1, xPi
)


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Λ0(x0) =
∂(x̃0:P1

)

∂(x0)
=
[
L

(0)
0 (x0)T , L

(0)
1 (x0)T , . . . , L

(0)
P1

(x0)T
]T

Note that the first block row of Λi is [0, IJ ] and the first block row of Λ0

is IJ . Let L0(x0), Li(xPi−1, xPi) be the last two block rows of Λ0(x0) and
Λi(xPi−1, xPi) so that

L0(x0) =

[
L

(0)
P1−1(x0)

L
(0)
P1

(x0)

]

Li(xPi−1, xPi) =

[
L

(Pi−1)
Pi+1−1(xPi−1, xPi) L

(Pi)
Pi+1−1(xPi−1, xPi)

L
(Pi−1)
Pi+1

(xPi−1, xPi) L
(Pi)
Pi+1

(xPi−1, xPi)

]

(d) Let Ji(xPi−1, xPi), J0(x0) be J(k+1)×J(k+1) dimensional symmetric block
tridiagonal matrices defined as follows (with the arguments of β·,θ·,α· dropped
for brevity).

Ji =



∇xPi
βPi ∇xPi+1

θPi 0

∇xPi
θPi+1 ∇xPi+1

θPi+1
. . .

. . .
. . .

. . . ∇xPi+1−1
θPi+1−1 ∇xPi+1

θPi+1−1

0 ∇xPi+1−1
θPi+1

∇xPi+1
αPi+1


.

Note that Ji = ∇2Γi for 0 ≤ i ≤ d− 1, and ∇2Γd differs from Jd by only the
last diagonal block element so that (Jd)(k,k) +∇2

xN
γN = (∇2Γd)(k,k).

We now illustrate the relationship between the solution of the multiple shooting
constrained optimization problem (2.8) and the solution of the full memory data
assimilation problem (1.3)

Theorem 2.2. Let x∗0:N be a local minimizer of Γ(x0:N ) (1.3) that satisfies the
first and second order sufficient conditions. Let x∗ = (x∗0, x

∗
P1−1, x

∗
P1
, . . . , x∗Pd−1, x

∗
Pd

),
then

(a) x∗ satisfies the KKT conditions of (2.8) with Lagrangian multipliers λ∗i =
−∇xPi

φPi−1(x∗Pi−1, x
∗
Pi

), ψ∗i = 0 for 1 ≤ i ≤ d.
(b) The Hessian matrix of the Lagrangian at optimality satisfies

wT∇2
xL(x∗, λ∗, ψ∗)w =

d∑
i=0

ŵTi ΛTi JiΛiŵi

+
(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)T
∇2
xN
γN

(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)
,

for w = (w1, . . . , w2d+1) ∈ R(2d+1)J , and ŵi = (w2i, w2i+1), 1 ≤ i ≤ d and
ŵ0 = w1.

(c) x∗ satisfies the second order sufficient conditions of (2.8).
Proof. The optimality conditions (2.2)–(2.4) uniquely determine the recursion of

x̃j , 0 ≤ j ≤ N (Theorem 1 of [1]). Therefore the solution x∗0:N of (1.3) coincides with
the state propagated starting from the checkpoints using the recursions (2.2)–(2.4),
i.e. x̃j = x∗j for 0 ≤ j ≤ N . In the rest of the proof, the dependence of the symbols
defined in Definition 2.1 on the checkpoints is suppressed for brevity.
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First, we aim to verify part (a), i.e. check the KKT conditions with Lagrangian
multipliers λ∗i = −∇xPi

φPi−1(x∗Pi−1, x
∗
Pi

), ψ∗i = 0 for 1 ≤ i ≤ d. Note that from the
definitions of αPi

, βPi
(Definition 2.1 (a)) and optimality conditions (1.4) and (1.5),

we have that for 1 ≤ i ≤ d,

αPi
(x∗Pi−1, x

∗
Pi

) + λ∗i = 0,(2.11a)

βPi
(x∗Pi

, x∗Pi+1)− λ∗i = 0.(2.11b)

By the chain rule, and from the definition of the constraints (2.8b), (2.8c), Defi-
nition 2.1 (a) and (c), the first order derivatives are

∇x0
L(x∗, λ∗, ψ∗) = ∇x0

Γ̂0(x∗0)−∇x0
c1(x∗)λ∗1 −∇x0

g1(x∗)ψ∗1(2.12)

=

(
∂(x̃0:P1)

∂(x0)

)T
∂Γ0

∂(x0:P1
)

+ L
(0)
P1

T
λ∗1 + L

(0)
P1−1

T
ψ∗1

= ΛT0 V0 + L
(0)
P1−1

T
ψ∗1 , where

V0 :=


θ0(x∗0, x̃1)

θ1(x̃0, x̃1, x̃2)
...

θP1−1(x̃P1−2, x̃P1−1, x̃P1
)

αP1
(x̃P1−1, x̃P1

) + λ∗i

 .(2.13)

(2.11a) and optimality conditions (1.4), (1.5) implies V0 = 0, and hence we have
∇x0

L(x∗, λ∗, ψ∗) = 0.
For 1 ≤ i ≤ d− 1, from the definition of the constraints (2.8d), (2.8e), Definition

2.1 (a) and (c), we obtain that

∇(xPi−1,xPi
)L(x∗, λ∗, ψ∗) = ∇(xPi−1,xPi

)Γ̂i(x
∗
Pi−1, x

∗
Pi

)(2.14)

−
[
∇xPi−1

gi(x
∗)ψ∗i +∇xPi−1

ci+1(x∗)λ∗i+1 +∇xPi−1
gi+1(x∗)ψ∗i+1

∇xPi
ci(x

∗)λ∗i +∇xPi
ci+1(x∗)λ∗i+1 +∇xPi

gi+1(x∗)ψ∗i+1

]

=

(
∂(x̃Pi:Pi+1

)

∂(xPi−1, xPi
)

)T
∂Γi

∂(xPi:Pi+1
)
−

ψ∗i − L(Pi−1)
Pi+1−1

T
ψ∗i+1 − L

(Pi−1)
Pi+1

T
λ∗i+1

λ∗i − L
(Pi)
Pi+1−1

T
ψ∗i+1 − L

(Pi)
Pi+1

T
λ∗i+1


= ΛTi Vi −

ψ∗i − L(Pi−1)
Pi+1−1

T
ψ∗i+1

−L(Pi)
Pi+1−1

T
ψ∗i+1

 , where

Vi :=


βPi

(x∗Pi
, x̃Pi+1)− λ∗i

θPi+1(x̃Pi
, x̃Pi+1, x̃Pi+2)

...
θPi+1−1(x̃Pi+1−2, x̃Pi+1−1, x̃Pi+1

)
αPi+1

(x̃Pi+1−1, x̃Pi+1
) + λ∗i+1

 .(2.15)

(2.11a), (2.11b) and optimality conditions (1.4) and (1.5) implies that Vi = 0, and
hence we have ∇(xPi−1,xPi

)L(x∗, λ∗, ψ∗) = 0.
For the last shooting interval, from the definition of the constraints (2.8d), (2.8e),

Definition 2.1 (a) and (c), we obtain that

∇(xPd−1,xPd
)L(x∗, λ∗, ψ∗) = ∇(xPd−1,xPd

)Γ̂d(x
∗
Pd−1, x

∗
Pd

)(2.16)
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−
[
∇xPd−1

gd(x
∗)ψ∗d

∇xPd
cd(x

∗)λ∗d

]
= ΛTd Vd −

[
ψ∗d
0

]
, where

Vd :=


βPd

(x∗Pd
, x̃Pd+1)− λ∗d

θPd+1(x̃Pd
, x̃Pd+1, x̃Pd+2)

...
θN−1(x̃N−2, x̃N−1, x̃N )

θN (x̃N−1, x̃N )

 .(2.17)

(2.11b) and optimality conditions (1.5) and (1.6) implies that Vd = 0, and hence we
have ∇(xPd−1,xPd

)L(x∗, λ∗, ψ∗) = 0. This completes the proof of part (a).
We now derive the Hessian matrix. For 1 ≤ i ≤ d, directly applying the chain rule

to (2.12), (2.14) and we note that Vi = 0 for 0 ≤ i ≤ d−1 give that∇2
x0
L(x∗, λ∗, ψ∗) =

ΛT0 J0Λ0 and that ∇2
(xPi−1,xPi

)L(x∗, λ∗, ψ∗) = ΛTi JiΛi for 1 ≤ i ≤ d− 1.

For the last shooting interval, applying the chain rule to (2.16), and from Defini-
tion 2.1 (a), (d) and the fact that Vd = 0, we obtain that

∇2
(xPd−1,xPd

)L(x∗, λ∗, ψ∗) = ΛTd JdΛd +

[
L

(Pd−1)
N

T

L
(Pd)
N

T

]
∇2
xN
γN

[
L

(Pd−1)
N L

(Pd)
N

]
.

Since the constraints are separable, there are no cross terms in the Hessian matrix.
For w = (w1, . . . , w2d+1) ∈ R(2d+1)J , define ŵi = (w2i, w2i+1) for 1 ≤ i ≤ d and

ŵ0 = w1. Then we have that

(2.18)
wT∇2

xL(x∗, λ∗, µ)w =

d∑
i=0

ŵTi ΛTi JiΛiŵi

+
(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)T
∇2
xN
γN

(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)
.

