Using MPI in High-Performance Computing Services

Judicael A. Zounmevof

Dries Kimpe?

Robert Ross?

Ahmad Afsahit

TECE Dept., Queen’s University 19 Union Street, Kingston ON, K7L 3N6, Canada
{judicael.zounmevo, ahmad.afsahi}@queensu.ca

$Argonne National Laboratory, 9700 South Cass Avenue Argonne, IL 60439, USA
{dkimpe,rross}@mcs.anl.gov

ABSTRACT

The Message Passing Interface (MPI) is one of the most
portable high-performance computing (HPC) programming
models, with platform-optimized implementations typically
delivered with new HPC systems. Therefore, for distributed
services requiring portable, high-performance, user-level net-
work access, MPI promises to be an attractive alternative to
custom network portability layers, platform-specific meth-
ods, or portable but less performant interfaces such as BSD
sockets. In this paper, we present our experiences in using
MPI as a network transport for a large-scale, distributed
storage system. We discuss the features of MPI that facili-
tate adoption as well as challenges and recommendations.

Keywords

MPI, MPMD, Distributed Services, Extreme Scale, Fault-
Tolerance

1. INTRODUCTION

HPC distributed services, such as storage systems, are
hosted in servers that span several nodes. They interact
with clients that connect and disconnect on need. They
require network transports that offer high bandwidth and
low latency; but unlike application-type HPC programs, dis-
tributed services are said to be persistent because they bear
no concept of completion. These services are typically writ-
ten in user space and require user-space networking APIs.
Unfortunately, for performance reasons, contemporary HPC
systems typically employ custom network hardware and soft-
ware. In order to reduce porting efforts, distributed services
benefit from using a portable network API. The most likely
low-level networking API for general-purpose programming
is the ubiquitous 30-year-old BSD socket API. While BSD
sockets are often supported on HPC networks, they are not
typically used because of lower bandwidth and higher laten-
cies when compared with native networking libraries. In-

stead, the HPC community has seen myriad network tech-
nologies, many of which have been short-lived. With pro-
prietary HPC system manufacturers, in particular, there is
no guarantee that an existing network API will be adopted
by the next generation supercomputer. As example, the
LAPI [1], DCMF [7] and PAMI [8] network APIs were all
released by a single company for its Scalable POWERPar-
allel [1] and Blue Gene [8] series of supercomputers. Unfor-
tunately, none of those network APIs is portable across all
or even most systems.

However, all recent HPC systems do include an implemen-
tation of MPI as part of their software stack. Since MPI
is one of the primary ways of programming these machines,
the bundled MPI implementation is typically well optimized
and routinely delivers maximum network performance [10].
Thus, MPI shields the HPC community from the aforemen-
tioned volatility in network technologies and from low level
details such as flow control and message queue manage-
ment [12]. MPI has, in effect, become the BSD socket of
HPC programming.

MPI offers substantially more than portable network ac-
cess. Currently though, MPI is not typically used in compo-
nents of the software stack that extend beyond a single ap-
plication such as distributed storage services. In this work,
we evaluate the use of MPI as a high-performance network
portability layer for cross-application services. We describe
our successes with MPI as well as the workarounds required
to close the gap between our needs and the semantics of-
fered by the MPI standard. With respect to portability, we
investigate how well a number of widespread MPI implemen-
tations follow the MPI standard; and in cases where unspec-
ified behavior is allowed for an MPI feature required by our
design, we enumerate the observed outcomes. We finally
propose a number of enhancements to the MPI standard
and existing implementations thereof meant to facilitate the
expanded use of MPI by distributed services.

The rest of the paper is organized as follows. Section 2
discusses the features that a network transport should offer
to ease the design of the distributed storage. Section 3 eval-
uates our design on top of MPI. Section 4 offers a number
of ideas and suggestions intended to ease the adoption of
MPI by persistent distributed services. Section 5 discusses
the related work. Section 6 summarises our conclusions and
discusses future work.

