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Abstract

We propose a tournament format that extends a traditional double
round-robin format with divisional single round-robin tournaments. Elit-
serien, the top Swedish handball league, uses such a format for its league
schedule. We introduce a constraint programming model that charac-
terizes the general double round-robin plus divisional single round-robin
format. This integrated model allows scheduling to be performed in a
single step, as opposed to common multi-step approaches that decompose
scheduling into smaller problems and possibly miss optimal solutions. In
addition to general constraints, we introduce Elitserien-specific require-
ments for its tournament. These general and league-specific constraints
allow us to identify implicit and symmetry-breaking properties that re-
duce the time to solution from hours to seconds. A scalability study of
the number of teams shows that our approach is reasonably fast for real-
istic league sizes. The experimental evaluation of the integrated approach
takes considerably less computational effort to schedule Elitserien than
does the previous decomposed approach.

1 Introduction
Double round-robin tournaments (DRRTs), competitions where every team plays
every other team once home and once away, are one of the most common formats
for a broad range of sporting events. Since the format is so wide-spread, consid-
erable research has focused on scheduling DRRTs efficiently and fairly (Trick,
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2000, 2002; Rasmussen & Trick, 2008). A problem with DRRTs is that the num-
ber of games that each team plays in the competition is directly given by the
number of teams in the league: each team in an n-team league plays 2(n − 1)
games. Many smaller leagues therefore want to transition away from a DRRT
to increase the number of games offered to each team, thereby also improv-
ing league exposure. For example, the top Danish football league has only 12
teams and uses a triple round-robin tournament to offer a sufficient number of
games (Rasmussen, 2008).

Another possibility, the subject of this article, is to divide the league into
divisions, each of which will hold an additional single round-robin tourna-
ment. We will focus exclusively on two-division leagues, which we abbreviate
as DRRT+2D. The top-level Swedish handball league, Elitserien, plays this for-
mat. It offers the 14 participating teams a convenient tournament length of
33 game weeks, leaving sufficient time for play-offs, national team activities,
and breaks over Christmas and the summer. Compared with DRRTs, modified
league formats have received limited attention in the literature, though Trick
(2002, Section 5.2) is a notable exception. In this article, we develop a con-
straint programming framework for scheduling leagues that combine divisional
and round-robin play.

Because DRRT scheduling is already difficult (see, e.g., Briskorn (2008) for
NP-completeness results), one might assume that scheduling augmentations of
DRRT is even harder to address. While this assumption is true in general, some
variations allow for new degrees of freedom or impose new constraints that
ultimately make scheduling them easier. One such example is the requirement
that teams in the DRRT+2D format that meet three times over the season (i.e.,
those in the same division) play in a different venue for consecutive meetings.
As we will show, the inclusion of this requirement, denoted the alternating venue
requirement (AVR), in the general DRRT+2D scheduling problem (outlined in
Section 2) ultimately makes constructing a season schedule easier.

In addition to generic DRRT+2D scheduling, we consider in Section 3 the
specific constraints imposed by Elitserien. In Section 4 we introduce additional
schedule properties that are implied by the general DRRT+2D constraints
and Elitserien-specific constraints. Constraint models consisting of the gen-
eral DRRT+2D constraints and the Elitserien-specific requirements will then be
solved in an integrated manner utilizing the properties from Section 4. This ap-
proach differs from the common procedures that reduce the scheduling problem
into a set of smaller (and easier) tasks. For example, the schedule-then-break
approach of Trick (2000) is widely used in the scheduling of DRRTs, and a simi-
lar approach was adopted by Larson & Johansson (2014) to schedule Elitserien.
Their approach first constructs a set of home-away pattern sets (HAP sets), not
all of which are schedulable with respect to the AVR. Unschedulable HAP sets
are removed and then a tournament template (a tournament containing generic
numbers and not actual team names) is generated and ranked according to a
number of factors, including carry-over effects (Russell & Urban, 2006), that are
not easily optimized directly. Elitserien required the construction of a template
for approval by the team owners. After a template is agreed upon, an integer
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programming approach assigns teams to the numbers in the template in a man-
ner that satisfies various constraints (e.g., venue availability or desired derby
matches). This decomposed approach of building a HAP set, fixing a template,
then constructing a schedule can result in suboptimal schedules.

Constraint programming (CP) has previously been used successfully to sched-
ule sports leagues. Decomposed CP approaches for scheduling DRRTs were
proposed by Henz (2001), Schaerf (1999), and Russell & Urban (2006). CP has
also been hybridized with other methods to minimize travel distance in sports
tournaments (Benoist et al., 2001; Easton et al., 2001; Rasmussen & Trick, 2006)
and to minimize breaks (consecutive home or away games) (Régin, 2001). How-
ever, case studies solved by integrated CP approaches are scarce. We introduce
the essential CP terminology in Section 5.

In addition to defining and studying the general DRRT+2D format, this
article extends our preliminary work on integrated CP approaches for Elitserien
reported in Larson et al. (2014): we explore several other constraint program-
ming models and solution strategies and are able to obtain orders-of-magnitude
improvements in computation times compared with our earlier models. Sec-
tion 6 formulates the general DRRT+2D scheduling problem and the additional
Elitserien requirements as constraint models. In Section 7, we analyze the first
incorrect choice made when the search tree is explored, allowing us to identify
fragments of the CP model that can be strengthened. In addition, we find a
reformulation of the cost function that allows us to reduce the time for proving
optimality. In Section 8, we show empirically that these techniques yield signifi-
cantly reduced solution times, solving problems on standard PCs in seconds that
previously took days. We expand our study of the initial study of a 14-team
league to 16-, 18-, and 20-team cases in order to analyze how our approach
scales. Although not all leagues will have schedules that allow for identical
symmetry-breaking tricks, the approach presented here is general enough to be
applicable to many leagues looking for an integrated scheduling process.

Notation
We use the following terminology. In a period, each team has a home game, an
away game, or a bye, denoted H, A, or B, respectively. A team has a break if two
consecutive games are either both home games or both away games. Two teams
have complementary schedules if they never play at home at the same time and
never play away at the same time.

2 DRRT+2D Description
We define a general DRRT+2D instance by the schedule requirements stated in
Table 1. We believe these requirements are general enough to be applicable to
many leagues. Some of the requirements in Table 1 are seasonal constraints that
can change from year to year: venue availabilities (G8) will differ, as may the
teams constituting each division (G1), for example if teams are promoted and
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Table 1: General requrements for a DRRT+2D.

G1. The divisions must contain an equal number of teams where each division’s
teams are predefined.

G2. Each division must hold an SRRT to start the season.

G3. The divisional SRRT must be followed by a DRRT between the entire
league. The DRRT is organized into two SRRTs, where the second SRRT
is the mirrored complement of the first: the order is reversed, home games
become away games, and vice versa.