This completes the proof of part (b).
The critical cone at optimality, from Definition 2.1 (d) and (2.8d), (2.8e), is

C(x∗, λ∗, ψ∗) = {w ∈ R(2d+1)J : ∇ci(x∗)w = 0,∇gi(x∗)w = 0, 1 ≤ i ≤ d}(2.19)

= {ŵ ∈ R(2d+1)J : ŵi = Li−1ŵi−1, 1 ≤ i ≤ d}.

Define the vector u ∈ R(N+1)J by

uj =

{
L

(0)
j w1, 0 ≤ j ≤ P1

L
(Pi−1)
j w2i + L

(Pi)
j w2i+1, Pi + 1 ≤ j ≤ Pi+1, 1 ≤ i ≤ d

so that for 0 ≤ i ≤ d,

(2.20) Λiŵi =
[
wT2i+1, u

T
Pi+1, . . . u

T
Pi+1

]T
,

From Definition 2.1 (c) the first block row of Λi is [0, IJ ] for 1 ≤ i ≤ d, and IJ for i = 0.
Now we consider w ∈ C(x∗, λ∗, ψ∗) and w 6= 0. This implies that w1 6= 0, and since

u0 = w1 6= 0 we have that u 6= 0. Note that since w ∈ C(x∗, λ∗, ψ∗), L
(Pi−1)
Pi

= 0,

and L
(Pi)
Pi

= IJ , we have from (2.19) that uPi
= w2i+1, for 1 ≤ i ≤ d. Substituting

this equation in (2.18), using (2.20), using the expression of Ji from Definition 2.1(d),
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and using that, from Definition 2.1(a), we have that ∇xPi
βPi

+ ∇xPi
αPi

= ∇xPi
θPi

for 1 ≤ i ≤ d, we obtain that

wT∇2
xL(x∗, λ∗, ψ∗)w = uT0∇x0

θ0u0 + uT0∇x1
θ0u1

+

N−1∑
j=1

(uTj ∇xj−1
θjuj−1 + uTj ∇xj

θjuj + uTj ∇xj+1
θjuj+1)

+ uTN∇xN−1
θNuN−1 + uTN∇xN

θNuN = uT
(
∇2
x0:N

Γ(x∗0:N )
)
u > 0

This completes the proof of part (c).

3. Stability analysis. The constrained optimization problem (2.8) is now solved
with an augmented Lagrangian method. From the Lagrangian function (2.9) and using
the notations of (2.8), we define the augmented Lagrangian function,

(3.1)

LA(x, λ, ψ, µ) = Γ̃(x)−
d∑
i=1

λTi ci(x)−
d∑
i=1

ψTi gi(x)+
µ

2

d∑
i=1

(
ci(x)T ci(x) + gi(x)T gi(x)

)
Here µ > 0 is the penalty parameter that helps enforce feasibility. In the rest of this
work we assumed it fixed but large enough so that when λ∗ and ψ∗ are the Lagrange
multipliers of (2.8), the solution x∗ of (2.8) is a local minimizer of (3.1). Such a µ > 0
exists from augmented Lagrange theory [18] and Theorem 2.2.

The purpose of this section is to investigate the condition number of the Hessian
matrix for LA with respect to the number of shooting intervals. In ideal circum-
stances, the condition number would be bounded above by a constant and thus would
prevent exponential growth of the solution in time, which is the signature of insta-
bility discussed in §1. Our aim is thus to investigate under what circumstances this
favorable situation can occur.

To carry out this analysis we use several simplifications to our approach. While
our investigations have indicated that similar results can be obtained without making
the simplifications, leaving them out would significantly complicate and extend the
analysis. We thus keep the number of time points in each shooting interval fixed at
k, and use for all d shooting intervals a fixed time step ∆t. Since k is fixed, d grows
linearly with N . We consider constant covariance matrix for model error Q and
observation error R for all time steps. The observation mapping is time dependent
linear, i.e. Hi(xi) = Bixi for all 0 ≤ i ≤ N and some Bi ∈ RL×J . Note that we allow
observation gaps in time, which can be modeled by setting some Bi and the respective
observations to 0. Theorem 2.2 (b), definitions of the constraints (2.8b)-(2.8e) and
of the critical cone (2.19), and Definition 2.1 (c) imply that the Hessian for LA at
optimality satisfies

wT∇2
xLA(x∗, λ∗, ψ∗, µ)w =

d∑
i=0

ŵTi ΛTi JiΛiŵi + µ

d∑
i=1

‖ŵi − Li−1ŵi−1‖2(3.2)

+
(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)T
BTNR

−1BN

(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)
for any w = (w1, . . . , w2d+1) ∈ R(2d+1)J , where we denote ŵ0 = w1, ŵi = (w2i, w2i+1)
for 1 ≤ i ≤ d.



10 W. XU AND M. ANITESCU

We now introduce the definition of the observability matrix for each shooting
interval, which is based on the standard one for the linearized system on a given
system trajectory [11].

Definition 3.1. For each 0 ≤ i ≤ d, Pi ≤ j, denote
∏j
l=Pi
∇Ml(xl) =

∇Mj(xj)∇Mj−1(xj−1) . . .∇MPi
(xPi

). Define

CTi (x) =

BTPi
,
(
BPi+1∇MxPi

(xPi
)
)T
, . . . ,

(
BPi+k−2

Pi+k−3∏
l=Pi

∇Ml(xl)

)T
as the observability matrix for the (i+1)th shooting interval.

For our work, the importance of the observability condition is that it will ensure
that the objective function of (1.3) when applied to the linearized system is positive
definite on one shooting interval.

Lemma 3.2. Ci(x) being full rank is equivalent to

Q(w) :=

Pi+k−2∑
j=Pi

(
(wj+1 −∇Mj(xj)wj)

T
Q−1 (wj+1 −∇Mj(xj)wj) + wTj B

T
j R
−1Bjwj

)
> 0

for any 0 6= w ∈ RkJ and 0 ≤ i ≤ d.
Proof. Suppose there exists 0 6= s0 ∈ RJ such that Cis0 = 0, then define

s = (sPi
, . . . , sPi+k−1) ∈ RkJ such that sPi

= s0, sPi+j =
∏Pi+j−1
l=Pi

∇Ml(xl)s0 for
1 ≤ j ≤ k− 1. Note that the assumption Cis0 = 0 and the definition of s imply that

(3.3)

0 = BPis0 = BPisPi , 0 = BPi+j

Pi+j−1∏
l=Pi

∇Ml(xl)s0 = BPi+jsPi+j , ∀1 ≤ j ≤ k−2.

Then, (3.3) and the definition of s give that Q(s) = 0. Note that s 6= 0 since s0 6= 0.
On the other hand, suppose Q(s) = 0 for some 0 6= s = (sPi

, . . . , sPi+k−1) ∈ RkJ ,
then Bjsj = 0 and sj+1 = ∇Mj(xj)sj for Pi ≤ j ≤ Pi + k − 2. Then we have

(3.4) 0 = BPisPi , 0 = BPi+j

Pi+j−1∏
l=Pi

∇Ml(xl)sPi , ∀1 ≤ j ≤ k − 2.

Then, (3.4) implies that CisPi = 0. Note that sPi 6= 0 because otherwise s = 0.

A full rank result holds for the Jacobian matrix of the recursion.
Lemma 3.3. Λi(xPi−1, xPi) is full rank for 1 ≤ i ≤ d,
Proof. Adapting optimality recursion (2.6) to our simplified model gives

x̃Pi+1 = MPi(xPi) +Q∇−TMPi(xPi)B
T
Pi
R−1 (BPixPi − yPi)

+ Q∇−TMPi
(xPi

)Q−1 (xPi
−MPi−1(xPi−1))

and it implies L
(Pi−1)
Pi+1 =

∂x̃Pi+1

∂xPi−1
= −Q∇−TMPi

(xPi
)Q−1∇MPi−1(xPi−1) which is

invertible. Since the first block row of Λi(xPi−1, xPi
) is (0, I), and L

(Pi−1)
Pi+1 is the

(2,1)th block, Λi(xPi−1, xPi
) is full rank.
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In addition to observability on one shooting interval, we will make slightly stronger
assumptions than the ones implied by Lemmas 3.2 and 3.3. That is, we will assume
that those bounds hold uniformly with the shooting interval index i.

Assumption 3.4. There exist γk > 0 and ρk > 0 dependent on k but not on i,
or d, such that for any N > 0,

(a) The observability matrices Ci(x
∗) are full rank for 0 ≤ i ≤ d.