2. TRANSPORT REQUIREMENTS

The network transport is meant for a highly available dis-

tributed storage service. The service consists of a number
of I/O servers, exporting a unified storage view of the un-
derlying storage to a set of clients (typically compute nodes
running application software). Clients typically connect to
the storage service at the start of a job, periodically issu-
ing 1/0 requests, and disconnect when the job ends. In our
system, the storage service relies on replication to ensure
that data remains available even when an I/O server fails.
In addition, data is striped across multiple servers, increas-
ing performance by providing parallel access to the under-
lying storage devices. The client is oblivious to striping and
replication; the I/O library on the-client side only exposes
traditional read/write semantics. From a networking per-
spective, two kinds of data transfers are required: control
messages and I/O payload (bulk data). Control messages
are conveyed through a remote procedure call (RPC) invo-
cation, in which the client sends a request to an I/O server,
which executes the request and then sends a response back
to the client. Because of striping, a single, sufficiently large
I/0O access can span several 1/O servers. However, to limit
client-side complexity and simplify failure handling, a client
always contacts a single I/O server (the primary server) that
manages striping and replication on behalf of the client and
provides a single response for each 1/O request. It does so
by relaying the request of the client to any secondary server
involved (for purposes of striping or replicas) and aggregat-
ing the response of each server before responding back to
the client. To avoid unnecessary 1/O payload copies and
to preserve server-side resources, each I/O server involved
in the operation directly accesses the buffer (containing the
I/0 data) on the client, as opposed to relaying all accesses
through the primary server. This I/O servicing process is
depicted in Figure 1. In the I/O protocol (Figure 1), when
more than a single server is involved, steps i/ to ol in the
primary server (server_0) can occur in parallel with steps i2
to n2 in the other concerned servers. All the arrows linking
two steps are RPC; and their destination steps are blocking
until the source steps are executed.

RPC invocations are built on top of a two-sided commu-
nication semantic. Servers receive (unexpected) requests
from clients, while the client expects a response from the
same server it contacted in the first place. Thus, we require
that clients support explicit target (expected) send and re-
ceive and that servers additionally support unknown source
(unexpected) receive. A tag mechanism is required to dif-
ferentiate among messages between the same two peers (for
example, two concurrent read requests between the same
server and client). The tag space must be be big enough to
ensure that collisions are unlikely (or the transport needs to
provide a mechanism to create non overlapping tag spaces).

Unlike high-level application libraries, a distributed stor-
age service has a lifetime that exceeds that of its clients.
In addition, the set of clients is dynamic. Therefore the
network transport must be able to efficiently handle the ad-
dition and removal of clients. Furthermore, clients should
be isolated as much as possible. Failure of one set of client
nodes should not affect other clients.

Because of the projected client-to-server ratio and the ex-
pected number of concurrent operations, it is often not prac-
tical to create a thread for each client or operation. There-
fore, all network operations need to support asynchronous
operation, together with the ability to efficiently test for
completion of pending operations.

Bulk data access uses a one-sided communication scheme,
in which the client is always the target. This has a number
of advantages. For example, it reduces client-side protocol
complexity (since the client is not logically involved in the
transfer), enabling easy asynchronous progress on the client
and simplifying client or server failure. It also defers flow
control to the I/O server, which, given the typical ratio of
compute nodes to I/O nodes in current and future HPC
systems, ensures 1/O server responsiveness even when faced
with thousands of clients. Due to their nature, one-sided
operations are easier to cancel, as only one party needs to
take action to cancel the operation. In addition, by restrict-
ing the client to only be the target for one-sided operations,
the client does not need to know of any secondary servers,
thereby making the protocol more robust and flexible.

Failures, both hard (persistent hardware error) and soft (a
temporary failure, such as timeout due to load or dropped
message), are part of everyday reality for large-scale HPC
systems. Specifically, multi-application services (such as dis-
tributed storage services) cannot simply restart when faced
with failures. Therefore, these services need to proactively
deal with failures. From a networking perspective, this in-
volves being prepared to handle peers that do not follow the
expected I/O network protocol. For example, a server could
fail to send a response within the expected time limit, be-
cause of hardware failure of the server or the communication
link between client and server. Even if the network itself en-
sures reliable communication (for example, in-order delivery
and no dropped messages), the higher-level software layers
typically cannot tell the difference between a failed peer and
an overloaded peer (unable to respond in time). For a dis-
tributed storage service, for both client and server, the eas-
iest way to deal with these failures is to put an upper time
limit on the completion of the I/O operation. If the oper-
ation does not complete in time, either party can consider
the operation terminated. For clients, the operation can
be retried (possibly to another server). Servers rely on the
client to retry the operation if needed. In either case, both
parties need to be able to release any resources related to
the communication, including the cancellation of outstand-
ing receive and send operations and destruction of one-sided
resources such as memory registrations. In addition, to pro-
tect against data corruption, both parties need to ensure
that any slow or in-flight transfers from the now cancelled
1/0 request can no longer complete. For instance, a client
should not mistake the late response to an already cancelled
I/0O request for the response to the replacing (reissued) I/O
request. Likewise, when retrying an operation, one-sided
accesses from earlier I/O requests should no longer have ac-
cess to the client buffer, even if the buffer address did not
change. Therefore, proper cancellation support is vital for a
modern network transport.

