A Case Study in Using Discrete-Event Simulation to
Improve the Scalability of MG-RAST

Caitlin Ross,* Misbah Mubarak,! John Jenkins, Philip Carns,?
Christopher D. Carothers,* Robert Ross," Wei Tang:
Wolfgang Gerlach,® Folker Meyert
‘Computer Science Department, Rensselaer Polytechnic Institute
fMathematics and Computer Science Division, Argonne National Laboratory

$Computation Institute, University of Chicago
*Google, Inc. USA

rossc3@rpi.edu, mmubarak@anl.gov, jenkins@mcs.anl.gov, carns@mcs.anl.gov,
chrisc@cs.rpi.edu, rross@mcs.anl.gov, weitang@google.com,
wgerlach@mcs.anl.gov, folker@anl.gov

ABSTRACT

As the cost of DNA sequencing has decreased, computa-
tional biology data processing platforms are experiencing
an increasingly large volume of data analysis requests. The
metagenomics analysis server MG-RAST at Argonne Na-
tional Laboratory, a computational biology data processing
platform, is receiving several terabytes of data submissions
per month. However, MG-RAST currently relies on a central
object-based data store, Shock, for data access and storage
that can become a bottleneck under high data transfer loads,
adversely affecting the job response time for end users. In
this work, we use a discrete-event simulation approach to ex-
plore the use of data proxies and an enhanced, proxy-aware
scheduling methodology designed to reduce the movement
of the intermediate data generated during workflow process-
ing. In this approach, Shock is supplemented with proxy
storage servers, employing solid state drives, to decentral-
ize the management and hence reduce the movement of in-
termediate workflow results. Discrete-event simulation pro-
vides a way to evaluate the performance of MG-RAST with
increased workloads without disrupting the production sys-
tem. For our case study, we extrapolate scientific workflows
obtained from MG-RAST to represent future usage trends.
We demonstrate that the addition of proxies and the proxy-
aware scheduling methodology significantly reduces the data
movement overhead by distributing the data plane, leading
to substantial improvement in end-user job response time.

*This work was performed while Wei Tang was a postdoc-
toral researcher at Argonne National Laboratory.

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
SIGSIM-PADS ’16, May 15-18, 2016, Banff, AB, Canada

© 2016 ACM. ISBN 978-1-4503-3742-7/16/05. .. $15.00

DO http://dx.doi.org/10.1145/2901378.2001387

CCS Concepts

eComputing methodologies — Discrete-event simu-
lation;

Keywords
discrete-event simulation, big data, clouds, MG-RAST

1. INTRODUCTION

Because of the decrease in DNA sequencing costs in re-
cent years, the field of bioinformatics has seen an exponen-
tial increase in data submission, which poses significant chal-
lenges for data management and analysis. For example, MG-
RAST [11], a metagenomics [20] analytic service provided by
Argonne National Laboratory (ANL), processed 1 Thp data
(10'? base pairs) in the first five years, but since mid-2011 it
has processed over 80 Tbp of sequence data with thousands
of job submissions per month. It is currently receiving 8—
16 TB of data per month, which we expect to double within
18 months. Therefore, it is critical to have scalable com-
puting and storage resources that can efficiently handle the
growth in data submission and subsequent analysis.

MG-RAST currently uses a centralized data management
approach for data access and management |19]. While this
approach simplifies security and long term data curation, it
is a potential bottleneck when receiving a large number of
data submission requests from clients, especially when the
requests span multiple sites with compute resources con-
nected by a wide area network (WAN). In addition, task
scheduling in MG-RAST is currently first-come first-served
(FCFS) and does not take advantage of data locality for mul-
tiple WAN sites. Since the tasks in the MG-RAST pipeline
generate a large amount of intermediate data, significant
WAN data movement can result, leading to increased job
response times for end users. To mitigate the performance
limitations of a centralized server and to minimize unneces-
sary data movement overhead between multiple WAN sites,
we propose the addition of proxy storage servers to the MG-
RAST infrastructure, along with a proxy-aware scheduling
methodology that exploits data locality by placing storage
proxies based on solid-state drives (SSDs) at each WAN site.

We chose to use storage proxies instead of a distributed

http://dx.doi.org/10.1145/2901378.2901387

storage system for MG-RAST because the implementation
of our proposed changes will require minimal changes to the
existing MG-RAST infrastructure. Also, proxies help retain
the useful properties of the central data store while provid-
ing the ability to load balance the data access requests and
decrease the traffic to the central data server. The storage
proxies used in this work are similar to web caches; however,
web caches are used to store data that tends to be more fre-
quently accessed, whereas in this situation, the proxies are
being used as a local storage for the temporary intermediate
data generated during job processing.

In this work, we use discrete-event simulation to evalu-
ate the scalability of MG-RAST when using data proxies
with and without a proxy-aware scheduling methodology.
As opposed to modifying the production server, simulation
is a valuable approach to quickly evaluate various config-
urations of data-analysis platforms in order to determine
an efficient and cost-effective configuration. Our simulation
work extends the MG-RAST workflow simulator developed
by Tang et al. |18|, which evaluated two data-aware schedul-
ing policies running on the centralized MG-RAST design.
The scheduling methodologies used in that work rely on the
compute-to-data cost ratio of the tasks. Our work extends
the simulation to explore a proxy-aware scheduling method-
ology that takes data locality into account by ensuring that
all data related to a job is stored on a single proxy server
local to a client. This approach helps reduce data transfers
between the centralized data server and WAN sites and re-
sults in lower data movement overhead. The contributions
of our work are as follows.

1. Use of discrete-event simulation for evaluation
of proxy-aware scheduling: We use discrete-event
based workflow simulation to evaluate the performance
of the proposed proxy-aware scheduling methodology
that exploits data locality to reduce the amount of
data transfers over WAN sites. We can compare the
performance of proxy-aware scheduling with FCFS and
data-aware methodologies, both with and without the
addition of proxy storage. We also perform simulations
for two workload sizes, in order to show the behavior
of proxy-aware scheduling as the MG-RAST servers
become more congested.