(b) Under (a),

Pi+k−2∑
j=Pi

((
wj+1 −∇Mj(x

∗
j )wj

)T
Q−1

(
wj+1 −∇Mj(x

∗
j )wj

)
+ wTj B

T
j R
−1Bjwj

)
≥ γk‖w‖2

for all 0 ≤ i ≤ d, w = (wPi , . . . , wPi+k−1) ∈ RkJ .
(c) λmin(Λi(x

∗
Pi−1, x

∗
Pi

)TΛi(x
∗
Pi−1, x

∗
Pi

)) ≥ ρk for all 1 ≤ i ≤ d.
The second set of assumptions characterize the system, states and observations

as follows:
Assumption 3.5. For any N > 0,
(a) max0≤j≤N

(
‖x∗j‖, ‖xB‖

)
≤ C1 and max0≤j≤N ‖yj‖ ≤ C2 for some constant

C1 > 0 and C2 > 0.
(b) max0≤j≤N ‖Bj‖F ≤ b0 for some constant b0 > 0.
(c) max0≤j≤N

(
‖∇Mj(x

∗
j )‖F , ‖∇−1Mj(x

∗
j )‖F

)
≤ A for some constant A > 0.

(d) max0≤j≤N
(
‖Mj(x

∗
j )‖F

)
≤ m0 for some constant m0 > 0.

(e) max0≤j≤N ‖∇xj vec
(
∇TMj(x

∗
j )
)
‖F ≤ A1 for some constant A1 > 0.

In fact, Assumption 3.5 (d) and (e) are consequences of (a) and the fact that Mj is
at least twice continuously differentiable. We nonetheless state them as assumptions
so that the bounds we will use in the proof will have convenient references.

Finally, we will now make a type of small nonlinearity assumption. It is shown
in [1] that for s× s matrix S and s× 1 vector u and x, we have

∇x(Su) = (uT ⊗ Is)∇xvec(S) + S∇xu.(3.5)

Here we define M
(2)
j (u) := (uT ⊗ IJ)∇xj

vec
(
∇TMj(x

∗
j )
)
. If u is not a function

of xj , then M
(2)
j (u) = ∇xj

(
∇TMj(x

∗
j )u
)
. Moreover, if the system is linear then

M
(2)
j (u) = 0; therefore bounds on M

(2)
j (u) are bounds limiting nonlinearity. Note

that under Assumption 3.5 (e), denoting C0 = A1

√
J , we have for any N > 0 that

max
0≤j≤N

‖M (2)
j (u)‖F ≤ A1‖uT ⊗ IJ‖F ≤ C0‖u‖.(3.6)

For our proof, however, we need an even sharper restriction for the nonlinearity de-
scribed below.

Assumption 3.6. There exists 0 ≤ bk < γk such that for any N > 0,

max
0≤j≤N

‖M (2)
j

(
Q−1

(
x∗j+1 −Mj(x

∗
j )
))
‖F ≤ bk,

where γk is as defined in Assumption 3.4.
While, other than the observability assumption on each shooting interval, As-

sumptions 3.4 and 3.5 are primarily stating uniformity, and thus are only marginally
stronger than the existing assumptions, Assumption 3.6 puts a relatively hard bound
on how much nonlinearity we can tolerate in our analysis. We will discuss its effect
and significance at the end of this section.
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With these definitions and assumptions, we now proceed to the main results of our
paper. That is, we now prove that for the nonlinear system satisfying Assumption 3.4,
3.5 and 3.6, the condition number of the Hessian matrix for augmented Lagrangian
is bounded above. First, we derive a lower bound.

Proposition 3.7. Under Assumption 3.4 and 3.6, for any w ∈ RkJ and ‖w‖ = 1,
we have that wTJi(x

∗
Pi

)w ≥ γk − bk for 0 ≤ i ≤ d.
Proof. Referring back to Definition 2.1 (a), we have that

(3.7)

∇x0
β0 = ∇TM0(x∗0)Q−1∇M0(x∗0) +BT0 R

−1B0 −M (2)
0

(
Q−1(x∗1 −M0(x∗0))

)
+Q−1

B ,

∇xj
βj = ∇TMj(x

∗
j )Q

−1∇Mj(x
∗
j ) +BTj R

−1Bj −M (2)
j

(
Q−1(x∗j+1 −Mj(x

∗
j ))
)
,

0 < j ≤ N − 1

∇xj
αj = Q−1, 1 ≤ j ≤ N, ∇xj−1

θj = −Q−1∇TMj−1(x∗j−1), 1 ≤ j ≤ N
∇xj

θj = ∇xj
αj +∇xj

βj , 0 < j < N ∇xj+1
θj = −∇TMj(x

∗
j )Q

−1, 0 ≤ j ≤ N − 1.

So for ‖w‖ = 1, referring to Definition 2.1 (d), we have

wTJi(x
∗
Pi

)w ≥
Pi+k−2∑
j=Pi

((
wj+1 −∇Mj(x

∗
j )wj

)T
Q−1

(
wj+1 −∇Mj(x

∗
j )wj

)
+ wTj B

T
j R
−1Bjwj

)

−
Pi+k−2∑
j=Pi

wTj M
(2)
j

(
Q−1

(
x∗j+1 −Mj(x

∗
j )
))
wj ,

for which equality holds for 1 ≤ i ≤ d. For i = 0, the difference between the two sides
is wT0 Q

−1
B w0 which is non-negative. By Assumption 3.4 (b), we have that

Pi+k−2∑
j=Pi

((
wj+1 −∇Mj(x

∗
j )wj

)T
Q−1

(
wj+1 −∇Mj(x

∗
j )wj

)
+ wTj B

T
j R
−1Bjwj

)
≥ γk

and by Assumption 3.6, we have that
∣∣∣∑Pi+k−2

j=Pi
wTj M

(2)
j

(
Q−1

(
x∗j+1 −Mj(x

∗
j )
))
wj

∣∣∣ ≤
bk, thus Proposition 3.7 follows.

We now derive upper bounds in a series of lemmas.
Lemma 3.8. Under Assumption 3.5, for each 1 ≤ i ≤ d, Pi + 1 ≤ j ≤ Pi + k and

p = Pi − 1, Pi, we have that ‖L(p)
j (x∗Pi−1, x

∗
Pi

)‖F ≤ C
(j−Pi+1)
p and ‖L(0)

j (x∗0)‖F ≤ Cjp
where Cp > 1 is a constant independent of d.

Proof. For 0 ≤ i ≤ d and Pi ≤ j ≤ Pi+1 − 1, define

Fij = ∇Mj(x
∗
j )−Q∇xj

(
∇−TMj(x

∗
j )B

T
j R
−1(yj −Bjx∗j )

)
and for 0 ≤ i ≤ d and Pi + 1 ≤ j ≤ Pi+1 − 1, define

Gij = Q∇xj

(
∇−TMj(x

∗
j )Q

−1
(
x∗j −Mj−1(x∗j−1)

))
Kij = −Q∇−TMj(x

∗
j )Q

−1∇Mj−1(x∗j−1).

Also define,

G10 = Q∇x0

(
∇−TM0(x∗0)Q−1

B (x∗0 − xB)
)
.
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Then for any 1 ≤ i ≤ d and Pi + 1 ≤ j ≤ Pi + k, from optimality recursions (2.7) and

chain rule, we have that the recursion of L
(Pi)
j and L

(Pi−1)
j can be written as[

L
(p)
j

L
(p)
j−1

]
=

[
Fi,j−1 +Gi,j−1 Ki,j−1

IJ 0

] [
L

(p)
j−1

L
(p)
j−2

]
(3.8)

where p = Pi, Pi − 1. For the initial shooting interval, the recursion runs through
2 ≤ j ≤ P1 and p = 0. From (2.5), the initialization of the recursion for the initial
shooting interval is [

L
(0)
1

L
(0)
0

]
=

[
F10 +G10

IJ .

]
(3.9)

For the other shooting intervals 1 ≤ i ≤ d, from (2.6), the recursion is initialized by

(3.10)

[
L

(Pi−1)
Pi

L
(Pi−1)
Pi−1

]
=

[
0
IJ

]
,

[
L

(Pi)
Pi

L
(Pi)
Pi−1

]
=

[
IJ
0

]
.

Now we give upper bounds for the propagation matrices. For some J × 1 vector
v(x∗j ), by differentiating both sides of v(x∗j ) = ∇TMj(x

∗
j )∇−TMj(x

∗
j )v(x∗j ) and using

equation (3.5), we have that

(3.11)
∇xj

(
∇−TMj(x

∗
j )v(x∗j )

)
= −∇−TMj(x

∗
j )M

(2)
j

(
∇−TMj(x

∗
j )v(x∗j )

)
+∇−TMj(x

∗
j )∇v(x∗j )

Now we can give bounds to each parts involved in the propagation. By equation
(3.11), Assumption 3.5 and equation (3.6), we have that

‖∇xj

(
∇−TMj(x

∗
j )B

T
j R
−1(yj −Bjx∗j )

)
‖F(3.12a)

≤ ‖∇−TMj(x
∗
j )M

(2)
j

(
∇−TMj(x

∗
j )B

T
j R
−1(yj −Bjx∗j )

)
‖F

+ ‖∇−TMj(x
∗
j )B

T
j R
−1Bj‖F ≤ C0A

2b0‖R−1‖F (C2 + b0C1) +Ab20‖R−1‖F ,
‖∇x0

(
∇−TM0(x∗0)Q−1

B (x∗0 − xB)
)
‖F(3.12b)

≤ ‖∇−TM0(x∗0)M
(2)
0

(
∇−TM0(x∗0)Q−1

B (x∗0 − xB)
)
‖F

+ ‖∇−TM0(x∗0)Q−1
B ‖F ≤ 2C0A

2‖Q−1
B ‖FC1 +A‖Q−1

B ‖F ,
‖∇xj

(
∇−TMj(x

∗
j )Q

−1
(
x∗j −Mj−1(x∗j−1)

))
‖F(3.12c)

≤ ‖∇−TMj(x
∗
j )M

(2)
j

(
∇−TMj(x

∗
j )Q

−1
(
x∗j −Mj−1(x∗j−1)

))
‖F

+ ‖∇−TMj(x
∗
j )Q

−1‖F ≤ C0A
2‖Q−1‖F (C1 +m0) +A‖Q−1‖F .