3. MPI AS ANETWORK API

With n storage nodes, the storage server is an n-process
MPI job running in MPI_THREAD_MULTIPLE mode. The unique
storage server job is expected to serve any number of clients
simultaneously. The server opens ports with MPI_Open_port,
then waits for connections in MPI_Comm_accept. MPI dy-
namic process management does not intervene between the
server and the clients. Clients, which are separate MPI
jobs running on non-storage nodes, are always initially un-
related to the server. Since the storage server can only

<+—Client——>» <«—Server_0——»

(a) Register memory RPC listener

[)\ Publish memory Deserialize mem_info |
:c Serialize mem_info Compute response span |
(d) RPC_request

RPC_requests

RPC_response Start epoch
wait @ @jl) One-sided transfers
(s) Unpublish memory @ End epoch

(t) Unregister memory

RPC_response

xol\;Aggregate completions -~

<«—Server_j, j,..k—»
””l Legend |
(i2) RPC listener
/'\4:2/\ Deserialize mem_info RPC
7o comunications
k2) Start epoch -

End epoch One-sided towards
client (put/get)

|
|

|

|

!

|

) One-sided transfers i
|

3

oo e |

|

2R .
&) Free mem_info

Free mem_info

If required |~

Figure 1: I/O transfer protocol using MPI

interact with MPI processes, even a client made of a sin-
gle standalone process must be a single-process MPI job.
Non-MPI clients can resort to MPI job proxies. In a multi-
process client, the job as a whole could create a single client
connection; but any subset of its processes could create
distinct I/O connections as well. Clients connect on de-
mand when they are ready to issue their first 1/O. The
connections are then maintained as long as I/O activities
are required. The client-side connection protocol executes
in sequence MPI_Comm_connect, MPI_Intercomm_merge and
MPI_Win_create_dynamic if MPI-3 RMA is available or
MPI_Win_create otherwise. When all I/O are done, discon-
nection occurs via MPI_Comm_disconnect.

The experiments described in this section are done with
OpenMPI-1.6.4, MPICH-3.0.2, and MVAPICH2-1.8.1. Our
first test system (C1) is a cluster with 8 GB of RAM per
node. The second system (C2) is a cluster with 36 GB
of RAM per node. Both systems have QDR InfiniBand
and GB Ethernet. MPICH-3.0.2 implements MPI-3.0 while
OpenMPI-1.6.4 and MVAPICH2-1.8.1 implement MPI-2.2.
The same test codes are used for all three MPI implemen-
tations.

3.1 RPC and Two-Sided Communications

RPC, tags, and tag spaces: We implemented RPC
operations by directly using the two-sided communications
functions offered by MPI. Likewise, support for tags, ex-
pected and unexpected (mapped to MPI_ANY_SOURCE in com-
bination with MPI_ANY_TAG) messages is directly provided by
MPI. The MPI standard defines the valid per-communicator
tag space to be 0..MPI_TAG_UB, where MPI_TAG_UB is required

to be at least 32,767. Our test indicated values of 2,147,483,647,

1,073,741,823, and 2,147,483,647 for OpenMPI, MPICH and
MVAPICH respectively, which make reasonnably big tag
spaces.