2. Improved performance of MG-RAST when us-
ing proxy-aware scheduling: Our results show that
the use of proxy-aware scheduling leads to decreased
data movement overhead and improved job response
time when compared with other scheduling method-
ologies that do not use storage proxies. When proxy-
aware scheduling is used for a large workload, we get
up to 286x speedup over FCFS scheduling and up to
150x speedup over other data-aware scheduling meth-
ods. The addition of the proxy servers necessary to
implement the proxy-aware scheduling requires mini-
mal changes to the current MG-RAST infrastructure.
This fact, combined with the significant performance
improvement, shows that our proposed setup is cost
effective and highly efficient.

3. Extrapolated traces to represent future work-
loads: To represent the future data growth trend in
MG-RAST, we have used representative extrapolated
traces from the production service to evaluate the pro-
posed proxy infrastructure for MG-RAST, as well as

compare the performance of proxy-aware scheduling
against the previously proposed data-aware schedul-
ing methodologies in |18]. The extrapolated trace is
created through regression modeling of the relation-
ships observed in the production trace data. Using
the extrapolated traces in conjunction with discrete-
event simulation enables the evaluation of MG-RAST
under much larger workloads than would be possible
using only the production traces.

The remainder of the paper is organized as follows. Sec-
tion [2ldiscusses related work. Section [3discusses the current
and proposed infrastructures, while Section |4] describes the
simulation design. In Section we provide validation of the
simulation as well as an evaluation of the proposed infras-
tructure. Section [6l summarizes our conclusions.

2. RELATED WORK

Tang et al. presented new approaches to workflow and
data management systems, called AWE and Shock, respec-
tively, that provided MG-RAST with scalable, portable, re-
usable, and reproducible data analysis capabilities [19]. Ger-
lach et al. presented an extension of the AWE and Shock
ecosystem called Skyport [8]. Skyport uses Docker and Linux
container virtualization technology to solve the problems
involved in deploying software on multiple computing re-
sources (e.g., dependencies on specific versions of software)
while improving overall resource utilization compared with
the previous virtual machine approach. Tang et al. addition-
ally developed a discrete-event simulation framework, called
AweSim, for evaluating MG-RAST deployments, focusing
specifically on the effect of data-aware scheduling policies
in deployments consisting of multiple sites connected by a
wide-area network [18]. The WAN model of AweSim cur-
rently supports a latency and bandwidth network model that
models contention at the endpoints, but not in the routing
fabric. AweSim used production traces of MG-RAST work-
flows for evaluation, for which characterization work had
previously been performed [17].

AweSim is based on the ROSS and CODES simulation
frameworks. ROSS is the Rensselaer Optimistic Simulation
System, a scalable discrete-event simulation framework pro-
viding sequential, synchronous parallel (“conservative”) and
speculative parallel (“optimistic”) simulation capabilities [3].
The CODES simulation framework is built on top of ROSS
and provides a comprehensive suite of HPC network, stor-
age and workload models [6| |15 [12]. OMNeT++ [21] and
ns-3 [13] are also discrete-event network simulation frame-
works. Both frameworks provide various wired and wireless
link layer protocol models; however, neither framework has
HPC network models (e.g., dragonfly) readily available. We
chose to use AweSim (and thus ROSS and CODES) in this
work, because of the potential to extend AweSim in the fu-
ture to use the HPC network models provided by CODES.

Event-driven simulation is also a commonly used approach
to evaluate the performance of cloud systems. For example,
CloudSim is a framework developed by Calheiros et al. that
provides simulation of cloud infrastructures and services |[2].
Network behavior can be modeled in CloudSim, however it
uses a simple latency matrix that cannot capture network
congestion. Chen and Deelman developed WorkflowSim, an
extension of CloudSim, to allow for task dependency track-
ing and task clustering in workflow scheduling [4]. The sys-

tem was subsequently used to model the Pegasus workflow
management system [7].

The proxy approach has been employed in various situ-
ations. For example, Cirstea et al. provide a design for
a prototype proxy cache for data located on a grid stor-
age element |5]. Kungas and Dumas present a proxy cache
implementation for SOAP traffic [10]. They show that the
least recently used (LRU) replacement policy provides the
best performance. Our work shows the addition of proxy
servers in a different context: the proxy servers in our pro-
posed infrastructure store the large volumes of intermediate
data generated during job processing.

Finally, we discuss work being done in the area of job
scheduling in scientific workflows at multiple WAN sites.
Aside from Tang et al.’s exploration of scheduling in the con-
text of MG-RAST |[18], Jones et al. developed bandwidth-
aware co-allocating meta-schedulers for mini-grids in order
to improve the performance of simultaneously co-allocated
jobs [9]. Specifically their methodology uses the interclus-
ter network utilization to lower the impact of the network
contention created by simultaneously co-allocated jobs. In
contrast, our work explores a scheduling methodology that
assigns a job to a single wide area site in order to reduce the
movement of the intermediate job data generated. Szabo et
al. [16] propose an evolutionary approach to task allocation
on cloud resources that optimizes workflow runtime and the
size of transferred data. Their approach uses a chromosome
to encode the allocation of tasks to nodes and another chro-
mosome to encode the execution order of tasks. Wang et
al. |22] provide an improvement on work stealing methods.
In their work, scheduling is distributed, and idle schedulers
can steal the work of other schedulers, possibly incurring
significant data movement overheads because of loss of data
locality. Their solution is to organize work queues by data
size and location in order to continue to provide load balanc-
ing while also taking data locality into account. The MG-
RAST situation differs in that using proxy-aware scheduling
allows for the exploitation of data locality to substantially
reduce data movement overhead while also providing better
load balancing of the tasks among clients at all WAN sites.

3. MG-RAST DESIGN

In this section, we first present the current design of MG-
RAST, along with previously explored scheduling method-
ologies. We follow this with a discussion of our proposed
proxy infrastructure, as well as our proxy-aware scheduling
methodology.

3.1 Current Infrastructure

The system model of MG-RAST comprises the AWE [19]
workflow management system and the Shock data manage-
ment system [1|E| The AWE workflow management sys-
tem executes the biological analysis workflows on cloud re-
sources. It is based on a client-server model where the AWE
server schedules and assigns tasks of a job to the AWE
clients, which then process the tasks locally. The AWE
server receives job submissions, manages task dependencies,
and performs scheduling.