G4. There must be a minimum number of breaks in the schedule.

G5. The divisional SRRT must contain no breaks.

G6. At no point during the season can the number of home and away games
played by any team differ by more than 1.

G7. All pairs of teams must have consecutive meetings occur at different
venues. We refer to this constraint as the alternating venue requirement
(AVR).

G8. Venue unavailabilities should be respected to the highest extent possible.

relegated. The remaining requirements are structural and are independent of
the season being scheduled. Note that the stated requirements do not depend
on the number of divisions being two; they are generalizable to any number
of divisions (assuming the number of teams is a multiple of the number of
divisions), although we do not address such issues here. For condition (G4),
a team ending the SRRT and starting the DRRT with the same type of game
(home or away) is counted as a break. The inclusion of (G5) ensures that the
divisional SRRT is unique up to permutation of the teams (Fronček & Meszka,
2005). The condition (G8) invokes an optimization problem: Minimize the
violated venue unavailabilities while satisfying the remaining requirements.

3 Elitserien-Specific Requirements
Elitserien has structural and seasonal requirements in addition to the general
DRRT+2D conditions (G1)–(G8) listed in Table 1. These Elitserien-specific
constraints are denoted (E1)–(E3) and are summarized in Table 2.

We note that conditions (E1) and (E2) overlap slightly but convey different
information. For a given season, (E2) may contain only one pair of teams in
each division that must have complementary schedules. Nevertheless, Elitserien
requires in (E1) that two pairs in the remaining five teams have complementary
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Table 2: Elitserien-specific requirements.

E1. Each division must have three pairs of complementary schedules.

E2. Specific pairs of teams in both divisions must be assigned complementary
schedules (e.g., teams that come from the same city or share an arena).

E3. To increase the visibility of handball, the league arranges derbies in specific
periods. Elitserien derby constraints consist of a single period and a set
of teams, out of which as many matches as possible should be formed. Al-
ternatively, a single team, a single period, and a set of possible opponents
are given.

schedules as well.
The general DRRT+2D constraints (G1)–(G8) together with (E1)–(E3) sum-

marize the requirements that the Swedish Handball Federation account for when
scheduling Elitserien. Traditionally all constraints except (G8) (and to some
extent (E3)) are considered hard, while the number of respected venue avail-
abilities and satisfied derby requests is treated as an objective that should be
maximized. This reflects the desires of a league where competitive fairness is
given the highest priority but is also motivated by practical concerns. Histor-
ically, Elitserien has determined its schedule by first proposing a tournament
template (containing generic numbers instead of team names) that addresses
structural constraints: schedule format and fairness in terms of breaks, byes,
complementary schedules, and the alternating venue requirement. Teams are
then assigned to a number in a manner that best satisfies the league’s seasonal
constraints—which teams are in which division and the league’s collective wishes
and availabilities. The latter category includes stadium and referee availabil-
ities, the desire to support various match-ups (such as rivalries), and wishes
from the media. Furthermore, Elitserien has significant flexibility with schedul-
ing games; although a venue might be unavailable for the target date of a specific
game round, the league allows the teams flexibility to move a game date a few
days forward or backward. For example, a game scheduled for Saturday can be
played on Friday or Sunday, depending on venue, referee, and team availabilities.
Therefore, (G8) is a soft constraint (and a suitable objective).

4 Structural Analysis of DRRT+2D and Elitse-
rien Requirements

In this article we present an integrated CP approach for generating a schedule
that satisfies requirements (G1)–(G7) and that violates a minimum number of
venue unavailabilities (requirement (G8)). We also apply the Elitserien-specific
requirements (E1)–(E3) to produce a restricted model. As we will see in Sec-
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tions 6–8, these models can be strengthened significantly if we are able to ex-
plicitly encode some of the restrictions on feasible home-away patterns that are
implied by the requirements. Next, we perform such an analysis and identify
several structural properties that can be used to improve our models.

DRRT+2D as defined in this paper induces a specific format on the tour-
nament. Namely, the home-away pattern (HAP) for the tournament must be
constructed by combining the divisional RRT home-away patterns in Figure 1
(left) with two copies of a full-season RRT home-away pattern in Figure 1 (right)
without introducing additional breaks. Each team’s SRRT HAP starts is de-
scribed by a row from Figure 1 (left). This is completed to a full-season HAP
by taking a row from Figure 1 (right) and appending it plus a reflected com-
plement. In other words, if the row from Figure 1 (right) ends AHH, then the
team’s next games will be AAH. The schedule will also mirror this pattern: if
team 1 ends its first half of the DRRT playing at team 2’s venue, they will host
team 2 during its next game.

B A H A H A H A H A H A H A H A H A H A
H B A H A H A H A A H A H A H A H A H A
A H B A H A H A H H A H A H A H A H A H
H A H B A H A H A H A A H A H A H A H A
A H A H B A H A H A H H A H A H A H A H
H A H A H B A H A H A H A A H A H A H A
A H A H A H B A H A H A H H A H A H A H
B H A H A H A H A H A H A H A A H A H A
A B H A H A H A H A H A H A H H A H A H
H A B H A H A H A H A H A H A H A A H A
A H A B H A H A H A H A H A H A H H A H
H A H A B H A H A H A H A H A H A H A A
A H A H A B H A H A H A H A H A H A H H
H A H A H A B H A H A H A H A H A H A H

Figure 1: Left: Two HAP sets for a 7-team no-break RRT. Right: HAP set
satisfying the DRRT+2D requirements for a 14-team, 12-break RRT. Breaks
are highlighted. These HAP sets are unique up to permutation of the rows.

Each team’s schedule can be considered as three parts: Part I, which is the
SRRT; Part II, which is the first half of the DRRT; and Part III, which is the
second half of the DRRT. Note the Part I rows cannot be chosen arbitrarily:
Part I HAPs for teams in Division 1 must be a permutation of the rows of
Figure 1 (left top) because of the uniqueness of the no-break SRRT, and the
Part I HAPs for Division 2 must be a permutation of the rows of Figure 1
(left bottom), or vice versa. Part II must be a permutation of Figure 1 (right)
because (G6) implies that breaks must occur in the odd periods of the DRRT.

Reflecting and taking the complement of Part II to form Part III (and satisfy
(G3)) force teams to play the same team in period 20 as they do in period 21
(at the opposite venue). This schedule could be undesirable, depending on
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the league, but it is a nonissue for Elitserien. Part II ends before Christmas,
allowing for a month-long break for Champions League competitions before
Part III starts at the beginning of February.

A number of properties of the HAP set that satisfies the DRRT+2D require-
ments when n/2 is odd are useful in developing efficient implied and symmetry-
breaking constraints.