We then have that

‖Fij‖F
(3.12a)

≤ A+ ‖Q‖F
(
C0A

2b0‖R−1‖F (C2 + b0C1) +Ab20‖R−1‖F
)

:= F

‖Gij‖F
(3.12c)

≤ ‖Q‖F
(
C0A

2‖Q−1‖F (C1 +m0) +A‖Q−1‖F
)

:= G1

‖Kij‖F ≤ A2‖Q‖F ‖Q−1‖F := K

‖G10‖F
(3.12b)

≤ ‖Q‖F
(
2C0A

2‖Q−1
B ‖FC1 +A‖Q−1

B ‖F
)

:= G0
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Let G = max (G1, G0). Then, bounding each term in the propagation relations
(3.8), (3.9) and (3.10) by its Forbenius norm, we have for 1 ≤ i ≤ d, Pi+1 ≤ j ≤ Pi+k
and p = Pi − 1, Pi, that

‖L(p)
j ‖F ≤

∥∥∥∥∥
[
L

(p)
j

L
(p)
j−1

]∥∥∥∥∥
F

≤
∥∥∥∥[Fi,j−1 +Gi,j−1 Ki,j−1

IJ 0

]∥∥∥∥
F

∥∥∥∥∥
[
L

(p)
j−1

L
(p)
j−2

]∥∥∥∥∥
F

≤
(√

J +K2 + (F +G)2
)j−Pi √

J ≤
(√

J +K2 + (F +G)2
)j−Pi+1

:= Cj−Pi+1
p

and for the initial shooting interval, similarly we have for 1 ≤ j ≤ P1, that

‖L(0)
j ‖F ≤

(√
J +K2 + (F +G)2

)j−1√
J + (F +G)2 ≤

(√
J +K2 + (F +G)2

)j
= Cjp

Lemma 3.9. Under Assumption 3.5 and 3.6 and using notations in Definition
2.1 (d), for each 1 ≤ i ≤ d, we have that ‖J0(x∗0)‖F , ‖Ji(x∗Pi−1, x

∗
Pi

)‖F ≤ CJ for some
CJ > 0 independent of d.

Proof. Because of the block tridiagonal structure of Ji for 0 ≤ i ≤ d, we have that

‖Ji‖F ≤
Pi+1−1∑
j=Pi+1

(
‖∇xj−1

θj‖F + ‖∇xj
θj‖F + ‖∇xj+1

θj‖F
)

+‖∇xPi
βPi
‖F + ‖∇xPi+1

θPi
‖F + ‖∇xPi+1−1

θPi+1
‖F + ‖∇xPi+1

αPi+1
‖F

(3.7)

≤
Pi+1−1∑
j=Pi+1

(
2A‖Q−1‖F + ‖Q−1‖F +A2‖Q−1‖F + b20‖R−1‖F + bk

)
+2A‖Q−1‖F + ‖Q−1‖F +A2‖Q−1‖F + b20‖R−1‖F + bk

≤ k
(
2A‖Q−1‖F + ‖Q−1‖F +A2‖Q−1‖F + b20‖R−1‖F + bk

)
:= CJ

Proposition 3.10. For any w ∈ R(2d+1)J and ‖w‖ = 1, we have that
wT∇2

xLA(x∗, λ∗, ψ∗, µ)w ≤ Uk for some Uk > 0 independent of d.
Proof. For 0 ≤ i ≤ d, using Lemma 3.8, 3.9 and referring to Definition 2.1, we

have that ‖Ji‖F ‖Λi‖2F ≤ 2(k + 1)CJC
2k
p . Then, from (3.2), it follows that

wT∇2
xLA(x∗, λ∗, ψ∗, µ)w =

d∑
i=0

ŵTi ΛTi JiΛiŵi + µ

d∑
i=1

‖ŵi − Li−1ŵi−1‖2

+
(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)T
BTNR

−1BN

(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)
≤ 2(k + 1)CJC

2k
p + b20‖R−1‖FC2k

p + µ(1 + 2Ckp )2

Defining Uk to be the last quantity above completes the proof.
We are now in a position to state and prove our main result.
Theorem 3.11. Under assumptions 3.4, 3.5, and 3.6, the condition number of

Hessian matrix for augmented Lagrangian is bounded above independent of the number
of shooting intervals, d. That is,

κ
(
∇2
xLA(x∗, λ∗, ψ∗, µ)

)
≤ Uk

(γk − bk) min (ρk, 1)
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Proof. For any w ∈ R(2d+1)J and ‖w‖ = 1, using Proposition 3.7 and Assumption
3.4 (c), we have that

wT∇2
xLA(x∗, λ∗, ψ∗, µ)w =

d∑
i=0

ŵTi ΛTi JiΛiŵi + µ

d∑
i=1

‖ŵi − Li−1ŵi−1‖2

+
(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)T
BTNR

−1BN

(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)
≥

d∑
i=0

ŵTi ΛTi JiΛiŵi ≥ (γk − bk)

d∑
i=0

‖Λiŵi‖2

Assumption 3.4

≥ (γk − bk)

(
ρk

d∑
i=1

‖ŵi‖2 + ‖ŵ0‖2
)
≥ (γk − bk) min (ρk, 1)

Combining with Proposition 3.10, we obtain

κ
(
∇2
xLA(x∗, λ∗, ψ∗, µ)

)
=
λmax

(
∇2
xLA(x∗, λ∗, ψ∗, µ)

)
λmin (∇2

xLA(x∗, λ∗, ψ∗, µ))
≤ Uk

(γk − bk) min (ρk, 1)

which completes the proof.

Discussion. An interpretation of Theorem 3.11 is that, under observability As-
sumption 3.4 and small nonlinearity Assumption 3.6 the condition number of the
multiple shooting problem is bounded above with the number of multiple shooting
intervals d. This prevents the exponential increase of the solution which we define
as instability and thus makes the multiple shooting problem computable. We note
that the upper bounds of the Lemmas preceding Theorem 3.11 allow for exponential
increase within the shooting interval, but as long as observability holds, this increase
stops at the end of a shooting interval. As for Assumptions 3.6, we note that the
amount of nonlinearity needs to be upper bounded by the lower bound γk that is re-
lated to observability by Lemma 3.2. This points out that the bound on nonlinearity
in Assumption 3.6 is not absolute, it only needs to be small compared to how much
information can be found in the observations. That is, increasing the measurement
space would increase the lower eigenvalue of

∑
BTi R

−1Bi and thus γk, which in turn
increases the prospects for Assumption 3.6 to hold.

Another important question is whether these assumptions are necessary. While
an if and only if statement between observability and bounded condition number of
the multiple shooting Lagrangian probably does not hold, we point out that some of
the assumptions are necessary in the following way. As we can see from §A, multiple
shooting without observations still results in exponential increase of the condition
number and thus of the solution therefore some amount of observability – data cov-
erage – is necessary. As we can see from §B, without multiple shooting, the condition
number of the Hessian matrix for the single shooting function (1.7) also increases
exponentially and thus is unstable. We conclude that some form of observability and
multiple shooting are necessary to obtain a stability result as Theorem 3.11.

4. Recursive Gradient Evaluation. When implementing minimization of aug-
mented Lagrangian function (3.1), gradient evaluation is required. In this section, we
describe a recursive method for computing the gradient of (3.1) that fits into our
memory saving framework.
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First we derive the gradients of augmented Lagrangian function. Note that
θj(x̃j−1, x̃j , x̃j+1) = 0 for all Pi + 1 ≤ j ≤ Pi+1 − 1, 0 ≤ i ≤ d, and θ0(x0, x̃1) = 0.
For the first interval we obtain that

(4.1)

∇x0
LA(x, λ, ψ, µ) = L

(0)
P1

T (
∇xP1

φP1−1(x̃P1−1, x̃P1
) + λ1 − µc1(x)

)
+L

(0)
P1−1

T
(ψ1 − µg1(x)) + L

(0)
P1

T

������������
P1−1∑

j=1

θj(x̃j−1, x̃j , x̃j+1)

 + �����θ0(x0, x̃1) .

For 1 ≤ i ≤ d− 1, we obtain that

∇xPi−1
LA(x, λ, ψ, µ) = L

(Pi−1)
Pi+1

T


�����������Pi+1−1∑
j=Pi+1

θj(x̃j−1, x̃j , x̃j+1) +∇xPi+1
φPi+1−1(x̃Pi+1−1, x̃Pi+1


+ L

(Pi−1)
Pi+1

T
(λi+1 − µci+1(x)) + L

(Pi−1)
Pi+1−1

T
(ψi+1 − µgi+1(x)) + µgi(x)− ψi.