The MG-RAST pipeline consists of various processing and

YAWE and Shock can be found at https://github.com/
MG-RAST/AWE, and |https://github.com/MG-RAST/
Shock.

analytical tasks. User submissions with one or more data
sets are rendered into one job per data set at submission
time. For each job, a number of potentially parallel tasks
are generated by the AWE server using a workflow recipe.
While there are data dependencies between the tasks of a
given job, there are no data dependencies between tasks from
different jobs. Each of the tasks is divided into one or more
work units, each of which typically receives a small fraction
of the input data due to the data-parallel nature of most
steps.

The Shock object-based data management system is used
to store biological sequences and the intermediate data gen-
erated during job execution on AWE clients. Shock is a
centralized data server that handles all requests from the
clients for transfer of data. It utilizes a REST API that
makes it accessible from desktops, cloud, smartphones, or
HPC systems.

With the increasing rate of data-processing requests being
submitted to MG-RAST, workload execution is being out-
sourced to multiple cloud resources and user machines. A
number of organizations already contribute to the compute-
intensive steps of the pipeline (e.g., similarity searches) by
providing their own virtual machine based instances to an-
alyze data. Because MG-RAST uses the FCFS scheduling
policy, it does not take advantage of data locality for work-
flow scheduling. This, combined with the use of a centralized
data server with multiple WAN sites, contributes to signifi-
cant data movement overhead, which can slow down the end
user’s job response time. Additionally, an enormous number
of data access requests can transform the Shock server into
a potential bottleneck.

Tang et al. |[18] explored three scheduling policies: FCFS,
best-fit, and greedy. Best-fit and greedy are data-aware
methods in which the AWE server uses the compute-to-data
cost ratio of work units for scheduling decisions, putting
work units with high compute-to-data ratio on sites with
lower effective bandwidth and work units with compara-
tively lower compute-to-data ratio on sites with higher ef-
fective bandwidth. This strategy is made possible through
the ability to examine and make cost predictions of each
type of task/work unit, as done in Tang et al.’s workload
characterization research [17]. For best-fit scheduling, only
the most computationally expensive tasks are scheduled at
low-bandwidth sites. Greedy scheduling, on the other hand,
allows less computationally intensive tasks to run on low-
bandwidth sites if no more computationally intensive tasks
are pending.

3.2 Proxies and Proxy-Aware Scheduling

We propose adding one storage proxy server to each wide-
area site in MG-RAST which would distribute the load of the
centralized Shock data server. We also introduce a proxy-
aware scheduling policy that adjusts the distribution of jobs
among multiple WAN sites in order to exploit data locality
and thus reduce I/O time. Figure [I| shows an architectural
diagram of the proposed proxy infrastructure and its inter-
actions with the AWE clients/server and Shock. The Shock
data server is shown as part of WAN Site 1 in the figure
since it is hosted locally at ANL. This is because the clients
and proxies at this site have a relatively higher bandwidth
connection to Shock than any remote site that is communi-
cating over a wide area link.

Steps 3 through 7 in the figure highlight the proposed

https://github.com/MG-RAST/AWE
https://github.com/MG-RAST/AWE
https://github.com/MG-RAST/Shock
https://github.com/MG-RAST/Shock

WAN Site 1

3- Request data
from proxy

Looks for
requested data
Downloads and
uploads data to/
from shock

LRU scheme for
proxy > . dataeviction _-*
7- Output Data
upload from client

1
e
1

’

-¥-
W~

6- Data sent from M-

10- Upload
/_/—\ijm output
<7 Proxy T>s N Proxy
- Shock

N4 Download
\ request

5- Data sent

= Proposed
infrastructure

1 WAN Site 2 —

A
- Sends requested data to proxy 1

- Receives persistent output data
from proxy

8- Work unit completion

9- Request work
2- Schedule -
work units
on clients

1-Job

4

AWE Scheduler =
Breaks down jobs into tasks and work units

- Schedules work units to clients
- Keeps track of job to proxy mapping

Figure 1: Proposed MG-RAST proxy infrastructure

changes to be made to the current MG-RAST infrastruc-
ture. As shown in the figure, the AWE server schedules
the parallel tasks of a job so that all the data for a given
job is stored on the same proxy. In proxy-aware schedul-
ing, the AWE scheduler randomly chooses a proxy at either
site when scheduling the first work unit in a job. For the
given job, all work units will then be scheduled to a client
at the same site as the chosen proxy. The AWE server keeps
track of the job to proxy mapping so that the subsequent
tasks and work units that comprise that job will be stored
on that same proxy. Hence, all tasks of a job are com-
puted at the same site, and the resulting data is stored in
a single proxy, as opposed to sending tasks to different sites
based on their compute-to-data cost ratio. This approach
eliminates the need for proxies to transfer intermediate data
between each other and the centralized Shock server, thus
reducing the number of wide-area transfers. For MG-RAST,
data dependencies are only between tasks within the same
job. Therefore, intermediate data does not need to remain
in proxy storage once its job is finished; it can simply be
deleted from the proxy, instead of being sent back to Shock.
Only the persistent and final output data from a job needs
to be uploaded to Shock. As a proxy runs out of storage
space, it will send final output data from completed jobs to
Shock in order to free space for new job data.

As shown in Figure [T} clients send their data requests
to a proxy server local to the clients, instead of directly to
the centralized Shock server. When receiving a data access
request from a client, a proxy checks whether it has the
necessary data stored. If so, the proxy sends the data to the
client. Otherwise the proxy requests the data from the Shock
server before sending to the client. Since there is no one-to-
one mapping from work units of a given task to work units of
the next task in the pipeline, we design the proxies to store
data at task-level granularity. Proxies also request data from
Shock at task-level granularity, which reduces the number of
accesses to Shock. In essence, when the proxies transfer data
to and from Shock, all the data needed for the work units
that compose that task is transferred. In contrast, transfers
between proxies and clients is done at the work unit level,
so the client receives only the data necessary for its assigned
work unit. In the current MG-RAST infrastructure (i.e.,
without proxies), clients always request data from Shock at
work unit granularity.