PG1. Breaks can occur only in odd periods of Part II.

PG2. In each division, one bye occurs in each period of Part I.

PG3. If the Part I byes are placed as in Figure 1, the first row of Part I is
complementary to the first column of Part I for both divisions.

Property (PG1) is implied by (G6); properties (PG2) and (PG3) are a direct
result of the HAP underlying the unique, no-break divisional SRRT.

Several other useful properties can be derived if the Elitserien-specific re-
quirements are taken into account:

PE1. The three pairs of complementary schedules per division required by (E1)
must have breaks that are pairwise aligned, as in Figure 1.

PE2. Two HAPs can be complementary only if the byes occur in adjacent
periods of Part I (Larson & Johansson, 2014, Proposition 3.3). Visual
inspection of Figure 1 shows that two nonadjacent sequences are non-
complementary in at least one of the periods 1 through 8.

PE3. If the Part I byes are placed as in Figure 1, the required three pairs of
complementary schedules must include teams 2, 4, and 6 of the given
division.

PE4. By inspecting the known 104 distinct, feasible HAP sets that exist for
Elitserien, the two rows with no break must be placed in different divi-
sions, in one of the following ways:

First Division Second Division
row 1 or 5 row 10 or 14
row 3 or 7 row 8 or 12

Property (PE3) follows directly from the fact that there are only four ways
to form three complementary pairs for the HAP rows: (1 + 2, 3 + 4, 5 + 6);
(1 + 2, 3 + 4, 6 + 7); (1 + 2, 4 + 5, 6 + 7); and (2 + 3, 4 + 5, 6 + 7). For more
details on the distinct 104 Elitserien HAP sets utilized for (PE4), see Larson &
Johansson (2014).
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5 Constraint Programming
Now that we have defined the Elitserien schedule requirements, we review the
CP terminology used in this article. For a deeper introduction to the state of
the art of CP, see Rossi et al. (2006).

A constraint satisfaction problem (CSP) consists of a set of variables

X = {x1, . . . , xk},

where each variable xi ∈ X has an associated finite domain D(xi) ⊂ Z, and
a collection of constraints. Declaratively, each constraint is a relation—a set
of tuples—over some set of variables. Operationally, each constraint is imple-
mented by a filtering algorithm that endeavors to delete any domain values that
are not supported by the relation. This requires the domains to be implemented
by some data structure that supports such delete operations.

A solution to a CSP is an assignment of a value di ∈ D(xi) to each xi ∈ X,
such that all the constraints are satisfied. Often, we wish to find a solution to
a CSP that minimizes or maximizes some function. A constraint optimization
problem (COP) is a CSP together with an objective function

f : D(x1)× · · · ×D(xk) 7→ Z.

An optimal solution to a COP is a solution that optimizes f . A CP model
of a given satisfaction (optimization) problem is a CSP (COP) with variables,
constraints, and optionally an objective function, encoding the problem.

The basic constraint-solving technique is a tree search combined with prop-
agation, the execution of all filtering algorithms to fixpoint (i.e., until none of
the filtering algorithms remove any more domain values), after which there are
three possibilities. If some domain has become empty, then the search has en-
countered a failure. If all domain have become singletons, then all variables have
been fixed, and a solution has been found. Otherwise, a variable x is selected,
and two new tree branches are spawned, corresponding to mutually exclusive
assumptions on x. A popular variable-choice strategy is first-fail, which consists
in selecting x such that |D(x)| is minimal. A common branching strategy is to
explore x = min(D(x)) vs. x 6= min(D(x)). For optimization problems, this
basic tree search is replaced by a branch-and-bound search.

When propagation has completed, some domains may contain values that
are consistent with every individual constraint, while being inconsistent with
their conjunction. For example, assume the constraints x1 6= x2 6= x3 6= x1

with domains D(x1) = {1, 2, 3}, D(x2) = D(x3) = {2, 3}. Assume further
that the search has made the assumption x1 > 1. After propagation, we have
D(x1) = D(x2) = D(x3) = {2, 3}, which is consistent with each individual
“ 6= constraint” but inconsistent with their conjunction, because three distinct
integers are needed in any solution. This phenomenon is called “missing prop-
agation,” and it increases the risk of making bad choices when searching the
decision tree leading to dead ends—an inconsistent (or infeasible) set of domain
values. Missing propagation is a sign that the CP model is too weak. In the
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given example, this can be remedied by replacing the conjunction by the global
constraint AllDifferent([x1, x2, x3]) (defined in Table 3), whose filtering al-
gorithm can reason globally over the conjunction. Another technique is to add
implied constraints (Smith, 2006). From a declarative point of view, they are
completely redundant and do not remove any solutions. Operationally, however,
they may propagate more strongly than the original constraints; that is, they
may allow more inconsistent domain values to be deleted.

Suppose now that there exists a mapping

m : D(x1)× · · · ×D(xk) 7→ D(x1)× · · · ×D(xk)

such that, for every solution s to a COP, m maps s to another solution s′

such that f(s) = f(s′). From an optimization perspective, we are interested
in only one optimal solution, so eliminating s or s′ (but not both!) from the
solution space is desirable. A symmetry-breaking constraint with respect to m
(Gent et al., 2006) is a constraint that admits exactly one of s and m(s), for all
solutions s.

A global constraint (van Hoeve & Katriel, 2006) is a constraint that captures
a relation among a nonfixed number of variables. Typically, a global constraint
is a named shorthand for a frequently recurring pattern and greatly simplifies
the modeling task. Even though a global constraint can be decomposed into
a logical formula over simpler constraints, such decompositions can have a bad
space complexity. Further, for many global constraints, a low-complexity filter-
ing algorithm is known that filters the constraint more effectively than does a
naive decomposition. In fact, a global constraint can have multiple, alternative
filtering algorithms, trading effectiveness for complexity, or even none at all,
relying on decomposition. In Table 3, we list and define the global constraints
used in this article. A much larger set of constraints is proposed in the Global
Constraint Catalog (Beldiceanu et al., 2007).

A CP model can be solved by using one of many existing programming
interfaces for entering and executing such models. In this study, we use MiniZ-
inc (Nethercote et al., 2007), a modeling language with a syntax that is close
to mathematical notation. MiniZinc models are compiled to a low-level lan-
guage (FlatZinc) that can be interpreted by multiple back-end solvers, each
with a different repertoire of algorithm for filtering, search, learning, and so
on. The compilation of global constraints is thus back-end specific. We selected
the Chuffed (Chu et al., 2010) back end, which in addition to having a rich
repertoire of filtering algorithms is a lazy clause generation (Ohrimenko et al.,
2007) solver with nogood learning and VSIDS search (Moskewicz et al., 2001),
features that are crucial to the performance or our approach. In fact, Chuffed is
best described as a hybrid CP-SAT solver and contains a great deal of modern
SAT solver technology. To discover cases of missing propagation, we also used
the Gecode back end (Schulte & Tack, 2014) and in particular its graphical tool
(Gist), which allows the modeler to inspect the search tree.
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Table 3: Global constraints used to define the general DRRT+2D and Elitserien-
specific CP.