∇xPi
LA(x, λ, ψ, µ) = L

(Pi)
Pi+1

T


�����������Pi+1−1∑
j=Pi+1

θj(x̃j−1, x̃j , x̃j+1) +∇xPi+1
φPi+1−1(x̃Pi+1−1, x̃Pi+1

)


+ L

(Pi)
Pi+1

T
(λi+1 − µci+1(x)) + L

(Pi)
Pi+1−1

T
(ψi+1 − µgi+1(x)) + µci(x)− λi + βPi

(xPi
, x̃Pi+1).

Finally, for the last shooting interval, we obtain that

∇xPd−1
LA(x, λ, ψ, µ) = L

(Pd−1)
N

T


�����������N−1∑
j=Pd+1

θj(x̃j−1, x̃j , x̃j+1) + θN (x̃N−1, x̃N )


− ψd + µgd(x),

∇xPd
LA(x, λ, ψ, µ) = L

(Pd)
N

T


�����������N−1∑
j=Pd+1

θj(x̃j−1, x̃j , x̃j+1) + θN (x̃N−1, x̃N )


+ βPd

(xPd
, x̃Pd+1)− λd.

Note that the derivatives are composed of a matrix vector product for which the
vector can be computed through one forward recursion similar to the one for the

states. The Jacobian matrix L
(Pi)
Pi+1

, however, needs to also be computed by forward

recursion and it turns out to be dense. This would require O(J2) storage and inhibit
the low-memory advantage of our approach. Instead, we compute the matrix vector
product using a backward recursion separately on each multiple shooting interval, as
follows. Since the evaluation procedure is the same for each interval, we illustrate our
method with the first interval (assuming it has length N ′).

The target of our algorithm is to compute vTL
(0)
N ′ for some constant vector v.

This algorithm would then be used to compute the gradient components defined in
the beginning of this section. For example, for computing the first component (4.1) we
note that we have two such matrix-vector products, where N ′ is, succesively P1 and
P1−1 and v is succesively

(
∇xP1

φP1−1(x̃P1−1, x̃P1) + λ1 − µc1(x)
)

and (ψ1 − µg1(x)).
Similar embeddings hold for all other gradient components.

The computation of vTL
(0)
N ′ proceeds as follows. The optimality recursion states

that θj(x̃j−1(x0), x̃j(x0), x̃j+1(x0)) = 0 for 1 ≤ j ≤ N ′ − 1. Differentiating with
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respect to x0 gives

L
(0)
j+1 = −(∇xj+1θj)

−1
(

(∇xj−1θj)L
(0)
j−1 + (∇xjθj)L

(0)
j

)
(4.2)

Now we write the recursion ansatz and substitute (4.2), to obtain

vTL
(0)
N ′−l+1 = cTl L

(0)
N ′−l + bTl L

(0)
N ′−l−1 = −cTl (∇xN′−l

θN ′−l−1)−1(∇xN′−l−2
θN ′−l−1)L

(0)
N ′−l−2

+
(
bTl − cTl (∇xN′−l

θN ′−l−1)−1(∇xN′−l−1
θN ′−l−1)

)
L

(0)
N ′−l−1 := cTl+1L

(0)
N ′−l−1 + bTl+1L

(0)
N ′−l−2

for 1 ≤ l ≤ N ′−2, where cl+1 and bl+1 for l = 2, . . . , N ′−2 are defined by sought-after
recursions

cTl+1 = bTl − cTl (∇xN′−l
θN ′−l−1)−1(∇xN′−l−1

θN ′−l−1),(4.3)

bTl+1 = −cTl (∇xN′−l
θN ′−l−1)−1(∇xN′−l−2

θN ′−l−1).(4.4)

Then the matrix vector product of interest can be expressed as vTL
(0)
N ′ = cTN ′−1L

(0)
1 +

bTN ′−1L
(0)
0 where cN ′−1 and bN ′−1 are obtained through the above recursions (4.3) and

(4.4). It is a backward recursion with respect to the usage of state information xj .
The initial values for the recursion are

cT1 = −vT (∇x′N θN ′−1)−1(∇xN′−1
θN ′−1), bT1 = −vT (∇x′N θN ′−1)−1(∇xN′−2

θN ′−1).

obtained by total differentiation of θN ′−1(x̃N ′−2(x0), x̃N ′−1(x0), x̃N ′(x0)) = 0.
As the recursion can be computed separately on each shooting interval, the total

storage does not exceed the number of multiple shooting checkpoints plus the length
of an interval, which adds up to 2d+ 1 +N/(d+ 1). We can use checkpointing within
the shooting interval to reduce the storage even further, but we do not pursue that
avenue here.

5. Numerical results. In this section, we apply our multiple shooting method
to Burgers’ equation in order to verify some of our theoretical findings. This is
a one spatial dimension, time dependent, partial differential equation that exhibits
both diffusion and nonlinear advection. Since implementation of new ideas in an
operational environment is a fairly development-intensive process, in many research
references discussing new state estimation methods, Burger’s equation is considered
an important first test of a method [2, 13, 14, 26].

The partial differential equation describing it is the following:

(5.1)
∂u

∂t
+

1

2

∂(u2)

∂x
= ν

∂2u

∂x2
; u(0, t) = u(1, t) = 0; u(x, 0) = u0(x).

where ν > 0 is viscosity coefficient, and (x, t) ∈ (0, 1)× (0, T ).
Denote by umj the unknown value at grid coordinates (j∆x,m∆t) and ∆x = 1/J .

We use a centered finite difference discretization [2]

um+1
j − umj

∆t
+

(umj+1)2 − (umj−1)2

4∆x
− ν

(∆x)2
(um+1
j+1 − 2um+1

j + um+1
j−1 ) = 0.(5.2)

To demonstrate the benefits of multiple shooting, we choose parameters for which
the single shooting method in [1] exhibits instability. To make the problem closer to
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intended application target, we also experiment with larger model error and sparser
observations, which are known to be more difficult [1]. We compare the solution
of multiple shooting method with that obtained from directly minimizing the full
memory function (1.3) in our examples. Note that full memory problem itself is
not without difficulties: it cannot be solveed to high accuracy by LBFGS in any of
our examples within 2000 iterations. The norm of gradient of (1.3) decreases slowly
approaching the end and never gets below 10−6. In this section, we refer to the
approach of minimizing full memory function as 4D-Var for brevity, although our
example is (1+1)D.

5.1. Results for Burgers equation. We choose ∆x = 1/500, ∆t = ∆x/500
and background state xB = sin (πx), background covariance QB = 0.01I. We
generate the initial state u0 by sampling from background distribution, i.e. u0 ∼
N (xB , QB). The rest of the states are generated via model propagation plus a
model error term, i.e. ut+1 = Mt(ut) + ηt for 0 ≤ t < N , where ηt ∼ N (0, Q)
and Q = (∆t)2diag(2, 1, . . . , 1, 2) is the covariance of model error. The observations
are generated by applying Ht(ut) = sin (ut) to the underlying states U = {u0, . . . , uN}
plus a mean zero normal observation error term to mimic the action of a noisy non-
linear operator. We note that, for analytic simplicity our theoretical results consider
only the linear observation operator case, but we have every expectation of the non-
linear one to be even harder, so we could use them to validate the good results of
multiple shooting. The covariance of observation error is chosen as R = 0.01I. The
observations are made with a gap of 10 steps in time and space.

Our aim is to minimize the augmented Lagrangian function (3.1). For achieving
our limited memory purpose, we use LBFGS [18] with p = 6 stored vectors. To obtain
an initial point for minimization, we first perturb the underlying state U by the error
of the background distribution. This mimics the situation where the estimation does
not start cold, i.e. initial estimates of the states do exist from previous runs of
the algorithm. On each shooting interval, we run 4D-Var minimization of (2.10) with
LBFGS for 200 iterations to get a ”warm start” state {w0, . . . , wN}. Note that 4DVar
is run only in the beginning on each interval separately on which p trajectories are
stored. The largest amount of memory required is then max{2d+1+ N

d+1 , (p+1) N
d+1}

state vectors. We also note that applying LBFGS to the 4DVar problem on the entire
horizon requires (p + 1)N state vectors, which is most times d times larger. We
add that in this and in the other numerical sections, it proved difficult to find another
starting strategy which will reliably produce a point from which the multiple shooting
algorithm will converge. On the other hand, this strategy does work and does not
alter the storage reduction benefits of our approach.