Figureshows a representative example of best-fit schedul-
ing and proxy-aware scheduling. In the figure, each horizon-
tal line represents a different client at that site, with a lim-

ited bandwidth available between the two WAN sites. The
figure shows Jobs A and B, with various work units being
computed for each job. Each box represents a work unit,
with work units from the same task being given the same
coloring. Circles group work units that feed into the next
task in the pipeline. For example, task 9 in the MG-RAST
pipeline depends on both tasks 5 and 8, so work units for
tasks 5 and 8 can be grouped together. The dotted lines
pointing from one group of tasks to another show the de-
pendencies of the tasks.

In the example, Job A initially has tasks 5 and 8 being
computed concurrently because there are no dependencies
between these two tasks. Task 9 is dependent on both tasks’
output data. Job B shows tasks 2 and 3 being computed,
where task 3 is dependent on task 2. The left side of the
figure shows best-fit scheduling without using proxies. Task
5 is the most computationally expensive, as found in [17]
(i.e., its relative cost of I/O is the lowest among all tasks),
so its work units can be computed at either site. The right
side of the figure shows the same situation using proxy-aware
scheduling, where an entire job is computed by clients at a
single site, because all intermediate data of a job is being
stored on the same proxy.

In the best-fit scheduling example, task 5’s work units
at the remote site take longer to complete because of the
need to retrieve the data from Shock and send the output
back. The clients at WAN site 1 become idle waiting for the
work units at WAN Site 2 to complete, so the AWE server
starts scheduling another job’s tasks to those clients. When
Job A’s task 5 is completed, those clients are now busy on
another job, and have to wait longer to start Job A’s task
9. In comparison, for proxy-aware scheduling the jobs can
be split among sites, and the same jobs can be completed in
less time.

4. SIMULATION DESIGN

To explore our proposed proxy architecture, we extended
the AweSim simulator, introduced in Section 2] Although
ROSS is capable of parallel execution, we use sequential ex-
ecution in this work, because the scale of the simulations
performed still experiences good performance with an event
rate of up to 2.4 million events per second. We first provide
a brief overview of AweSim before describing our extensions.

AweSim has five distinct simulation entities (known as
logical processes, or LPs, in ROSS) to represent the MG-
RAST analytic service: (1) an LP representing the Shock

Proxy-Aware Scheduling

| JobA Job A
Task 5_0 Task 5_4

[JobA

‘ Task 5_2

Job A
Task9_0

JobA

|| Job A
Task 5_1

e
A

JobA

Task 8_1

i Task3_3

‘//,
Job A JobA
\| Task5_3 Task8 2

Site2 |

Job B

JobB

{] Job A
Task 5_4

1 Job A
Task 5_3

Task 2_1
Job B

Task 2_2

Task2.0 ||

JobB
Task 3_0

JobB
Task3_1

JobB
Task3_2 a---

Job B

Key

Task dependencies

Task x_y:

i Job A
Task 5_2

x =task #
y = work unit # J

| Task3_3

,,,,,,,,,,,,,,,, ; ¢

t: simulated time

Figure 2: Representative examples of best-fit and proxy-aware scheduling

data server, (2) an LP representing the AWE scheduler, (3)
an LP representing each AWE client, (4) a router LP rep-
resenting the communication between the Shock server and
AWE entities, and (5) an LP representing the WAN end-
points. All LP types have one instantiation, with the ex-
ception of the AWE client, which can have any number of
instantiations, and the WAN endpoints, which have one in-
stantiation per site. The AWE client LPs can be grouped
into multiple sites, with different effective bandwidths to
and from the Shock LP. The simulation proceeds through
the issuance of time-stamped messages or events between
LPs, representing data transfers, work unit executions, and
control events, among others.

In this work, we have extended AweSim to include an LP
representing the storage proxy discussed in Section In
the simulations, we place one proxy at each WAN site. The
proxies have a configurable amount of storage and use a least
recently used (LRU) protocol for evicting data. If the data
evicted is intermediate job data that is no longer needed, it
is simply deleted. Otherwise the data is sent back to the
central Shock data server.

The event flow of the MG-RAST model is based on the
the MG-RAST infrastructure diagram shown in Figure [I]
The various event types used in AweSim are as follows:

e Work unit assignment: Upon scheduling a work unit
to a client, the AWE scheduler issues an event to the
client notifying them of the task type and which dataset
to process.

e Data download request: This event is issued from client
to proxy to request the data necessary for processing
the assigned work unit. If the proxy does not already
have the requested data, the proxy requests the data
from the router, which forwards the request to the
Shock server. In configurations that do not use the
proxy LP, the client sends this event to the router in-
stead, which then sends the download request event to
Shock.

e Data download: After receiving a request for data
download, Shock sends an event with the data to the

router, which forwards it to either the proxy or the
client, depending on whether the configuration includes
proxy LPs. The proxy also uses this event type to send
the requested data to the client. The amount of time
to transfer the data is based on the size of the dataset
and the bandwidth configured between the endpoints.

Data upload: After the client performs the necessary
computation for its work unit, it sends an event to
upload the output data to either a proxy or the router,
dependent on the simulation configuration. If sent to
the proxy, the proxy stores the data, evicting stored
data by a LRU protocol if necessary. The proxy sends
this upload event to the router for any evicted data
that must be stored on Shock. Again, the time to
transfer data is based on the size of the dataset and
the configured bandwidth.

Data upload acknowledgement: After the data is up-
loaded, Shock sends an acknowledgement event to the
router, which sends the acknowledgement to either the
proxy or client, dependent on the given configuration.
In configurations where proxies are used, the proxy
sends this acknowledgement to the client when it stores
the data sent from the client.

Work unit completion: Once a client has received an
acknowledgement that its data has been uploaded, it
sends the AWE scheduler an event to signify that the
work unit has been completed.

Work request: At the beginning of the simulation and
anytime a client has received an acknowledgement from
uploading a work unit’s output data, it sends a mes-
sage to the AWE scheduler to request work.