• Alldifferent([x1, . . . , xk]) holds if and only if x1, . . . , xk are pairwise dif-
ferent. The most popular filtering algorithm is due to Régin (1994).

• SymmetricAlldifferent([x1, . . . , xk]) holds if and only if ∀i ∈ {1, . . . , k} :
xi ∈ {1, . . . , k} and ∀i ∈ {1, . . . , k}, j ∈ {1, . . . , k} : xi = j ⇐⇒ xj = i. The
same constraint is also known as OneFactor in some papers. The filtering
algorithm is due to Régin (1999) and was motivated by sports scheduling
applications.

• Inverse([x1, . . . , xk], [y1, . . . , yk]) holds if and only if ∀i ∈ {1, . . . , k} : xi ∈
{1, . . . , k} ∧ yi ∈ {1, . . . , k} and ∀i ∈ {1, . . . , k}, j ∈ {1, . . . , k} : xi = j ⇐⇒
yj = i. The constraint is due to COSYTEC (1997).

• GlobalCardinality([x1, . . . , xk], [v1, . . . , vn], [c1, . . . , cn]) holds if and only
if [v1, . . . , vn] are distinct integers, ∀i ∈ {1, . . . , k} : xi ∈ [v1, . . . , vn], and
∀j ∈ {1, . . . , n} : cj = |{i ∈ {1, . . . , k} | xi = vj}|. The classic filtering
algorithm is due to Régin (1996).

• Regular([x1, . . . , xk],m) holds if and only if m is a deterministic finite au-
tomaton recognizing a regular language and [x1, . . . , xk] is a string that is a
member of that regular language (Aho & Ullman, 1994, Chapter 10). The
most well-known filtering algorithm is due to Pesant (2004).

• Table([x1, . . . , xk], r) holds if and only if r is a relation, given for example
as an explicit list of tuples of values, and [x1, . . . , xk] is a tuple that is in the
relation. Multiple filtering algorithms have been proposed (e.g., Lecoutre &
Szymanek (2006); Gent et al. (2007); Cheng & Yap (2010); Lecoutre (2011);
Lecoutre et al. (2015)).

6 Constraint Programming Models
We now describe in detail the integrated CP model of the scheduling problem.
We first define the model variables and then present the essential constraints to
ensure that the resulting schedule will satisfy the DRRT+2D requirements (G1)–
(G8) from Section 2. Next, we present the additional constraints required by
the specific Elitserien requirements (E1)–(E3) from Section 3. We then identify
implied and symmetry-breaking constraints using the properties (PG1)–(PG3)
and (PE1)–(PE4) from Section 4, which greatly reduce the search effort. The
resulting CP models were encoded in MiniZinc 2.0 and executed with Chuffed
as the back end. Full details of our experiments are given in Section 8.

10



6.1 Problem Variables
Constraint (G3) implies that we need to define variables for only Parts I and II
because Part III is the mirrored complement of Part II. To satisfy (G2)–(G3),
let t ∈ {1, . . . , 14} denote a team and p ∈ {1, . . . , 20} denote a period. The tour-
nament template corresponds to the array of variables T [t, p] ∈ {−14, . . . , 14},
where T [t, p] < 0 stands for team t playing away in period p, T [t, p] > 0 if it
plays at home, and T [t, p] = 0 if it has a bye. The HAP set corresponds to
the array of variables H[t, p] ∈ {A, B, H}. The opponent of team t in period p is
contained in the array O[t, p] ∈ {1, . . . , 14}, where O[t, p] = t if and only if it
has a bye in that period. We use an array B[t] ∈ {0, . . . , 20} to represent the
period in which the break for team t occurs, or 0 if team t has no break in its
schedule.

Henz et al. (2004) show that if the CP model uses opponent variables, as ours
does, then an SRRT can be codified by two types of constraints; the constraints’
filtering algorithms are crucial to performance. First, every period consists of a
matching (or one-factor) of the teams, captured by (5). Second, the complete
set of opponents for a given team i is the entire set of teams without team i,
captured by (6). Alternatives to opponent variables are discussed by Perron
(2005).

In order to deal with (G1), specific team names must be substituted for
team row numbers. This substitution requires a level of indirection in the form
of another array R that maps team name n to an integer t = R[n], that is, the
corresponding row number. By restricting the domains of the array elements,
division membership is enforced.

6.2 DRRT+2D Constraints
To define constraints satisfying (G1)–(G8), we need some channeling constraints
to relate the T , O, H, and B arrays. The T array is channeled to the O and H
arrays by

T [t, p] =




−O[t, p], if H[t, p] = A

O[t, p], if H[t, p] = H

0, if H[t, p] = B

,∀t,∀p. (1)

The definition of a break and the channeling between the B and H arrays is
captured by the constraint

B[t] =
∑

p∈{8,...,19}
p× (H[t, p] = H[t, p+ 1]),∀t. (2)

The channeling between the O and H arrays is captured by the constraint

O[t, p] = t⇔ H[t, p] = B,∀t, ∀p. (3)

The possible HAP for any team is constrained by (G4)–(G6) and by the
fact that we know the set of sequences that must make up a HAP set satisfying
the DRRT+2D requirements; see Figure 1. This is easily captured by a regular
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expression e. The corresponding finite automaton is shown in Figure 2; and the
corresponding Regular constraint from Table 3,

Regular([H[t, p] | p ∈ {1, . . . , 20}], e),∀t, (4)

is posted on every row of H.

H

A

A

A

B

H

B

H

A

H

B

A

H

A

A

B

B

H

H

A

B

B

H

A H

A

B

B

H

A H

A

B

B

H

A
H

B

B

A H

A A

H

H A

H

Figure 2: Finite automaton for valid HAP. Accepting states are indicated
by double circles. When restricted to sequences of length 20, it accepts the
combinations of rows in Figure 1.

As mentioned previously, every period must consist of a matching of teams;
that is,

O[O[t, p], p] = t, ∀t,∀p, (5)

which can be encoded by

Inverse([O[t, p] | t ∈ {1, . . . , 14}], [O[t, p] | t ∈ {1, . . . , 14}]),∀p.

This use of Inverse in fact emulates

SymmetricAlldifferent([O[t, p] | t ∈ {1, . . . , 14}]).

The latter constraint was motivated by sports scheduling applications. Un-
fortunately, its native filtering algorithm is rare among CP solvers and is not
available in the MiniZinc back ends that we used. Therefore, we have no data
on the amount of improvement we might get by using that algorithm.