The checkpoints of the warm start state {w0, wP1−1, wP1 , . . . , wPd−1, wPd
} are

then used as the initial point for minimizing (3.1). The Lagrangian multiplier and

penalty parameters are initially chosen as λ
(0)
i = 0, ψ

(0)
i = 0, µ(0) = 10 and are

subject to the usual Lagrange multiplier updates [18].
We tabulate the number of checkpoint pairs d, number of stored vectors and the

percentage of storage over full memory storage for each of the examples in this section
in Table 5.1. For N = 800, d = 12 is the smallest number of checkpoint pairs to make
the computation stable. For each 800 ≤ N ≤ 1600, the corresponding d is chosen so
that d/

√
N = 12/

√
800. For N = 2400, d is chosen to satisfy d/N = 12/800. We

choose d ∝ N for N = 800, 2400 to demonstrate the method is stable for increasing
N , and hence to verify Theorem 3.11. For 1000 ≤ N ≤ 1600, we choose another
relation d ∝

√
N to demonstrate empirically the consequences of a more aggressive



Limited Memory Multiple Shooting for Weakly Constrained Data Assimilation 19

N 800 1000 1200 1400 1600 2400

d 12 14 15 17 19 36
storage 434 469 525 546 560 455
storage
(p+1)N 7.8% 6.7% 6.3% 5.6% 5.0% 2.7%

Table 5.1: Number of checkpoint pairs d and maximal storage for ∆t = ∆x/500.

Fig. 5.1: Function value of (3.1)
at each iteration of LBFGS
for ∆t = ∆x/500 and N =
800, 1000, 1200, 1400, 1600, 2400.

Fig. 5.2: Gradient norm of (3.1)
at each iteration of LBFGS
for ∆t = ∆x/500 and N =
800, 1000, 1200, 1400, 1600, 2400.

checkpointing schedule.

Figure 5.1 compares the function value reduction of (3.1) at each iteration of
LBFGS for increasing time horizon. For 800 ≤ N ≤ 1600, the rate of the initial
descent (before iteration 50) becomes smaller as N increases, which indicates slower
convergence for increasing N . This indicates that a more aggressive checkpoint sched-
ule (e.g. d ∝

√
N) can lead to slower convergence. In contrast, the rate of descent for

N = 2400 is closer to that ofN = 800 and much larger than those of 1000 ≤ N ≤ 1600.
It indicates that the method is not only stable but converges with similar speed for
increasing N if d is allowed to increase linearly in N . Figure 5.2 shows the norm of
gradient at each iteration. Figure 5.3 shows the Frobenius norm of constraints ci, gi,
1 ≤ i ≤ d at each iteration. Figure 5.4 plots the Euclidean distance scaled by ∆x of
each iteration to the checkpoints of the full memory 4D-Var solution. Note that the
distance is not scaled by number of states and is expected to increase with d.

In this experiment, we see significant reduction (by 9-10 order of magnitude) for
both the function value and the norm of gradient, even if the gradient did not decrease
to a point that triggered the Lagrange multiplier update. Figure 5.5 plots the solution
surface of multiple shooting and 4D-Var when N = 2400. Both of them approach a
perturbed version of the noise-free solution. Figure 5.6 compares multiple shooting
and 4D-Var solutions at fixed time and space node. Note that the two solutions are
both close to the underlying state so that the trajectories overlap for most of the part.
Though the problem is not solved to high accuracy as suggested by norm of gradient
and norm of constraint, we conclude that it does approach the 4D-Var solution.

From the simulations we see that keeping N/d fixed (at its lowest value) results in
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Fig. 5.3: Norm of constraint at
each iteration of LBFGS in minimiz-
ing (3.1) for ∆t = ∆x/500 and N =
800, 1000, 1200, 1400, 1600, 2400.

Fig. 5.4: Distance to 4D-Var solution
at each iteration of LBFGS in minimiz-
ing (3.1) for ∆t = ∆x/500 and N =
800, 1000, 1200, 1400, 1600, 2400.

Fig. 5.5: Exact solution of Burgers equa-
tion (top left), underlying state (top
right) and states estimated with mul-
tiple shooting and 4D-Var for ∆t =
∆x/500 and N = 2400.

Fig. 5.6: Underlying state, multiple
shooting solution and 4D-Var solution
at fixed time and space node for ∆t =
∆x/500 and N = 2400.

faster convergence compared to the alternatives. We thus conclude that the statement
of Theorem 3.11 is satisfied, albeit its conditions are stronger than the case tested
here (we did not enforce small nonlinearity and linearity of observation operator).
However, for the case of smaller N (e.g 800 to 1600) we experimented with, even
increasing d slower than linear in N (e.g.

√
N) would give stable results and thus

even more memory savings at a cost of a somewhat slower convergence.

5.2. Larger model error. In this section, we experiment with increased model
error. We choose ∆x = 1/500, ∆t = ∆x/1000 and background covariance matrix
QB = 0.01I. The covariance for model error and observation error are chosen to be
10−3I. Observations are reduced to every 10 steps in time and every 100 steps in
space. To initialize the minimization of (3.1), we run 4D-Var minimization on one
interval and for the next interval, we run 4D-Var constrained at the checkpoint by
the solution from the previous interval.
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Fig. 5.7: Function value of (3.1) at each
iteration of LBFGS for ∆t = ∆x/1000,
N = 500 and d = 38.

Fig. 5.8: Gradient norm of (3.1) at each
iteration of LBFGS for ∆t = ∆x/1000,
N = 500 and d = 38.

Fig. 5.9: Underlying states, solution sur-
face of multiples shooting and 4D-Var
for ∆t = ∆x/1000, N = 500 and d = 38.

Fig. 5.10: Underlying state, multiple
shooting solution and 4D-Var solution
at fixed time and space nodes for ∆t =
∆x/1000, N = 500 and d = 38.

Figure 5.7 shows the augmented Lagrangian function value decrease for N = 500
and number of checkpoint pairs d = 38. Figure 5.8 shows the norm of the gradient.
Figure 5.9 compares full memory 4D-Var solution with that of multiple shooting.
Increased model error results in the rough surface of the underlying states plot in
Figure 5.9. Figure 5.10 compares the 4DVar and multiple shooting solutions at fixed
time and space nodes. Note that the two solutions are close to each other so that
their trajectories overlap.

Both function value and norm of gradient converge slower after some significant
initial progress. Since the norm of gradient stalls and fails to progress below 0.1, we
do not observe either Lagrangian multiplier or penalty parameter update during the
experiments. However, both function value and norm of gradient achieve 4 to 6 order
of magnitude decrease, and the multiple shooting solution approaches reasonably well
the full memory 4D-Var solution. It is also clear that the problem has too much noise
for the estimates to be close to the underlying state. However, the approach does
show that multiple shooting has a performance comparable to 4DVar, with much less
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Fig. 5.11: Function value of (3.1) at each
iteration of LBFGS for N = 300 and
d = 30.

Fig. 5.12: Gradient norm of (3.1) at each
iteration of LBFGS for N = 300 and d =
30. Reference line indicates Lagrangian
multiplier updates.

memory, and that is the goal of this paper.

With the same parameters as those in [1, §5.2.5], but with a much longer horizon,
N = 500 as opposed to N = 110, our method is able to produce iterations of moderate
size, make nontrivial progress through minimization and result in solutions compara-
ble to that of full memory method for a longer time horizon. As for storage, counting
the storage during warm start, gradient evaluation and stored vectors of LBFGS, the
maximal number of states stored at any time of the algorithm is 91 and is about
18.2% of the total number of states N . The storage used by multiple shooting is 2.6%
of the memory used by full memory minimization using LBFGS with 6 vectors.

5.3. Sparser observations. In this section, we consider the case where observa-
tions are made sparser both in time and space. We choose ∆x = 1/700, ∆t = ∆x/34
and background covariance as QB = 10−3I. The covariance matrix for model error
and observation error are Q = 10−8I and 0.01I respectively. Observations are made
every 30 steps in time and every 200 steps in space. The initial point for multiple
shooting is the same warm start point described in the last section. The parameters
are the same as those in [1, §5.2.5] but with a longer horizon. We take N = 300 as
opposed to N = 32 in [1], and take number of checkpoint pairs d = 30. We note that
this setup is significantly away from satisfying the observability condition. Indeed,
the rank of the observability matrix in Definition 3.1 cannot be larger than 8, whereas
Theorem 3.11 required a full rank, that is 701.

For this experiment, Figure 5.11 shows the decrease of function value (3.1). Only
the first 30 iterations are plotted since the function value stalls afterward. Lagrangian
multipliers are updated at iteration 80 and 230 as shown by the vertical reference
line in Figure 5.12. Figure 5.13 shows the norm of constraints ci(x) and gi(x) at
each iteration. The horizontal reference line plotted is norm of constraint for 4D-
Var solution. Figure 5.14 shows the Euclidean distance of each iteration to 4D-Var
solution scaled by ∆x. The decrease in the norm of the gradient is significant (3-4
orders of magnitude) and the norm of the constraint is reduced by about 1 order
of magnitude. The distance to the 4DVar solution is showing only little progress
compared to the initial guess obtained by running 4DVar on each shooting interval,
but Figures 5.13 and 5.14 suggest this is primarily because our warm-starting using
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Fig. 5.13: Norm of constraint at each
iteration of LBFGS in minimizing (3.1)
for N = 300 and d = 30.

Fig. 5.14: Distance to 4D-Var solution
at each iteration of LBFGS in minimiz-
ing (3.1) for N = 300 and d = 30.

4DVar on each shooting interval produces an initial point for multiple shooting very
close to the 4DVar solution itself. On the other hand, even if in the distance to the
4DVar solution there is not much progress beyond the warm start, the gradient is
significantly reduced and we can evaluate the convergence properties of the method –
running LBGFS to detect whether we see an improvement – while needing less memory
than 4DVar with LBFGS – only 3.4% of the latter’s. Therefore the multiple shooting
method provides an improvement over 4DVar with LBFGS in terms of memory and
of single shooting in terms of stability, even in this case which is significantly outside
the applicability of Theorem 3.11.