Cancellation: The storage server fulfills cancellation via
MPI_Cancel. For an RPC request, cancellation as provided
by MPI fulfills our needs. It is always immediate; it thus
allows an immediate retry to another server. At the client-
side, the tag management guarantees that any response to
a canceled RPC will no longer be matched inside MPI be-
fore approximately MPI_TAG_UB subsequent RPC requests,
failed ones included. Unfortunately, cancellation can result
in unexpected message queue (UMQ) [12] items that are
abandonned forever. On top of the resource consumption
issue, this situation creates a false message matching prob-
lem in the servers. Message matching in MPI identifies a
communicator by its context_id. When a communicator is
destroyed in a server after the disconnection of a client job
ClJi, its context_id can be recycled into a new communicator
created for a subsequent client job CJi+i. Then, the server
mistakenly consumes dead CJ; requests as if they were sent

by the new ClJit1 job. In order to avoid that situation,
all the UMQ items associated with dead requests must be
cleaned with dummy receives at the destruction of their as-
sociated communicator.

3.2 One-Sided Communications

We started this work in MPI-2.2 before the availability
of MPI-3.0. We then extended it later to MPI-3.0. The
discussion thus concerns both MPI-2.2 and MPI-3.0. To im-
plement one-sided communications, we used passive target
(shared lock) MPI-RMA. Unfortunately, a number of com-
promises had to be made.

Collective window creation: Ideally, we would create
the RMA windows on demand for each I/O that is initi-
ated. Unfortunately, the collective nature of RMA window
creations prevented that approach. For performance and
decoupling reasons, we could not afford to have collective
communications in the middle of each I/O. Therefore, all
the RMA windows must be created right away when a client
job first connects to the storage system.

Constraint of a single epoch per window: RMA-
2.2 allows only a single epoch per window. This constraint
limits how many concurrent I/Os a single client can have
pending. We partially worked around that limitation by
having a runtime parameter-controlled maximum number
of RMA windows per client. The windows are then man-
aged with a flow-control policy that serializes any new I/O
servicing if the maximum number is already pending. With
MPI-3.0 RMA, the I/O servers can now manage without se-
rialization an unlimited number of concurrent I/O through
a single RMA window per client. When a new I/0O starts, it
creates the single possible epoch of the window only if there
is no other pending I/O towards the same client. An existing
epoch is used by any of the subsequent I/Os. When all the
RMA communications of an I/O are issued, MPI_Win_unlock
is called only if that I/O is the last pending one. Any I/O
that is not the last pending one simply calls MPI_Win_flush
to complete its communications. It poses no problem if
MPI_Win_flush completes one-sided communications not be-
longing to the specifically ending I/0O.

Memory management: With MPI-2.2 RMA, we had
to preallocate a reasonnably large memory on client-side
at window creation time. All the RMA windows use the
same large preallocated memory. The size of that memory
is runtime parameter-controlled. By means of custom allo-
cators, the preallocated memory is used as a pool from which
buffers are sliced for storage-level memory registration and
publishing (steps a, b, s, and ¢ of Figure 1). By resorting
to MPI-3.0 RMA dynamic windows, we got rid of the fixed
preallocated buffer. Memory publishing is now mapped to
MPI_Win_attach.

Preventing access: In MPI-2.2 RMA, preventing ac-

cesses cannot be made effective. The client-side memory
pool is accessible from any server-side epoch. At the cost
of extra control message communication, one can enforce
access control before a server issues any RMA operation.
Already-issued operations, however, cannot be prevented
from succesfully reaching the client memory. With MPI-3.0
RMA, the situation is essentially unchanged. The MPI-3.0
specification forbids RMA operations to already-detached
target memory. In the absence of more information, we must
assume that transgressing the rule could result in fatal out-
come in some MPI implementations. What happens while
MPI_Win_detach is invoked in the middle of an ongoing RMA
communication is unknown as well.

Cancellation: In the protocol of Figure 1, storage-level
cancellations are expected to happen in steps k1, and m2
which are blocking for pure one-sided reasons. In MPI-2.2
RMA, these steps map to MPI_Win_unlock; and in MPI-3.0

RMA, they map to either MPI_Win_unlock or MPI_Win_flush.

Cancellation is therefore not necessarily effective at the com-
munication level. We cannot test or even hypothesize about
what could happen if the client were dead. If the client is
just unavailable, at the MPI level, the one-sided communi-
cations will end up completing. Fortunately, we have no use
case that requires a retry from a server to a client; server-
side failover to service a response to a client is meaningless.
As a result, the only consequence of this cancellation be-
haviour is server-side resource highjacking while the client
is still alive but unresponsive.