Each team must meet every other team in its division during Part I and meet
every team in Part II. This condition is easily expressed with Alldifferent:

Alldifferent([O[t, p] | p ∈ {1, . . . , 7}])∧
Alldifferent([O[t, p] | p ∈ {8, . . . , 20}]) ,∀t. (6)

Also, home and away must match for every team and its opponent, everywhere:



(H[t, p] = A ∧H[O[t, p], p] = H) ∨
(H[t, p] = B ∧H[O[t, p], p] = B) ∨
(H[t, p] = H ∧H[O[t, p], p] = A)


 ,∀t,∀p. (7)
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To encode (G7), we note that it is satisfied if and only if every row of the
tournament template contains distinct nonzero values. Because every team has
exactly one bye, this can be enforced by the constraint

Alldifferent([T [t, p] | p ∈ {1, . . . , 20}]),∀t. (8)

As discussed previously, venue unavailabilities (G8) are soft constraints that
turn the scheduling problem into an optimization problem. If the preferences
are stated as an array,

N [n, p] =

{
1 , if team n prefers not to play at home during period p
0 , otherwise,

then the cost function for all three parts of the schedule is

cost =
∑

n∈{1,...,14},
p∈{1,...,20}

N [n, p]×(H[R[n], p] = H)+
∑

n∈{1,...,14},
p∈{21,...,33}

N [n, p]×(H[R[n], 41−p] = A).

(9)

6.3 Elitserien-Specific Constraints
We now declare constraints to encode requirements (E1)–(E3). Let i⊕ j denote
the fact that teams i and j have complementary schedules. That is,

i⊕ j ⇔ B[i] = B[j] ∧ (H[i, p] 6= H[j, p],∀p ∈ {1, . . . , 20}).

Then (E1) can be encoded by

∃{i, j, k, l,m, n} ⊂ {1, . . . , 7} such that (i⊕ j) ∧ (k ⊕ l) ∧ (m⊕ n) and
∃{i, j, k, l,m, n} ⊂ {8, . . . , 14} such that (i⊕ j) ∧ (k ⊕ l) ∧ (m⊕ n).

(10)

Requirement (E2) says that a given set C of pairs (n, n′) of named teams
must have complementary schedules:

R[n]⊕R[n′],∀(n, n′) ∈ C. (11)

Elitserien derby constraints (E3) take one of two forms. The first consists of
a period p and a set Q of four named teams, from which two pairs of playing
teams must be formed. This is described by

O[R[i], p] ∈ {R[j] | j ∈ Q},∀i ∈ Q. (12)

Alternatively, a set T of three named teams is given, two of which must play
each other, encoded by
(
O[R[i], p] = R[j] ∨O[R[i], p] = R[k] ∨O[R[j], p] = R[k]

)
, where T = {i, j, k}.

(13)
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6.4 Implied Constraints
Recall that an implied constraint is logically implied by the essential constraints
but may allow more inconsistent domain values to be deleted, thus helping
reduce the search effort.

Property (PE1) implies that both divisions must have six breaks. It was
determined experimentally that posting the implied constraint

∑

t∈{1,...,7}
(B[t] > 0) = 6 and

∑

t∈{8,...,14}
(B[t] > 0) = 6, (14)

improves propagation.
The fact that the breaks must be pairwise aligned could also be posted as a

constraint. This implied constraint
∑

t∈{1,...,7}
(B[t] = p) is even and

∑

t∈{8,...,14}
(B[t] = p) is even,∀p,

however, was experimentally determined to be useless.
It is a structural property that the numbers of home and away matches

must always match. Contrary to Trick’s observation (Trick, 2002, Section 6),
the implied constraint

∑

t∈{1,...,14}
(H[t, p] = A) =

∑

t∈{1,...,14}
(H[t, p] = H),∀p,

was also experimentally found to be useless.
We have Property (PG2), which is useful in itself but which is subsumed by

(19), as we shall see later:

Alldifferent([p | H[t, p] = B, t ∈ {1, . . . , 7}, p ∈ {1, . . . , 7}])∧
Alldifferent([p | H[t, p] = B, t ∈ {8, . . . , 14}, p ∈ {1, . . . , 7}]). (15)

Moreover, we know from (PG1) and (PE1) that out of the 14 teams, two
teams must have a break in each of the periods 9, 11, 13, 15, 17, and 19 and
two teams must have no break. The requirement

∑

t∈{1,...,14}
(B[t] = i) = 2,∀i ∈ {0, 9, 11, 13, 15, 17, 19}, (16)

is efficiently encoded by a GlobalCardinality constraint and was experimen-
tally found to be useful.

Property (PG3) can be posted as an implied constraint:

H[t, 1] 6= H[1, t] ∧H[t+ 7, 1] 6= H[8, t],∀t ∈ {2, . . . , 7}, (17)

which was determined experimentally to improve propagation, but only marginally.
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6.5 Breaking Symmetries
Recall that symmetric solutions with equal cost are a source of overhead in opti-
mization search. The following constraints help remove many of the symmetries
in DRRT+2D scheduling problems.

A first, obvious symmetry is the following. Given a solution, we can construct
another solution by swapping home and away everywhere. This symmetry is
easily broken by

H[2, 1] = H ∧H[9, 1] = A. (18)

A second source of symmetry also exists in the model: Given a solution, we
can construct another solution by swapping rows (teams) i and j of the same
division in the arrays as well as values i and j (positive or negative) in O and T .
To break this symmetry, we can fix the bye period for all teams, as in Figure 1,
subsuming (15):



H[t, t] = B ∧
O[t, t] = t ∧
O[t, p] ∈ {1, . . . , 7} \ {t} ∀p 6= t ∧
H[t+ 7, t] = B ∧
O[t+ 7, t] = t+ 7 ∧
O[t+ 7, p] ∈ {8, . . . , 14} \ {t+ 7} ∀p 6= t




,∀t ∈ {1, . . . , 7}. (19)

Having fixed the bye periods in such a manner, we can use Properties (PE2)
and (PE3) to construct a slightly stronger version of (10) that restricts the
possible pairing of complementary schedules:

(1⊕ 2 ∨ 2⊕ 3) ∧
(3⊕ 4 ∨ 4⊕ 5) ∧
(5⊕ 6 ∨ 6⊕ 7) ∧
(8⊕ 9 ∨ 9⊕ 10) ∧
(10⊕ 11 ∨ 11⊕ 12) ∧
(12⊕ 13 ∨ 13⊕ 14),

(20)

B[t] > 0, ∀t ∈ {2, 4, 6, 9, 11, 13}. (21)

We note that constraint propagation on the structural constraints and (18)–
(19) completely fix periods 1–9 of the HAP set to the nonpermuted pattern
shown in Figure 1.