6. Conclusions. Best state estimation for dynamical systems with model error
raises new challenges in developing algorithms that reduce storage while maintaining
stability. This is due to the fact that, as opposed to the strongly constrained setups
where only the initial state is free, all of the states of a trajectory contribute to the
number of degrees of freedom.

We present an approach where the number of degrees of freedom is reduced by
the optimality conditions, as we previously introduced in [1], but now coupled with a
multiple shooting approach in an augmented Lagrangian framework to improve sta-
bility. The multiple shooting approach can use a reverse recursion scheme on each
shooting interval to ensure that the memory requirements for computing one gradient
of the augmented Lagrangian never exceed 2d+ 1 + N

d+1 state vectors, where d+ 1 is
the number of shooting intervals and N is the length of the horizon. The full mem-
ory data assimilation method, on the other hand, needs to store N + 1 state vectors
when evaluating its gradient. We prove in Theorem 3.11 that, under an observability
assumption, and when the nonlinearity is small relative to the parameter character-
izing the observability, the condition number of the augmented Lagrangian matrix is
bounded above, irrespective of the number of shooting intervals. This ensures that
the multiple shooting approach is stable – the method does not exhibit exponentially
increasing error for an increasing size of the assimilation interval. This is a feature
shared by neither the single shooting approach derived from [1] nor by the multi-
ple shooting approach without observations. Therefore both multiple shooting and
sufficiently informative observations appear to be necessary for stability to occur.

Our numerical simulations on cases described in [1] validate these points. First, for
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all of them the single shooting method showed an exponential increase of the solution
and ran into overflow. For both small model error and larger model error setups, the
multiple shooting approach converges to a solution close to that of the full memory
method while using only a fraction of the memory needed by the latter – never more
than 8%. To achieve convergence, we needed to use the full memory approach but
only on the smaller, shooting intervals to create a good initial point for our multiple
shooting approach. In the case of sparse observations, this initialization strategy was
responsible for much of the improvement of the method in terms of distance to the
full memory 4DVar solution, while using only 3.4% of the memory of the latter. But
with that initialization strategy, which does not alter our maximum memory count,
we reliably obtained reductions in the augmented Lagrangian gradients and solutions
close to the ones of the full memory approach. We also point out that, at the current
time, we are not aware of another optimization-based approach to reduce the memory
requirements of weakly constrained data assimilation approaches. From the numerical
experiments and the theory, we conclude that, particularly in the data rich case, the
multiple shooting method appears promising at reducing memory and producing a
point of a quality comparable to the full memory case without the instability of the
previous single shooting approach.

Future research will explore new initialization strategies which empirically appear
to be important for the robustness of the overall method. The method also has good
potential for paralellism though in that case the memory saving is less of a benefit. An
interesting question would be to tie the stability of multiple shooting to a condition
requiring enough information in the observations but weaker than observability on
one shooting interval. We have observed the good behavior of the multiple shooting
aproach in several such instances, but it is unclear how such a condition might be
expressive enough and practical.

Acknowledgment. This work was supported by Argonne National Laboratory
under Contract No. DE-AC02-06CH11357 with the U.S. Department of Energy. We
are grateful to our colleagues Xiaoyan Zeng and Emil Constantinescu for feedback
and assistance at the beginning of this project.

REFERENCES

[1] Mihai Anitescu, Xiaoyan Zeng, and Emil M Constantinescu, A low-memory approach
for best-state estimation of hidden markov models with model error, SIAM Journal on
Numerical Analysis, 52 (2014), pp. 468–495.

[2] A. Apte, D. Auroux, and M. Ramaswamy, Variational data assimilation for discrete Burgers
equation, in Electronic Journal of Differential Equations, vol. 19, 2010, pp. 15–30.

[3] Thomas Bengtsson, Peter Bickel, Bo Li, et al., Curse-of-dimensionality revisited: Col-
lapse of the particle filter in very large scale systems, in Probability and statistics: Essays
in honor of David A. Freedman, Institute of Mathematical Statistics, 2008, pp. 316–334.

[4] Roger Daley, Atmospheric data analysis, no. 2, Cambridge university press, 1993.
[5] DP Dee, Testing the perfect-model assumption in variational data assimilation, in Proc. Second

Int. Symp. on Assimilation of Observations in Meteorology and Oceanography, Citeseer,
1995, pp. 225–228.
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[24] Yannick Trémolet, Accounting for an imperfect model in 4d-var, Quarterly Journal of the
Royal Meteorological Society, 132 (2006), pp. 2483–2504.

[25] , Model-error estimation in 4d-var, Quarterly Journal of the Royal Meteorological Soci-
ety, 133 (2007), pp. 1267–1280.

[26] Francesco Uboldi and Masafumi Kamachi, Time-space weak-constraint data assimilation
for nonlinear models, Tellus A, 52 (2000), pp. 412–421.

[27] Milija Zupanski, Dusanka Zupanski, Tomislava Vukicevic, Kenneth Eis, and
Thomas Vonder Haar, Cira/csu four-dimensional variational data assimilation system,
Monthly Weather Review, 133 (2005), pp. 829–843.



26 W. XU AND M. ANITESCU

Appendix A. Multiple shooting with zero observability. In this section,
we prove that for a class of linear systems, under zero observability, the condition
number of the Hessian matrix of augmented Lagrangian has an exponential lower
bound. Hence the multiple shooting method is not stable if there are no observations.

We consider the model propagation mapping to be time independent, i.e. M(xj) =
Axj , and Bj = 0 for 0 ≤ j ≤ N . We assume A has at least one real eigenvalue with
modulus strictly larger than 1. With this model specification, Ji are identical for all
1 ≤ i ≤ d and so are Λi. For simplicity, we denote them respectively as J1 and Λ1 for
1 ≤ i ≤ d. The expanded forms of J1 and Λ1 are

J1 =



ATQ−1A −ATQ−1 0

−Q−1A ATQ−1A+Q−1 . . .

. . .
. . .

. . . ATQ−1A+Q−1 −ATQ−1

0 −Q−1A Q−1


,

Λ1 =


0 I

−QA−TQ−1A A+QA−TQ−1

...
...

L
(Pi−1)
Pi+1

(xPi−1, xPi
) L

(Pi)
Pi+1

(xPi−1, xPi
)

 .
For p = Pi, Pi−1, adapting the optimality recursions (2.7) to the linear system under

consideration and applying the chain rule, we have that the recursion of L
(p)
Pi+j

for
0 ≤ j ≤ k − 1 is

L
(p)
Pi+j+1 = (A+QA−TQ−1)L

(p)
Pi+j

−QA−TQ−1AL
(p)
Pi+j−1.(A.1)

Denote L1 to be the last two block rows of Λ1.

Lemma A.1. Denote Λ̂ = Λ1

[
I
A

]
. Then, J1Λ̂ = 0.

Proof. We first prove that for 1 ≤ j ≤ k, the j-th block of Λ̂ is (Λ̂)j = Aj by
induction. It is evident for j = 1, 2. Suppose it is true for all j ≤ j0, 2 ≤ j0 ≤ k − 1,
then by recursion (A.1),

(Λ̂)j0+1 = L
(Pi−1)
Pi+j0

+ L
(Pi)
Pi+j0

A

= (A+QA−TQ−1)(L
(Pi−1)
Pi+j0−1 + L

(Pi)
Pi+j0−1A)

− (QA−TQ−1A)(L
(Pi−1)
Pi+j0−2 + L

(Pi)
Pi+j0−2A)

= (A+QA−TQ−1)(Λ̂)j0 − (QA−TQ−1A)(Λ̂)j0−1

= Aj0+1

A direct multiplication completes the proof.
Proposition A.2. Let |λ| > 1, λ ∈ R be an eigenvalue of A. Denote λk = λk−1.

Then, for the linear system under consideration, we have that

κ
(
∇2
xLA(x∗, λ∗, ψ∗, µ)

)
≥
λmin(Q−1

B )

µ
|λk|2(d−1).
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Proof. For any s = (s1, . . . , s2d+1) ∈ R(2d+1)J , denote ŝ0 = s1, ŝi = (s2i, s2i+1)
for 1 ≤ i ≤ d, then from Theorem 2.2 (b) we have that

sT∇2
xLA(x∗, λ∗, ψ∗, µ)s = sT1 ΛT0 J0Λ0s1 +

d∑
i=1

ŝTi ΛT1 J1Λ1ŝi(A.2)

+ µ‖ŝ1 − L0s1‖2 + µ

d∑
i=2

‖ŝi − L1ŝi−1‖2.

Consider s = (s1, . . . , s2d+1) ∈ R(2d+1)J such that s1 = 0, s2i = λi−1
k s2, s2i+1 =

λs2i for 1 ≤ i ≤ d, and let ‖s2‖ = 1 be the eigenvector of A corresponding to λ, i.e.