3.3 C(lient-Server and Failure Behaviour

The storage server always runs with MPI_ERRORS_RETURN
set for both communicators and RMA windows. We con-
sidered two kinds of failures: abort and crash. In the abort
failure, the faulty process is still alive but behaves inapropri-
ately. It must leave and rejoin the storage system after its
problem is fixed. Thus, after the possible cleanup, the pro-
cess terminates with MPI_Abort (MPI_COMM_SELF). The crash
failure, simulated with a provoked segfault, is a brutal death
caused by a node shutdown, for instance. This case is just an
imperfect approximation of a hardware failure because while
a killed process (bus fault, for instance) returns an exit code
to the MPI job launcher, some hardware failures might not.
The tests in this subsection are run on the cluster C1; with
a single process per node.

3.3.1 Server Failures

Ideally, a server or an 1/O node that fails should not bring
down the whole storage system. We would like such a server
to rejoin the storage system when fixed.

Abort failure: Our experiences with aborting are pre-
sented in Table 1. Open MPI aborts the job if any subset
of MPI_COMM_WORLD is aborted. The job survives in MPICH
and MVAPICH, and communications between the survivors
(healthy_comm) proceed without issue. Eager sends to de-
ceased peers complete in both MPICH and MVAPICH. All
other communications trap the survivor in the progress en-
gine in MVAPICH. In MPICH we qualify the behaviour as
Undefined because it varies. In most cases, the communica-
tion returns immediately with an error message; this is the
ideal case. This behaviour is observed for two-sided, collec-
tives, and even one-sided, except for MPI_Win_Unlock which
gets blocked forever. In a few cases, large sends and receives
of any size get blocked as well.

Table 1: Behaviours in case of isolated server abortion

Open MPI MPICH MVAPICH
No communication WJIA GCE TF
| Communication over healthy_comm
[Any communication [N/A [Success [Success |

Communication over MPI_COMM_WORLD
2-sided; Eager, sur- | N/A SSS+GCE
vivor is sender
2-sided; Rendezvous, | N/A
survivor is sender
2-sided; survivor is re- | N/A

SSS+TF

Undefined TC

Undefined TC

ceiver
1-sided N/A Undefined | TC
Collectives N/A Undefined | TC

WJA: Whole job abortion; GCE: Graceful continuation and exit;
TF: Trapped in MPI_Finalize; TC: Trapped in communication;
S8S: Sender-side success

Table 2: Storage job behaviours after client job failure

Open MPI MPICH

No communication TCD GCE
Internal storage job communications

Any communication [Success+TCD [Success+GCE |

Communication over io_.comm and connect_comm

2-sided; Eager, server is sender | SSS+TCD SSS+GCE
2-sided; Rendezvous, server is | TC TC
sender

2-sided; server is receiver TC ER+GCE
1-sided (only over io_comm) TC TWU
Collectives TC ER+GCE

GCE: Graceful continuation and exit; TCD: Trapped in
MPI_Comm_disconnect; TC: Trapped in communication; TWU:
Trapped in MPI_Win_unlock; SSS: Sender-side success; ER: Error

return

Crash failure: In the case of crash failure simulations
in a process, all three MPI implementations simply kill the
job.

3.3.2 Client Failures

A compute node or process connects (disconnects) to (from)
the storage system on the fly by using MPI_Comm_connect
over MPI_COMM_SELF and MPI_Comm_disconnect. The servers
are started as a single MPI job. One of them opens a port
(MPI_Open_port) and writes it in a file. For simplicity, no
name publishing has been implemented yet. Client processes
read the port information in a file.

The experiments in this subsection have been done only
with Open MPI and MPICH because we have not been able
to successfully use port and connection-disconnection func-
tions in MVAPICH. We run three servers on three nodes and
a single client on a fourth node. As a reminder, each client
shares an intercommunicator connect_comm and an intra-
communicator io_comm with the storage system. We realized
that both crash and abort failures in client jobs produce the
same behaviours in the storage job. The result are presented
in Table 2. In both Open MPI and MPICH, the storage job
survives client job failure (crashes or abortions). No commu-
nication with a deceased client brings down the storage job.
The communication behaviours are similar for both the in-
tercommunicator and the intracommunicator. In general, in
Open MPI, except for Eager sends, the storage processes get
trapped in any communication (including MPI_Finalize).
Except for Rendezvous send and MPI_Win_unlock, where it
gets trapped, MPICH returns an error message, and the
execution completes gracefully. The immediate return and
error messages allow the storage job to free resources in a
timely fashion and to detect failed clients without custom
mechanisms.