If division membership is kept free in (G1), then a third source of symmetry
is the fact that the two divisions can be swapped in the template. This symmetry
can be broken by lexicographically ordering the break sequences. However, it
is not useful in our models, because if used together with the previous two
constraints, and because (G8) is based on home vs. away assignments, it may
suppress optimal solutions:

[B[t] | t ∈ {1, . . . , 7}] ≤lex [B[t] | t ∈ {8, . . . , 14}]. (22)

Other symmetry-breaking constraints are discussed by Trick (2000).
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7 Strengthening the Model
Endeavoring to improve performance, we then tried to strengthen the CP model,
identifying cases of missing propagation and adding constraints to prevent such
missing propagation. This process was repeated several times, as described in
this section. Section 8 contains an evaluation of the evolving sequence of models.

7.1 Missing Propagation
A well-known and surprisingly powerful way of finding missing propagation

hap[127] = 1

hap[128] = 1

hap[130] = 1

is to focus on the first wrong choice made by the
search. This is conveniently spotted with the Gist vi-
sualization tool. In the figure to the right, Gist shows
the search tree on a chosen benchmark instance with
the above model, where square nodes denote dead
ends and triangles denote subtrees that can be ar-
bitrarily large. The state at the first mistake corre-
sponds to a partial HAP set of the following form.

B A H A H A H A H A H . . . . . . . . .
H B A H A H A H A A H A H . . . . . . .
A H B A H A H A H H A H A . . . . . . .
H A H B A H A H A A . A H . . . . . . .
A H A H B A H A H . . H A . . . . . . .
H A H A H B A H A . . A H . . . . . . .
A H A H A H B A H . . H A . . . . . . .
B H A H A H A H A . . A H . . . . . . .
A B H A H A H A H . . H A . . . . . . .
H A B H A H A H A . . A H . . . . . . .
A H A B H A H A H . . H A . . . . . . .
H A H A B H A H A . . A H . . . . . . .
A H A H A B H A H . . H A . . . . . . .
H A H A H A B H A . . A H . . . . . . .

Note that the highlighted part clearly violates con-
straint (16), because we cannot have three breaks in
period 9. The problem is that (16) is over the B variables only, whereas (2)
links the H and B variables. But (2) is unaware that there can be at most one
break per row and therefore cannot yet fix B[2], B[3] and B[4], thus preventing
(16) from detecting this dead end. This is a typical case of missing propagation.
To remedy it, we replace (2) by

B[t] = p ⇐⇒ H[t, p] = H[t, p+ 1],∀t,∀p ∈ {9, 11, 13, 15, 17, 19}. (23)

Upon resolving this issue, this mistake is avoided, and now the first wrong
choice corresponds to the partial HAP set.
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B A H A H A H A H A H A H A H A H A H A
H B A H A H A H A A H A H A H A H A H A
A H B A H A H A H H A H A H A H A H A H
H A H B A H A H A H A A H A H A H A H A
A H A H B A H A H A H H A H A H A H A H
H A H A H B A H A H A H A A H A H A H A
A H A H A H B A H A H A H H A H A H A H
B H A H A H A H A H A H A H A A H A H A
A B H A H A H A H A H A H A H A H . . .
H A B H A H A H A H A H A H A H A . . .
A H A B H A H A H A H A H A H A . . . .
H A H A B H A H A H A H A H A . . . . .
A H A H A B H A H A H A H A H . . . . .
H A H A H A B H A H A H A H A . . . . .

This time, the highlighted part shows that we have violated (PE3): row 8
has a break in period 15, but row 9 has not. Apparently, (20) is not strong
enough to prevent such mistakes. We fix that situation using (PE4) to add

B[1] = B[10] = 0 ∨
B[1] = B[14] = 0 ∨
B[3] = B[8] = 0 ∨
B[3] = B[12] = 0 ∨
B[5] = B[10] = 0 ∨
B[5] = B[14] = 0 ∨
B[7] = B[8] = 0 ∨
B[7] = B[12] = 0

(24)

and

∀i ∈ {9, 11, 13, 15, 17, 19}∃t ∈ {1, . . . , 6, 8, . . . , 13} : B[t] = B[t+ 1] = i. (25)

Upon solving the new model, no mistakes are made during HAP construc-
tion. Note, however, that an inspection of the search tree reveals that some
choices are still made during search though we expected that propagation would
fix Part I completely. Also, no explicit constraints in the model prevent the con-
struction of an unschedulable HAP set. (Not every HAP set that satisfies the
structural constraints can be assigned feasibly assigned teams.) Moreover, dur-
ing branch-and-bound search, with (9), back propagation from the cost function
is extremely weak. These concerns are addressed below.

7.2 Table Constraints for HAPs and Costs
We now return to the channeling between the H and B arrays, where we saw
some unnecessary search. We observe that the language recognized by the finite
automaton of Figure 2 contains 98 strings. For each string s, with symmetry
breaking and fixed bye placement, we know

• in which row s can occur, because this is decided by the prefix of s; and

• where the break occurs, because this is a simple function of the suffix of
s.
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In fact, we have a bijection:

(string) � (row, break). (26)

Since 98 is not much larger than the size of the automaton, we can replace
(4) by a Table constraint, where each tuple includes the string s, its row, and
its break (or 0 if there is none):

Table([H[t, 1], . . . ,H[t, 20], t, B[t]], {[string, row, break]}),∀t. (27)

This turns out to subsume not only (4) but also constraints (2), (23), (18),
(19), and (17), which consequently can be deleted.

Next, with the help of the Gist tool (see Figure 3), we noticed that the
backtracking activity is concentrated on the right-hand side of the branch-and-
bound search tree. Bear in mind that triangles denote collapsed subtrees that
can be arbitrarily large. The search effort during the proof of optimality is
proportional to the number of nodes traversed by the depth-first search after the
optimal solution has been found. In the left-hand tree, the search is dominated
by the proof of optimality, which suggested to us that back propagation from
the cost function as encoded by (9) might be too weak to be effective. This
recurring phenomenon has been observed by other researchers, notably Focacci
et al. (1999).

We therefore tried an alternative formulation of the cost function as a sum
over costs per row,

cost =
∑

r∈{1,...,14}
f(B[r], r, R−1[r]), (28)

or as a sum of costs per team,

cost =
∑

n∈{1,...,14}
f(B[R[n]], R[n], n), (29)

where f(b, r, n) can be precomputed as a table for given break b, row r, and
team name n as follows.

1. We first compute the unique HAP that is the function of b and r, as
explained in Section 7.2.

2. This leaves

f(b, r, n) =
∑

p∈{1,...,20}
N [n, p]×(HAP [p] = H)+

∑

p∈{21,...,33}
N [n, p]×(HAP [41−p] = A).