As2 = λs2. Then ŝi =

[
I
A

]
s2i for 1 ≤ i ≤ d, which gives that

ŝTi ΛT1 J1Λ1ŝi = sT2iΛ̂
TJ1Λ̂s2i = 0,(A.3)

where the last equality follows from Lemma A.1.

Since L1 consists of the last two block rows of Λ1, we have that L1

[
I
A

]
=

[
Ak−1

Ak

]
.

Hence by the definition of s for 2 ≤ i ≤ d, we obtain that

ŝi − L1ŝi−1 =

[
I
A

]
s2i −

[
Ak−1

Ak

]
s2(i−1) = 0.(A.4)

Using (A.3) and (A.4) in (A.2) we obtain that

sT∇2
xLA(x∗, λ∗, ψ∗, µ)s = µ‖ŝ1‖2 ≤ µ(‖s2‖2 + |λ|2‖s2‖2) = µ(1 + |λ|2).

From the definition of s, we have that

‖s‖2 =

d∑
i=1

‖s2i‖2 + ‖s2i+1‖2 = (1 + |λ|2)

d∑
i=1

|λk|2(i−1) ≥ (1 + |λ|2)|λk|2(d−1).

Hence we have that

(A.5)
λmin(∇2

xLA(x∗, λ∗, ψ∗, µ)) ≤ sT∇2
xLA(x∗, λ∗, ψ∗, µ)s

‖s‖2

≤ µ|λk|−2(d−1).

On the other hand, let t = (t1, . . . , t2d+1) ∈ R(2d+1)J be such that ‖t1‖ = 1 and ti = 0
for all 2 ≤ i ≤ 2d + 1. J0 differs from J1 by only the (1,1)th block element so that
(J0)(1,1) = (J1)(1,1) +Q−1

B . Then

tT∇2
xLA(x∗, λ∗, ψ∗, µ)t = tT1 ΛT0 J0Λ0t1 + µtT1 L

T
0 L0t1

≥ tT1 ΛT0 J0Λ0t1 ≥ λmin(Q−1
B ).

Hence we have that

(A.6)
λmax(∇2

xLA(x∗, λ∗, ψ∗, µ)) ≥ tT∇2
xLA(x∗, λ∗, ψ∗, µ)t

‖t‖2

≥ λmin(Q−1
B ).
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Combining equation (A.5) and (A.6) completes the proof.

Appendix B. Single shooting condition number. In this section, we prove
that for a certain class of linear systems that satisfy the observability condition, the
condition number of the Hessian matrix for the single shooting function (1.7) has an
exponential lower bound in N . Hence the single shooting method is not stable for
this class of systems.

We consider linear time independent systems such that M(xi) = Axi and H(xi) =
Bxi. Denote C1 = QA−TQ−1 + A + QA−TBTR−1B and C2 = QA−TQ−1

B + A +
QA−TBTR−1B. We have the following.

Proposition B.1. For linear systems satisfying
(a) C1C2 − I = C2

2 ,
(b) there exist eigenvalues λ1 and λ2 of C2 such that |λ1| > 1 and |λ1| > |λ2| 6= 0,
(c) QA−TQ−1A = IJ .

We have

κ
(
∇2
x0

Γ̂(x∗0)
)
≥

C
N

∣∣∣λ1

λ2

∣∣∣2(N−1)

, |λ2| ≥ 1

C
N |λ1|2(N−1), |λ2| < 1

for some constant C > 0, where x∗0 is the first component of a local minimizer of
Γ(x0:N ) (1.3).

Note: at the end of this section, we give an example of a linear system sat-
isfying conditions (a)-(c) with observation matrix B being full rank, i.e. with full
observability.

Proof. It is shown in [1, Theorem 3] that x∗0 is a local minimizer of Γ̂(x0) and
that

∇x0 Γ̂(x∗0) = θ0(x∗0, λ1) +

N−1∑
j=1

L
(0)
j

T
θj(λj−1, λj , λj+1) + L

(0)
N

T
θN (λN−1, λN ),(B.1)

where L
(0)
j , 0 ≤ j ≤ N are as defined in Definition 2.1 (b).

Applying the chain rule and the optimality conditions (1.4), (1.5) and (1.6) to
(B.1), we obtain that the Hessian matrix for the single shooting function (1.7) is

∇2
x0

Γ̂(x∗0) = ΛTs JsΛs,(B.2)

where Λs is (N + 1)J × J dimensional and Js is (N + 1)J × (N + 1)J dimensional.
They are defined as

ΛTs =
[
L

(0)
0

T
L

(0)
1

T
. . . L

(0)
N

T
]

Js =



Q−1
B +BTR−1B +ATQ−1A −ATQ−1 0

−Q−1A C3 +ATQ−1A
. . .

. . .
. . .

. . . C3 +ATQ−1A −ATQ−1

0 −Q−1A C3


,

where C3 := Q−1 + BTR−1B. Denote dj(x) =

[
L

(0)
j x

L
(0)
j−1x

]
, for 1 ≤ j ≤ N . Then, for
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1 ≤ j ≤ N − 1, from the recursion for the derivatives (3.8) and (3.9), we have that

dj+1(x) =

[
QA−TQ−1 +A+QA−TBTR−1B −QA−TQ−1A

IJ 0

]
dj(x)

=

[
QA−TQ−1 +A+QA−TBTR−1B −IJ

IJ 0

]
dj(x)

=

[
C1 −IJ
IJ 0

]
dj(x) := Ddj(x),

and

d1(x) =

[
QA−TBTR−1B +A+QA−TQ−1

B

IJ

]
x

=

[
C2

IJ

]
x := Ĉ2x.

For any eigenvector v of C2 with corresponding eigenvalue λ, we have from condi-
tion (a) that Dd1(v) = λd1(v). Hence for 1 ≤ j ≤ N , we have that dj(v) = λj−1d1(v).

Denoting Q̃ = (I,−A)TQ−1(I,−A) and using (B.2), we have that

v∗∇2
x0

Γ̂(x∗0)v = v∗ΛTs JsΛsv

= v∗Q−1
B v +

N∑
j=0

(L
(0)
j v)∗BTR−1B(L

(0)
j v)

+

N−1∑
j=0

(L
(0)
j+1v −AL

(0)
j v)∗Q−1(L

(0)
j+1v −AL

(0)
j v)

= v∗Q−1
B v +

N∑
j=0

(L
(0)
j v)∗BTR−1B(L

(0)
j v) +

N∑
j=1

dj(v)∗Q̃dj(v)

= v∗Q−1
B v +

N∑
j=0

(L
(0)
j v)∗BTR−1B(L

(0)
j v) + v∗ĈT2 Q̃Ĉ2v

N∑
j=1

|λ|2(j−1)

where ĈT2 Q̃Ĉ2 = (Q−1
B +BTR−1B)TA−1QA−T (Q−1

B +BTR−1B) is positive definite.

Let v1 and v2 be eigenvectors of C2 corresponding to λ1 and λ2 as defined in
condition (b), and ‖v1‖ = 1, ‖v2‖ = 1. Then we have

(B.3)

λmax(∇2
x0

Γ̂(x∗0)) ≥
v∗1∇2

x0
Γ̂(x∗0)v1

‖v1‖2

≥ v∗1ĈT2 Q̃Ĉ2v1

N∑
j=1

|λ1|2(j−1)

≥ λmin(ĈT2 Q̃Ĉ2)|λ1|2(N−1)
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and

(B.4)

λmin(∇2
x0

Γ̂(x∗0)) ≤
v∗2∇2

x0
Γ̂(x∗0)v2

‖v2‖2

≤ λmax(Q−1
B ) + λmax(BTR−1B)‖d1(v2)‖2

N∑
j=1

|λ2|2(j−1)

+ λmax(BTR−1B) + v∗2Ĉ
T
2 Q̃Ĉ2v2

N∑
j=1

|λ2|2(j−1)

≤ 2U + 2U

N∑
j=1

|λ2|2(j−1)

≤

{
4UN |λ2|2(N−1), |λ2| ≥ 1

4UN, |λ2| < 1

where U = max
(
λmax(Q−1

B ), λmax(BTR−1B)λmax(ĈT2 Ĉ2), λmax(BTR−1B), λmax(ĈT2 Q̃Ĉ2)
)

.

Equations (B.3) and (B.4) give that

κ
(
∇2
x0

Γ̂(x∗0)
)
≥

λmin(ĈT
2 Q̃Ĉ2)

4UN

∣∣∣λ1

λ2

∣∣∣2(N−1)

, |λ2| ≥ 1

λmin(ĈT
2 Q̃Ĉ2)

4UN |λ1|2(N−1), |λ2| < 1

Letting C =
λmin(ĈT

2 Q̃Ĉ2)
4U completes the proof.

Consider an example for which Q = A = diag(2, 1, . . . , 1) for all 0 ≤ j ≤ N − 1,
QB = diag(4, 3

2 , . . . ,
3
2 ), and BTR−1B = diag( 7

4 ,
4
3 , . . . ,

4
3 ) such that B is full rank.

Then, C1 = diag( 17
4 ,

10
3 , . . . ,

10
3 ) and C2 = diag(4, 3, . . . , 3) so that all three conditions

in Proposition B.1 are satisfied. For this example, even with full observability, single
shooting is not stable.
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