3.4 Object Limits

To allow each server process to access the client’s buffer di-
rectly (Figure 1), each client must share a connection with
all the available servers at the time of its first I/O. As a
result, for each client connection, a server maintains two ex-
plicit MPI communicators. The first one, an intercommuni-
cator, is created from the connection MPI_Comm_accept and
is later used for unexpected communications. The second
one, an intracommunicator, is used for expected communi-
cations. Depending on the implementation, a third implicit
communicator might be created for the RMA window. Fur-
thermore, in large systems, servers will have to maintain a
very large number of handles to support non blocking two-
sided operations. The same is true for derived datatypes
(DDTs). Non contiguous I/O operations require unique hin-
dexed types for each I/O. In fact, an I/O transfer from a
server has to resort to two separate DDTs because the non
contiguity layout at the source is different from that of the
target. In summary, we estimate that a server needs 3 com-
municators (including the implicit RMA window one if re-
quired), 1 RMA window, 3 DDTs and 2 pending non block-
ing point-to-point (NBPtP) to service a single instance of
any kind of I/O to a client. We verified through emulation
tests whether a server can service a million process client job
by creating 3,000,000 communicators, 1,000,000 RMA win-
dows, 2,000,000 non blocking posted NBPtP and 3,000,000
hindexed DDTs. Each category of object is created in a
separate test. The results are presented in Table 3. To de-
tect resource exhaustion limits, we ran each test on both
systems C1 and C2, each time with a single rank per node.
In addition to the observed limits, we reported how each
MPI implementation behaves after the limit is reached. For
the NBPtP tests, the limit is determined by whichever of
MPI_Isend or MPI_Irecv fails first. In Table 3, we omit the
cluster name in the result when the implemention behaves
similarly on both. In the observations, "Resource exhaus-
tion” might include situations related to pinning or mapped
memory, for instance.

All three implementations have a hard limit for the num-
ber of communicators. The limit seems to be a design choice
because it does not depend on the amount of memory avail-
able on the node. For RMA windows, Open MPI succeeds
in creating all the required RMA windows on C2 but limits
it on C1. It is not clear whether this is a resource exhasution
issue, as the failure results in a hanging application. One can
notice that Open MPI and MVAPICH can create more RMA
windows than communicators. DDTs and NBPtP seem to
be limited only by available memory. Open MPI tends to
block forever in both by-design and resource-imposed lim-
its. MVAPICH either continues gracefully or crashes after
returning an error code. MPICH has successfully created
all the DDTs and non blocking communications required to
service a million clients. However, in order to observe its
behaviour in situations of resource exhaustion, we increased
substantially the number of objects. We observed that it be-
haves similarly to MVAPICH when resources are exhausted.

4. WISH LIST

In this section, we highlight a number of problem areas
and formulate some recommendations, for MPI implemen-
tors and the MPI forum. While some of these recommenda-
tions follow from our desire to use MPI in a non traditional

Table 3: Object limits

Open MPI MPICH MVAPICH

Communicators 65532+UB 2045+ER | 2018+ER
+GCE +GCE

RMA windows 655324+UB on | 2045+ER | 2042+ER

C1; NL on C2 +GCE +GCE
Derived NL NL RE+ER
datatypes +GCE
Pending non RE+crash on NL RE+-crash
blocking 2-sided C1; NL on C2

NL: No limit; UB: Unlimited blocking; ER: Error return; RE:
Resource exhaustion; GCE: Graceful continuation and exit

setting, this does not preclude the usefulness of our requests
for more mainstream MPI applications. Furthermore, we
believe that as these applications evolve to support the fun-
damentally different environment presented by future exas-
cale systems, some of the features described in this section
will be required for all HPC software domains.