It turns out that (28) does not dominate (29), nor vice versa, and that adding
both gives the best result. Figure 3 shows the effect on the shape of the search
tree. In the left-hand tree, the search during proof of optimality is 50 nodes,
plus 10 collapsed subtrees, several of which containing dozens of nodes. In the
right-hand tree, the number is 17 nodes only.

18



Figure 3: Search tree visualized by Gist on a given instance with the cost
function encoded with (9) (left) vs. (28) and (29) (right). Square nodes de-
note failures; green (golden) diamonds denote suboptimal (optimal) solutions;
triangles denote subtrees that can be arbitrarily large.

8 Experiments
We endeavored to answer the following research questions about our approach:

Q1. Do our results for the Elitserien case study generalize to the general
DRRT+2D problem?

Q2. How scalable is our approach?

Q3. What CP modeling techniques had the best impact on performance?

The CP models1 were encoded in MiniZinc 2.02 and executed with Chuffed3,
GitHub version of Nov. 4, 2015, as the back end on a quad core 2.8 GHz Intel
Core i7-860 machine with 8 MB cache per core, running Ubuntu Linux. Chuffed
was run with the options -f -mdd=true invoking VSIDS search (Moskewicz
et al., 2001) and an MDD propagator for Table constraints. The CP model as
reported by Larson et al. (2014) corresponds to the SYM curves of Figure 4.
To avoid any ambiguity, we now identify four specific models, which all come in
one DRRT+2D variant and one Elitserien-specific variant:

1see http://www.sics.se/~matsc/Elitserien
2http://www.minizinc.org/
3https://github.com/geoffchu/chuffed
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• NOSYM(G) and NOSYM(E) capture structural and seasonal constraints,
using the approach to fix team numbers up front, sacrificing symmetry
breaking.

• SYM(G) and SYM(E) capture structural and seasonal constraints, using
the approach to treat the matching of team names to team numbers as
part of the problem.

• STR(G) and STR(E) are strengthened versions of SYM(G) and SYM(E).

• TAB(G) and TAB(E) contain Table constraints for HAPs and the cost
function.

Model Constraints
NOSYM(G) 1, 3, 5, 6, 7, 8, 16, 2, 4, 9, 15
NOSYM(E) 1, 3, 5, 6, 7, 8, 16, 11, 13, 12, 14, 2, 4, 9, 10, 15
SYM(G) 1, 3, 5, 6, 7, 8, 16, 2, 4, 9, 17, 18, 19
SYM(E) 1, 3, 5, 6, 7, 8, 16, 11, 13, 12, 14, 2, 4, 9, 17, 18, 19, 20, 21, 24, 25
STR(G) 1, 3, 5, 6, 7, 8, 16, 4, 9, 17, 18, 19, 23
STR(E) 1, 3, 5, 6, 7, 8, 16, 11, 13, 12, 14, 4, 9, 17, 18, 19, 20, 21, 23, 24, 25
TAB(G) 1, 3, 5, 6, 7, 8, 16, 17, 18, 19, 27, 28, 29
TAB(E) 1, 3, 5, 6, 7, 8, 16, 11, 13, 12, 14, 20, 21, 24, 25, 27, 28, 29

8.1 Solving the Optimization Problem
We generated 20 random instances of possible constraints and desires from the
leagues because (a) our model has been used only for a single season and we
wished to verify that this instance was not an especially easy case to solve and
(b) the league requested that, for privacy reasons, we not divulge the true team
desires. The structure of the random seasonal constraints was similar to the
real ones, however. It involved the following:

• The partitioning of teams into divisions (G1)

• One specific pair of teams in both divisions to be assigned complementary
schedules (E2)

• One 3-team intradivision derby set, one 3-team interdivision derby set,
and one 4-team interdivision derby set (E3).

• For each team n and period p, n prefers to not play at home during period p
with probability 0.05, yielding on average 25 unavailabilities (G8), which is
the number of unavailabilities requested by Elitserien teams for the season
that was scheduled previously

The minimal, average, and maximal optimal costs (i.e., the number of schedul-
ing conflicts) were 0, 3, and 6, respectively.

We also evaluated two ways of dealing with the requirement (G1):
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Figure 4: Number of instances solved to optimality as a function of timeout
limit in seconds for DRRT+2D models including Elitserien-specific constraint
(left) and excluding them (right).

1. Fixing team numbers, that is, the R array, up front, sacrificing symmetry-
breaking, as encoded by model NOSYM.

2. Treating the matching of team names to team numbers as part of the
problem, keeping the R array as decision variables, as encoded by the other
models. This allowed us to keep the symmetry breaking constraints (17),
(18), (19), (20), and (21), which are very effective.

Figure 4 shows a performance comparison of the models in terms of number
of instances solved to optimality as a function of elapsed time. On the left-
hand side, the models with the Elitserien-specific constraints were used. On the
right-hand side, those constraints were disabled. A general observation is that
the Elitserien-specific constraints do not affect the runtimes that much, which
gives some evidence for an affirmative answer to question (Q1). We also note
that there are no extreme outliers among our random instances.

In the Elitserien case, NOSYM is the worst-performing model. This result
was unexpected, because in models other than NOSYM, the R array in effect
acts as a level of indirection and inflates the search space, a technique that
usually incurs overhead. Evidently the pruning power of the symmetry-breaking
constraints outweighs the overhead of the R array, at least if those constraints
are effective enough. This partly answers question (Q3).

In both comparisons, TAB is the best-performing model, with the greatest
difference for the DRRT+2D comparison. The fact that STR(E) includes (24)
and (25) with no counterpart in STR(G) is a possible explanation for the smaller
difference between TAB(E) and STR(E) than between TAB(G) and STR(G).
Thus the offline processing necessary to compute the extensions of the Table
constraints seems to have been a worthwhile investment; this also partly answers
question (Q3).
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Figure 5: Number of instances solved to optimality as a function of timeout
limit in seconds, 7 teams per division, for different venue unavailability densities.
Including Elitserien-specific constraint (left) and excluding them (right).

8.2 Impact of Venue Unavailability Density
In our experiments, the density of venue unavailabilities is 5%, which is the den-
sity of requests by Elitserien teams for the season that we scheduled previously.
To study the impact of the density of venue unavailabilities on runtimes, we
generated instance sets with density 25%, 50%, and 75%, although admittedly
such large densities are unrealistic for the league in question. The results in
Figure 5 show that runtimes increase by approximately an order of magnitude
for larger densities. We observe from the run logs that for larger densities, the
solver enumerates more suboptimal solutions before finding an optimal one.