In the LP representing the AWE scheduler, we have im-

plemented proxy-aware scheduling as previously described
in Section [3:2] In our modified version, AweSim can also be
configured to use proxies in conjunction with FCFS, best-fit,
and greedy scheduling methodologies.

‘ FCFS without proxies —-—
Best-Fit without proxies
1000 ¢ Greedy without proxies E
< FCFS with proxies -+
< Best-Fit with proxies
el Greedy with proxies
3 100 ¢ Proxy-Aware -x
<
[}
>
© 10 1
C
) S
5 f T .o
3 1r Toe-ol 3
S -a
o] * - - o _
s . T T T ool
S8 oif ¥ R
0.01 . : :
©, o Y
2 2 2
P [)
3 2 3

Number of Clients (local/remote)
(a) 64 TB workload

‘ FCFS without proxies —-—
Best-Fit without proxies
1000 Greedy without proxies
3 FCFS with proxies -
< Best-Fit with proxies
el Greedy with proxies
s 100 | Proxy-Aware - 7
e
S \
>
© 1t 1
c P i i Al
) T- -
£ -~
3 -a
o 1r E
=
s
< T e
8 o1fF ¥ -l —
= o
0.01 . : :
© o Yy
2 2 2
2 [0
3 2 3

Number of Clients (local/remote)

(b) 128 TB workload

Figure 3: Average data movement overhead for proxy-aware, best-fit, greedy and FCFS scheduling algorithms with 1000

clients and an input of 64 TB (a) and 128 TB (b).

S. EVALUATION

In this section, we present an evaluation of the proposed
proxy-aware scheduling methodology for MG-RAST using
discrete-event simulation. First we describe the experimen-
tal setup. Then we provide validation of the simulation,
followed by experimental results.

5.1 Experimental Setup

For the experiments, we perform two-site simulations. One
site is configured as “local” with respect to Shock, with
a comparatively faster connection to the centralized data
store. The other site is configured as “remote,” with a com-
paratively slower connection. Currently, MG-RAST runs
with 50 to 150 clients [18]; however, with the anticipated
increase in data submissions, more clients will be necessary.
Therefore, we look at three configurations with a total of
1,000 clients: equal numbers of clients at each site (500 lo-
cal, 500 remote), more clients at the local site (750 local,
250 remote), and more clients at the remote site (250 lo-
cal, 750 remote). We configure each site to have one proxy
with sufficient storage space to hold the intermediate output
data. As stated previously, there are no dependencies be-
tween different jobs, so intermediate job data can be deleted
from the proxy once it is no longer needed, freeing up storage
space for new jobs to store their intermediate data. With
our problem size, a 4 TB proxy storage size is sufficient.

We use the same Shock-to-site bandwidth as in the origi-
nal AweSim work [18]: 500 MB/s download and 100 MB/s
upload for the local site, and 10 times slower download and
upload rates for the remote server. Between WAN sites,
the bandwidth is 50 MB/s, which is the same as the down-
load bandwidth between the remote site and Shock. The
bandwidth between the clients and proxies at a given site is
750 MB/s, and the latency is 0.1 ms, which is based on the
Samsung SSD PMS863 specifications |23} [14].

The metrics we use for evaluation are job response time,
client utilization, daily workload volume, and data move-
ment overhead.

e Job response time is the elapsed time (in hours)
from when a job is first submitted until the job is com-
pleted.

e Client utilization is measured as the percentage of
time that clients spend processing a work unit, includ-
ing the download and upload of inputs and results.

e Data movement overhead is the percentage of time
to transfer data relative to the total compute and data
transfer time for each client. We report the data move-
ment overhead averaged over all clients.

e Daily workload volume is the total input data size
in GiB divided by the simulated time to complete all
jobs in days. This metric is constrained by the job
arrival times in the workload trace being used for sim-
ulation, such that any given workload has a maximum
daily workload volume regardless of the system config-
uration.

For the experiments, we use a production MG-RAST job
trace that contains data for four months of job submissions.
The trace contains 12,483 jobs, 124,830 tasks, and 190,205
work units. Since the number of data submission requests
being submitted to MG-RAST is increasing tremendously,
we extrapolate the production traces to create additional
jobs on the fly during simulation. These extrapolated traces
represent a future trend of the growth in data analysis re-
quests. We used regression models to model the relation-
ships in the trace data. The time it takes a client to execute
a work unit is modeled with respect to the input size of the
work unit coming from the trace. The output size of a work
unit is also modeled with respect to its input size. The input
size of a task is modeled with respect to the output size of
the previous task that it is dependent on. This is necessary
in cases where MG-RAST will output the data in multiple
file formats for a task, but the next dependent task will use
data from only one of the file formats. We also use a uni-
form random number generator to add randomness to the

10000

T T
FCFS without proxies ==
Best-Fit without proxies
Greedy without proxies
FCFS with proxies -+
Best-Fit with proxies

% 1000 ¢ Greedy with proxies
3 Proxy-Aware - %
T
£
3
c 100 ¢ E
S
aQ
7]
Q
a5
8
= 10 | E
=== =sssfs====== o= %
1 . : ‘
© 5} I
% 2 2
3 5 ©
3 2 3

Number of Clients (local/remote)

(a) 64 TB workload

Job Response in Hours

10000 T T
FCFS without proxies ==
Best-Fit without proxies
Greedy without proxies
FCFS with proxies -
Best-Fit with proxies
1000 ¢ Greedy with proxies
Proxy-Aware - %
100 E
0F o-------°"""7 Peemem . 3
¥ - - - - - - == e %
1 Il Il Il
© o Y
2 > 2
2 R ™,
3) 3

Number of Clients (local/remote)

(b) 128 TB workload

Figure 4: Average job response time for proxy-aware, best-fit, greedy and FCFS scheduling algorithms with 1000 clients and

an input of 64 TB (a) and 128 TB (b).

trace values determined by the regression models. Job ar-
rival times of the extrapolated trace are determined using a
Poisson distribution.