For most contemporary HPC applications, the most rea-
sonable action in case of failures is to restart the job. How-
ever, when failed components can be reconstructed (for ex-
ample from a replica), restarting is not always the best so-
lution because other applications might depend on the same
service. The issue of MPI jobs surviving the crash of a sub-
set of MPI_COMM_WORLD has been previously studied [5]; re-
cent similar proposals [6, 2] were also put forth during the
standardization efforts of MPI-3.0. Unfortunately, none of
these proposals made it into the standard. However, even
without any change to the curent specification, by honor-
ing MPI_ERRORS_RETURN, MPI implementations can already
enable various workarounds to keep jobs alive after an iso-
lated crash. While the optimal fault-tolerance strategy at
extreme scale is still being debated, we urge the community
to provide some mechanism to continue MPI functionality
in the presence of failures, given the already-large demand
for this capability [2].

Cancellation is a vital mechanism for reclaiming resources
when faults or other exceptional circumstances arise. Can-
cellation for two-sided communications has been in MPI
since MPI-1.0. It was built around MPI request objects and
required a non blocking communication semantic. While
MPI-3.0 extended the use of request objects (for example,
for non blocking collectives), it is unfortunately still erro-
neous to isssue MPI_Cancel on any request not associated
with two-sided communications. Cancellation for network
operations is widely known to be challenging. However, we
showed in Section 3.1 that cancellation does not have to be
perfect to be useful. Unless other mechanisms are put in
place for reclaiming resources, for example, by adding time-
out functionality to MPI calls to enforce a response in rea-
sonable time in case of peer failure, efforts should be invested
in making most, if not all, MPI routines cancellable.

Blocking routines can be a hindrance to both performance
and scalability. In some cases, concurrent requests are re-
quired in order to extract maximum hardware efficiency. At
the same time, not all large HPC systems support the cre-
ation of an unlimited number of threads; and on systems
that do, thread resource consumption typically prohibits cre-
ating a large number of threads. MPI, since its inception,
has acknowledged this fact by supporting non blocking com-
munication primitives (such as MPI_Isend). While MPI-3.0
has added a number of non blocking equivalents (for exam-
ple non blocking collectives), not all MPI functions have a
non blocking equivalent. Especially for failure handling, non
blocking routines are critical. For example, in the situations

of indefinitely long blocking (described in Section 3.3) an
I/0 server could be connected to a very large number of
compute clients, every one requiring MPI_Comm_disconnect.
This MPI call is blocking and does not have a non blocking
equivalent. Either the server needs to serialize client discon-
nections or it handles them with potentially impracticable
numbers of threads. The lack of non blocking functional-
ity also hinders the adoption of other programming models,
such as event-driven programming. In our prototype, the
lack of a non blocking version of MPI_Comm_accept forced
every 1/O server to create a thread dedicated to calling the
accept function. We recommend continuing the effort to ex-
tend the set of non blocking functions.

If MPI is to scale from small systems to exascale systems,
MPI implementors should be careful not to introduce ex-
tra restrictions, for example, on the number of communica-
tors. Even on existing large-scale systems, using thousands
of communicators does not seem unreasonable. We recom-
mend the removal of artificial scalability limits where pos-
sible, and provisioning applications with non fatal methods
to discover these limits when they cannot be removed (for
example, because of hardware limitations or performance
reasons).

S. RELATED WORK

A study of the possibility of MPI adoption for the stor-
age architecture of PVFS2 and parallel persistent services
in general was presented in [9]. The study stated that MPI
could be used for a broader range of parallel utilities such as
system monitoring deamons. In particular, MPI has been
used for file staging and parallel shell design [4]. The I/O
delegate proposal [11] allows an MPI job to transit its I/O re-
quests through another MPI job linked to the target filesys-
tem. It resorts to dynamic process management, but it is
not a pure client-server design. The compelling aspects of
MPI have attracted other data-oriented distibuted services
and runtimes as well. MapReduce [10], for instance, has
been studied and layered on top of MPI. Moreover, the Par-
titioned Global Address Space (PGAS) languages have con-
sidered MPI for its wide adoption, performance, and richness
of programming models [3]. Except for the PVFS2 study
[9], none of the cited works were examples of unrelated MPI
jobs linked by a client-server relation; and to the best of our
knowledge, no implementation of PVFS2 over MPI exists
yet.