8.3 Scalability
To investigate how the best approach (TAB) scales, we attempted to schedule
larger league sizes (up to 10 teams per division) keeping all the requirements,
except that (E1) was tightened. For the larger leagues, both divisions must have
4 pairs of complementary schedules. (It is not possible to schedule a 20-team
league in a manner satisfying the requirements in (G1)–(G7) with 5 pairs of
complementary teams in each division.)

For odd division sizes, the home-away pattern is a straightforward extrap-
olation of the size 7 case; see Figure 1. In particular, the two divisions must
use complementary HAP sets in Part I, and so the structural and symmetry-
breaking constraints suffice to completely fix the Part I HAP set. Constraints
(9), (14), (16), (20), (21), and (24) are generalized in a straightforward way; ev-
erything else is exactly as for the 7-team-division case, including the cost table
construction.

For even division sizes, the home-away pattern is slightly different. For
an 8-team division, the tournament pattern is constructed by combining the

22



divisional RRT home-away patterns in Figure 6 (left) with the full-league RRT
home-away pattern in Figure 6 (right), plus a mirror image of the second part.
As in the 7-team-division case, Part I of Division 1 must be a permutation of
Figure 6 (left top or bottom), and the same holds for Division 2. Unlike the 7-
team-division case, however, both divisions can use the same HAP set in Part I.
Thus, for 8-team divisions the structural and symmetry-breaking constraints do
not suffice to completely fix the Part I HAP set to the nonpermuted pattern
shown in Figure 6. Instead, four combinations are possible. Consequently, (26)
is not a bijection, which the cost table construction of Section 7.2 relies on.
Fortunately, the bijection is easily reestablished by adding to the right-hand
side of (26) a parameter p, which stands for the bye period of the given row,
and using a function f(b, r, p, n) in (28) and (29). The 10-team-division pattern
is a straightforward extrapolation of the 8-team pattern.

B A H A H A H A H A H A H A H A H A H A H A H
B H A H A H A H A H A H A H A H A H A H A H A
A H B A H A H A H H A H A H A H A H A H A H A
H A B H A H A H A A H A H A H A H A H A H A H
A H A H B A H A H A H H A H A H A H A H A H A
H A H A B H A H A H A A H A H A H A H A H A H
A H A H A H B A H A H A H H A H A H A H A H A
H A H A H A B H A H A H A A H A H A H A H A H
A B H A H A H A H A H A H A H H A H A H A H A
H B A H A H A H A H A H A H A A H A H A H A H
A H A B H A H A H A H A H A H A H H A H A H A
H A H B A H A H A H A H A H A H A A H A H A H
A H A H A B H A H A H A H A H A H A H H A H A
H A H A H B A H A H A H A H A H A H A A H A H
A H A H A H A B H A H A H A H A H A H A H H A
H A H A H A H B A H A H A H A H A H A H A A H

Figure 6: Left: Two HAP sets for an 8-team no-break RRT. Right: HAP set
satisfying the structural constraint for a 16-team, 14-break RRT. Breaks are
highlighted. These HAP sets are unique up to permutation of the rows.

For even division sizes, the properties (PG2), (PG3), (PE1), (PE2), (PE3),
and (PE4) do not apply, and consequently we cannot use constraints (15), (17),
(18), (19), (20), (21), and (24). Constraints (9), (14), and (16) need to be gener-
alized in a straightforward way. Also, we can derive a useful symmetry-breaking
Elitserien-specific property from the complementary schedules requirement:

PE5. Each pair of complementary schedules must have aligned byes and must
have either breaks that are aligned, or no breaks, as in Figure 6.

From this we can derive the following Elitserien-specific constraint for 8-team
divisions,

B[2t− 1] = B[2t] ∀t ∈ {1, . . . , 8}, (30)
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and for for 10-team divisions,
∑

t∈{1,...,5}(B[2t− 1] = B[2t]) ≥ 4∑
t∈{6,...,10}(B[2t− 1] = B[2t]) ≥ 4.

(31)

For divisions of size 8, 9, and 10, we constructed a version of TAB with the
modifications mentioned above. We generated 20 random instances in exactly
the same way as for the original case, with the same density of venue unavail-
abilities, and measured the performance. Figure 7 compares the performance
with Elitserien-specific constraint included (left) and excluded (right). We ob-
serve an increase in runtimes of about one order of magnitude per increase in
division size, with no instance taking more than 23 CPU-minutes to solve to
optimality for 10-team divisions.

The scalability study confirms the previous observation that the Elitserien-
specific constraints do not significantly affect the runtimes. This study also
strengthens the evidence for an affirmative answer to question (Q1). We also
have an answer to question (Q2): the approach easily scales up to at least
divisions of 10 teams.
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Figure 7: Number of instances solved to optimality as a function of timeout
limit in seconds, for 7, 8, 9, and 10 teams per division, including Elitserien-
specific constraint (left) and excluding them (right).

9 Discussion
The integrated CP approach for scheduling the Elitserien is a significant im-
provement over the decomposed approach by Larson & Johansson (2014). With
that approach, we first generated 80,640 HAP sets satisfying (G4)–(G6) but not
necessarily schedulable, then applied necessary conditions for schedulability to
rule out some 87% of the unschedulable HAP sets. An attempt was then made
to convert the remaining HAP sets to templates by solving an integer program.
The resultant templates were ranked in their carry-over effect to produce a tem-
plate for the league. This template was then assigned teams with respect to the
seasonal requirements (E2)–(E3) and (G1). Testing all HAP sets against the
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necessary conditions took nearly a day. Since the template was fixed before
the seasonal constraints were available, a suboptimal schedule was likely pro-
duced. Furthermore, a straightforward application of the approach by Larson
& Johansson (2014) to scheduling where a template does not need to be fixed a
priori would clearly be inefficient: the 104 schedulable HAP sets admit 5,961,704
templates if constraints (18) and (22) are used, or 23,846,816 templates if they
are not. Assuming that it takes 0.1 seconds per template to assign teams to
numbers optimally, an optimistic estimate, finding the best schedule would take
almost one month.

To exclude the possibility that the Elitserien-specific requirements constrain
the problem so much that no conclusions can be drawn for the general DRRT+2D
case, we ran all experiments both for the general case and for the Elitserien-
specific case. Our results show that the Elitserien-specific requirements do not
have a major impact on problem difficulty and that our approach is feasible for
the general DRRT+2D case, easily scaling up to league sizes of 10 teams per
division.

Our CP model, which integrates the different phases that sports schedul-
ing traditionally decomposes to, shows a dramatic improvement over previous
approaches using decomposition and integer programming. Such integrated ap-
proaches are rare in the sports scheduling literature. By careful use of implied
and symmetry-breaking constraints, as well as a limited amount of off-line pro-
cessing, we were able to dramatically reduce the time to solution, making CP
an attractive technology for producing optimal tournament schedules.
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