We configure the simulations to model a time period of
100 days, and we perform the experiments with two work-
load sizes. The smaller workload uses a total job input size
of 64 TB; the larger workload has a total job input size of
128 TB. The four-month production trace, which provides
approximately 10.5 TB of input job data, is used with the
extrapolated trace. Job arrival times of the four-month pro-
duction trace were compressed to fit in this 100-day simu-
lated time period. Using the extrapolated trace along with
the production trace results in approximately 37,500 jobs,
375,000 tasks, and 806,000 work units for the 64 TB work-
load and 68,900 jobs, 689,000 tasks, and 1,560,000 work
units for the 128 TB workload.

5.2 Validation

The behavior of the previous version of AweSim (i.e., with-
out the proxy LP) was validated by Tang et al. [18] for one-
site simulations by comparing simulation output with met-
rics computed by using production MG-RAST traces. To
validate the behavior of AweSim with the addition of prox-
ies, we compare the output of our extended version with the
original simulator, in order to ensure that certain metrics
stay the same. We are unable to perform further validation
of the proxies with production MG-RAST data, as the prox-
ies have not been implemented into MG-RAST. However, we
perform both one and two site simulations and check that
both versions perform the same amount of work and that the
amount of data transferred is the same. For data transfer,
we compare the amount of data uploaded and downloaded
between clients and the central Shock server in the prior
version (i.e., without proxies) with the amount transferred
between clients and proxies in our extended version. We
expect these values to be the same in each version because
the proxies are now distributing the load of Shock and will,
at some point, hold all job input and output data, as well

as intermediate job data. For the simulations with a 64 TB
input workload, the amount of data uploaded by clients is
approximately 354 TB and the amount downloaded is ap-
proximately 455 TB. For the 128 TB workload, the amount
of data uploaded and downloaded by clients is approximately
725 TB and 929 TB, respectively.

5.3 Experimental Results

To explore the effectiveness of proxy-aware scheduling, we
compare the FCFS, best-fit, and greedy scheduling poli-
cies with the proxy-aware scheduling. For FCFS and the
data-aware methods, we perform simulations with and with-
out proxy storage. Data movement overhead is shown in
Figure |3| for both 64 TB and 128 TB workload simula-
tions. In all three client configurations, FCFS, best-fit, and
greedy scheduling without proxies have the highest data
movement overheads. As the number of remote clients in-
crease, so does the overhead for all three scheduling method-
ologies. In all configurations, using proxies in conjunction
with these scheduling methodologies provides lower data
movement overhead. When there are more local clients or
equal numbers of clients at each site, best-fit, and greedy
scheduling with proxies have a lower overhead than does
FCFS with proxies. When there are more remote clients
than local clients, this situation reverses, with the differ-
ence becoming more pronounced in the 128 TB workload.
FCFS with proxies has a lower overhead in this client con-
figuration, because best-fit and greedy are more restrictive
in assigning work units to the remote site clients, making it
is more difficult for scheduling at the remote site to exploit
data locality to reduce data movement.

While adding proxies decreases the data movement over-
head of all scheduling methodologies, proxy-aware schedul-
ing is the only methodology to decrease to under 1% in all
client configurations for both workloads. When the work-
load doubles, proxy-aware’s overhead slightly decreases, be-
cause the time the clients spend computing increases at a
faster rate than the time the clients spend waiting on data

‘ FCFS without proxies —-—
Best-Fit without proxies
Greedy without proxies
08 | FCFS with proxies -+
- Best-Fit with proxies
© Greedy with proxies
© Proxy-Aware - %
o
_5 0.6
©
N
5 i
2 04 e iiiiiiicaapeoaoooTTe -
Q2
O
0.2
0

el [
0sl0%® [
el

Number of Clients (local/remote)

(a) 64 TB workload

- - - - - === Rl R

08 | w - ________ x -~ TTTIZZzzg
9
©
o
§ o6f 1
3
N
2 04rf 8
C
k]
(&)

FCFS without proxies ==
Best-Fit without proxies
02k Greedy without proxies
. FCFS with proxies -+~
Best-Fit with proxies
Greedy with proxies
Proxy-Aware - %

080 [

Number of Clients

local/remote)

(b) 128 TB workload

Figure 5: Average client utilization for proxy-aware, best-fit, greedy and FCFS scheduling algorithms with 1000 clients and

an input of 64 TB (a) and 128 TB (b).

1400 T T
= FCFS without proxies ==
kel Best-Fit without proxies
o Greedy without proxies
S 1200 | FCFS with proxies -+
£ Best-Fit with proxies
[0} Greedy with proxies
g Proxy-Aware - %
S 1000 -
>
e}
©
o
= 800 |
o
=
=
g 600 :—7"— —

[0}
jo)}
o
o 400
<

Number of Clients (local/remote)

(a) 64 TB workload

.. 1400

©

2

5

et 1200 F % == ======-=s¥mo—-—=====cf

(]

g

S 1000 R

>

o

@

o

x 800 7

o

=

= FCFS without proxies ==

g 600 Best-Fit without proxies 1
Greedy without proxies

S FCFS with proxies -+

© Best-Fit with proxies

[400 Greedy with proxies R

< Proxy-Aware - %

sl [

N

Number of Clients (local/remote)

(b) 128 TB workload

Figure 6: Average daily workload volume for proxy-aware, best-fit, greedy and FCFS scheduling algorithms with 1000 clients

and an input of 64 TB (a) and 128 TB (b).

transfer. The reason proxy-aware scheduling provides low
data movement overhead in all cases is that the data is al-
most always on the proxy when the clients request it, since
the intermediate data generated by tasks are never trans-
ferred to the central data server. The data movement over-
head metric is taking into account the movement of initial
job data from Shock to the proxy and then on to a client;
however, this transfer is negligible compared to the amount
of time the clients spend actually computing work units.
When using proxies (for any scheduling methodology), the
transfer of a job’s final output data from a proxy to Shock
is not factored into the data movement overhead, as the
clients do not have to wait on this transfer. The clients only
need to wait for the acknowledgment that the proxy has re-

ceived the data before requesting more work from the AWE
server. Whereas with the FCFS and the data-aware schedul-
ing methods without proxies, the upload of final output data
is accounted for in the calculation of data movement over-
head, because the clients wait for an acknowledgment from
the central Shock server before requesting more work.