6. CONCLUSION

We implemented in MPI the network layer of a distributed
HPC storage system. While this removed the need to port
our network layer to different machine architectures, we found
that in certain areas, workarounds or design concessions
were needed. However, the challenges encountered were not
sufficient to give up on the portability, performance, and the
relatively high-level communication functionality offered by
MPI. Instead, we derived from our experience a list of sug-
gestions that might widen MPI adoption to include more
service-oriented HPC software. In addition, we believe that
even within the application community, there is a trend to-
ward a more modular, service-oriented architecture. One
example of this is in situ analysis or covisualization. There-
fore, many of the recommendations made in this paper are
likely to have a broader impact. As future work, we intend

to work with both the MPI forum and implementers to en-
sure that MPI remains a driving force for future software
and hardware architectures.

Acknowledgments

This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada Grant
#RGPIN/238964-2011, Canada Foundation for Innovation
and Ontario Innovation Trust Grant #7154.

This work was supported in part by the Office of Advanced
Scientific Computing Research, Office of Science, U.S. Dept.
of Energy, under Contract DE-AC02-06CH11357.

7. REFERENCES

[1] M. Banikazemi, R. Govindaraju, R. Blackmore, and
D. Panda. Implementing Efficient MPI on LAPI for
IBM RS/6000 SP Systems: Experiences and
Performance Evaluation. In IPPS’99/SPDP’99, pages
183-190, 1999.

[2] W. Bland, A. Bouteiller, T. Herault, J. Hursey,

G. Bosilca, and J. J. Dongarra. An Evaluation of
User-Level Failure Mitigation Support in MPI.
EuroMPI’12; pages 193-203, 2012.

[3] D. Bonachea and J. Duell. Problems with Using MPI
1.1 and 2.0 as Compilation Targets for Parallel
Language Implementations. Int. J. High Perform.
Comput. Netw., 1(1-3):91-99, 2004.

[4] N. Desai, R. Bradshaw, A. Lusk, and E. L. Lusk. MPI
Cluster System Software. In PVM/MPI, pages
277-286, 2004.

[5] G. E. Fagg and J. J. Dongarra. Building and Using a
Fault-Tolerant MPI Implementation. Int. J. High
Perform. Comput. Appl., 18(3):353-361, 2004.

[6] J. Hursey, R. L. Graham, G. Bronevetsky,

D. Buntinas, H. Pritchard, and D. G. Solt.
Run-through Stabilization: an MPI Proposal for
Process Fault Tolerance. EuroMPI’11, pages 329-332,
2011.

[7] M. Krishnan, J. Nieplocha, M. Blocksome, and
B. Smith. Evaluation of Remote Memory Access
Communication on the IBM Blue Gene/P
Supercomputer. In ICPP-W 08, pages 109-115, 2008.

[8] S. Kumar, A. Mamidala, D. Faraj, B. Smith,

M. Blocksome, B. Cernohous, D. Miller, J. Parker,
J. Ratterman, P. Heidelberger, D. Chen, and

B. Steinmacher-Burrow. PAMI: A Parallel Active
Message Interface for the Blue Gene/Q
Supercomputer. In IPDPS’12, pages 763-773, 2012.

[9] R. Latham, R. Ross, and R. Thakur. Can MPI be
Used for Persistent Parallel Services?
EuroPVM/MPI’06, pages 275-284, 2006.

[10] X. Lu, B. Wang, L. Zha, and Z. Xu. Can MPI Benefit
Hadoop and MapReduce Applications? In ICPPW’11,
pages 371-379, 2011.

[11] A. Nisar, W.-k. Liao, and A. Choudhary. Scaling
Parallel I/O Performance through I/O Delegate and
Caching System. SC 08, pages 9:1-9:12, Piscataway,
NJ, USA, 2008. IEEE Press.

[12] J. A. Zounmevo and A. Afsahi. An Efficient MPI
Message Queue Mechanism for Large-scale Jobs. In
ICPADS, pages 464-471, 2012.

This material is based upon work supported by the U.S. Department of Energy,
Office of Science, under contract number DE-AC02-06CH11357.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy
Office of Science laboratory, is operated under Contract No. DE-AC02-

06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a
paid-up nonexclusive, irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government.