The low data movement overheads observed in the proxy-
aware scheduling also lead to a consistently small average
job response time of approximately 5-7 hours, regardless of
workload size, as shown in Figure E[For the 64 TB work-
load, the addition of proxies improves the job response time,
especially for the 250/750 client configuration, where the
speedup is 3x over greedy and best-fit scheduling without
proxies and the speedup is 52x over FCFS without proxies.

For the 128 TB workload, proxies still provide an improved
job response time over not using proxies, but proxy-aware
scheduling has the lowest job response time in all client con-
figurations. In this larger workload, the largest improve-
ments in job response time are seen in the case where there
are more clients at the remote site. In this case, proxy-
aware scheduling has a speedup of 286x over FCFS without
proxies and 150x over greedy and best-fit without proxies.
Proxy-aware scheduling has only a 1.1x speedup over FCFS
with proxies, but a 22x speedup over best-fit and greedy with
proxies. These large improvements in job response time with
the addition of proxies are due to the fact that clients are
spending much less time in downloading and uploading the
data than with the previous scheduling methodologies.

Client utilization rate is shown in Figure[f] For the 64 TB
workload, not using proxies results in a high client utiliza-
tion rate in the case of more remote clients. The addition of
proxies to any scheduling methodology keeps client utiliza-
tion to approximately 37% in all client configurations. In the
128 TB case, client utilization is much higher for all schedul-
ing methodologies in all client configurations. However, the
addition of proxies results in a lower client utilization rate,
with proxy-aware scheduling providing the lowest utilization
in all configurations because clients are spending less time
waiting on data transfer. Thus, with the addition of prox-
ies, the clients can handle more work, even when there are
a large number of clients at the remote site.

The results for average daily workload volume are shown
in Figure[f] For the smaller workload, all scheduling method-
ologies, except FCFS without proxies, have a consistent av-
erage daily workload volume of approximately 575 GB/day
in all client configurations. Since the workload volume is
limited by the job arrival times in the workload trace, ap-
proximately 575 GB/day is the maximum daily volume for
the 64 TB workload. Similarly for the 128 TB workload, ap-
proximately 1200 GB/day is the maximum. If the system is
unable to keep up with the arrival rate of jobs for a given con-
figuration, then the average daily workload volume for that
configuration will be lower than the maximum. Proxy-aware
scheduling and FCF'S with proxies are the only methods that
consistently meet the maximum average daily workload vol-
ume in all configurations, for both workloads tested. Greedy
and best-fit scheduling with proxies perform the same except
in the 250/750 client configurations, where the workload vol-
ume is reduced to approximately 1075 GB/day.

As discussed in Section[5.2} when proxies are not used, the
amount of data downloaded from and uploaded to Shock in
the 64 TB workload simulations is approximately 455 TB
and 354 TB, respectively. In these simulations, Shock is ac-
cessed by the clients about 806,000 times. Adding proxy
storage (to any scheduling policy) reduces the number of
Shock accesses to approximately 37,000. The amount of
data transferred to Shock is decreased as well, to approx-
imately 64 TB downloaded and 39 TB uploaded. For the
128 TB simulations without proxies, the amount downloaded
from Shock is 929 TB, the amount uploaded to Shock is
725 TB, and the number of accesses to Shock is approxi-
mately 1,560,000. Using proxies for any scheduling method-
ology reduces these amounts to 128 TB downloaded from
Shock, 79 TB uploaded to Shock, and 69,000 Shock accesses.

6. CONCLUSION

MG-RAST, the metagenomics analytic service at Argonne
National Laboratory, is seeing a tremendous growth in data
processing requests. MG-RAST currently uses a central
data store, Shock, for data management. While the central
data store has the advantages of long-term data curation
and added security, it can become a bottleneck for large vol-
umes of data submissions. We propose the addition of proxy
storage servers to the MG-RAST infrastructure, which store
the intermediate data generated by jobs to help reduce the
number of data access requests to Shock. We also propose
a proxy-aware scheduling methodology, which takes data lo-
cality into account while scheduling jobs. Discrete-event
simulation is used to evaluate our proposed changes to the
MG-RAST infrastructure and the behavior of our proposed
proxy-aware scheduling methodology. By extrapolating the
production traces from MG-RAST, we are able to evaluate
the various scheduling methodologies used for MG-RAST
under increased workloads. We have demonstrated that the
addition of proxy storage servers can substantially decrease
the data movement overhead between multiple WAN sites
and lead to a significant improvement in end-user job re-
sponse time. Using proxies speeds the job response time for
all scheduling methodologies evaluated, but using a proxy-
aware scheduling methodology provides the most speedup
over all client configurations in larger workloads.

Acknowledgments

This material was based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computer Research (ASCR) under contract DE-
AC02-06CH11357.

7. REFERENCES

[1] J. Bischof, A. Wilke, W. Gerlach, T. Harrison,

T. Paczian, W. Tang, J. Wilkening, N. Desai, and
F. Meyer. Shock: Active storage for multicloud
streaming data analysis. In 2nd IEEE/ACM
International Symposium on Big Data Computing.
IEEE, 2015.

[2] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A.

De Rose, and R. Buyya. CloudSim: A toolkit for
modeling and simulation of cloud computing
environments and evaluation of resource provisioning
algorithms. Software: Practice and Experience,
41(1):23-50, 2011.

[3] C. D. Carothers, D. Bauer, and S. Pearce. ROSS: A
high-performance, low-memory, modular time warp
system. Journal of Parallel and Distributed
Computing, 62(11):1648-1669, 2002.

[4] W. Chen and E. Deelman. WorkflowSim: A toolkit for
simulating scientific workflows in distributed
environments. In 2012 IEEE 8th International
Conference on E-Science, pages 1-8. IEEE, 2012.

[5] T. C. Cirstea, J. J. Keijser, O. A. Koeroo, R. Starink,
and J. A. Templon. A scalable proxy cache for grid
data access. In Journal of Physics: Conference Series,
volume 396. IOP Publishing, 2012.

[6] J. Cope, N. Liu, S. Lang, P. Carns, C. Carothers, and
R. Ross. Codes: Enabling co-design of multi-layer
exascale storage architectures. Proceedings of the

8]

[9]

[10]

[11]

[12]

[13]

[14]

Workshop on Emerging Supercomputing Technologies,
2011.

E. Deelman, K. Vahi, G. Juve, M. Rynge,

S. Callaghan, P. J. Maechling, R. Mayani, W. Chen,
R. Ferreira da Silva, M. Livny, and K. Wenger.
Pegasus, a workflow management system for science
automation. Future Generation Computer Systems,
2014.

W. Gerlach, W. Tang, K. Keegan, T. Harrison,

A. Wilke, J. Bischof, M. D’Souza, S. Devoid,

D. Murphy-Olson, N. Desai, et al. Skyport:
Container-based execution environment management
for multi-cloud scientific workflows. In Proceedings of
the 5th International Workshop on Data-Intensive
Computing in the Clouds, pages 25-32. IEEE Press,
2014.

W. M. Jones, L. W. Pang, W. B. Ligon, and

D. Stanzione. Bandwidth-aware co-allocating
meta-schedulers for mini-grid architectures. In Cluster
Computing, 2004 IEEE International Conference on,
pages 45-54. IEEE, 2004.

P. Kiingas and M. Dumas. Configurable SOAP proxy
cache for data provisioning web services. In
Proceedings of the 2011 ACM Symposium on Applied
Computing, pages 1614-1621. ACM, 2011.

F. Meyer, D. Paarmann, M. D’Souza, R. Olson,

E. Glass, M. Kubal, T. Paczian, A. Rodriguez,

R. Stevens, A. Wilke, J. Wilkening, and R. Edwards.
The metagenomics RAST server - a public resource
for the automatic phylogenetic and functional analysis
of metagenomes. BMC' Bioinformatics, 9(1):386, 2008.
M. Mubarak, C. D. Carothers, R. B. Ross, and

P. Carns. A case study in using massively parallel
simulation for extreme-scale torus network codesign.
In Proceedings of the 2nd ACM SIGSIM/PADS
conference on Principles of advanced discrete
simulation, pages 27-38. ACM, 2014.

ns-3. https://www.nsnam.org/. Accessed Mar. 15,
2016.

Samsung PM863 and SM863 for Data Centers.

http: //www.samsung.com/global /business/
semiconductor/minisite/SSD/downloads/document /
Samsung_SSD_PM863_and_SM8&863_Brochure_web.pdf.
Accessed Jan. 21, 2016.

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

S. Snyder, P. Carns, J. Jenkins, K. Harms, R. Ross,
M. Mubarak, and C. Carothers. A case for epidemic
fault detection and group membership in HPC storage
systems. In High Performance Computing Systems.
Performance Modeling, Benchmarking, and
Simulation, pages 237—248. Springer, 2014.

C. Szabo, Q. Z. Sheng, T. Kroeger, Y. Zhang, and

J. Yu. Science in the cloud: allocation and execution
of data-intensive scientific workflows. Journal of Grid
Computing, 12(2):245-264, 2014.

W. Tang, J. Bischof, N. Desai, K. Mahadik,

W. Gerlach, T. Harrison, A. Wilke, and F. Meyer.
Workload characterization for MG-RAST
metagenomic data analytics service in the cloud. In
Big Data (Big Data), 2014 IEEE International
Conference on, pages 56-63. IEEE, 2014.

W. Tang, J. Jenkins, F. Meyer, R. Ross,

R. Kettimuthu, L. Winkler, X. Yang, T. Lehman, and
N. Desai. Data-aware resource scheduling for
multicloud workflows: A fine-grained simulation
approach. In Cloud Computing Technology and
Science (CloudCom), 2014 IEEE 6th International
Conference on, pages 887-892. IEEE, 2014.

W. Tang, J. Wilkening, N. Desai, W. Gerlach,

A. Wilke, and F. Meyer. A scalable data analysis
platform for metagenomics. In Big Data, 2013 IEEE
International Conference on, pages 21-26. IEEE, 2013.
T. Thomas, J. Gilbert, and F. Meyer. Metagenomics —
a guide from sampling to data analysis. Microb Inform
Ezp, 2(3):1-12, 2012.

A. Varga et al. The OMNeT++ discrete event
simulation system. In Proceedings of the European
simulation multiconference (ESM 2001), volume 9,
page 65, 2001.

K. Wang, X. Zhou, T. Li, D. Zhao, M. Lang, and

I. Raicu. Optimizing load balancing and data-locality
with data-aware scheduling. 2014 IEEE International
Conference on Big Data (Big Data), pages 119-128,
2014.

Why SSDs are Awesome. http://www.samsung.com/
global /business/semiconductor /minisite/SSD /global /
html/whitepaper /whitepaper01.html. Accessed Jan.
21, 2016.

https://www.nsnam.org/
http://www.samsung.com/global/business/semiconductor/minisite/SSD/downloads/document/Samsung_SSD_PM863_and_SM863_Brochure_web.pdf.
http://www.samsung.com/global/business/semiconductor/minisite/SSD/downloads/document/Samsung_SSD_PM863_and_SM863_Brochure_web.pdf.
http://www.samsung.com/global/business/semiconductor/minisite/SSD/downloads/document/Samsung_SSD_PM863_and_SM863_Brochure_web.pdf.
http://www.samsung.com/global/business/semiconductor/minisite/SSD/global/html/whitepaper/whitepaper01.html
http://www.samsung.com/global/business/semiconductor/minisite/SSD/global/html/whitepaper/whitepaper01.html
http://www.samsung.com/global/business/semiconductor/minisite/SSD/global/html/whitepaper/whitepaper01.html

	Introduction
	Related Work
	MG-RAST Design
	Current Infrastructure
	Proxies and Proxy-Aware Scheduling

	Simulation Design
	Evaluation
	Experimental Setup
	Validation
	Experimental Results

	Conclusion
	References

