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Abstract

Rich metadata in high-performance computing (HPC) systems contains extended information about users, jobs,
data files, and their relationships. Property graphs are a promising data model to represent heterogeneous rich meta-
data flexibly. Specifically, a property graph can use vertices to represent different entities and edges to record the
relationships between vertices with unique annotations. The high-volume HPC use case, with millions of entities and
relationships, naturally requires an out-of-core distributed property graph database, which must support live updates
(to ingest production information in real time), low-latency point queries (for frequent metadata operations such as
permission checking), and large-scale traversals (for provenance data mining).

Among these needs, large-scale property graph traversals are particularly challenging for distributed graph storage
systems. Most existing graph systems implement a “level-synchronous” breadth-first search algorithm that relies on
global synchronization in each traversal step. This performs well in many problem domains; but a rich metadata
management system is characterized by imbalanced graphs, long traversal lengths, and concurrent workloads, each of
which has the potential to introduce or exacerbate stragglers (i.e., abnormally slow steps or servers in a graph traversal)
that lead to low overall throughput for synchronous traversal algorithms. Previous research indicated that the straggler
problem can be mitigated by using asynchronous traversal algorithms, and many graph-processing frameworks have
successfully demonstrated this approach. Such systems require the graph to be loaded into a separate batch-processing
framework instead of being iteratively accessed, however.

In this work, we investigate a general asynchronous graph traversal engine that can operate atop a rich metadata
graph in its native format. We outline a traversal-aware query language and key optimizations (traversal-affiliate
caching and execution merging) necessary for efficient performance. We further explore the effect of different graph
partitioning strategies on the traversal performance for both synchronous and asynchronous traversal engines. Our
experiments show that the asynchronous graph traversal engine is more efficient than its synchronous counterpart in
the case of HPC rich metadata processing, where more servers are involved and larger traversals are needed. Moreover,
the asynchronous traversal engine is more adaptive to different graph partitioning strategies.
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1. Introduction

A high-performance computing (HPC) platform commonly generates huge amounts of metadata about different
entities including jobs, users, files, and their relationships. Traditional metadata, which describes the predefined
attributes of these entities (e.g., file size, name, and permissions), has been well recorded and used in current systems.
Rich metadata, which describes the detailed information about entities and their relationships, extends traditional
metadata to an in-depth level and can contain arbitrary user-defined attributes. A typical example of rich metadata is
provenance or lineage, which maintains a complete history of a dataset, including the processes that generated it, the
user who started the processes, and even the environment variables, parameters, and configuration files used during
execution [1]. Property graphs, which are an extension of traditional graphs with property annotations on vertices and
edges, are a promising data model for rich metadata management in HPC systems because of their ability to represent
not only metadata attributes but also the relationships between them. Distributed property graph databases such as
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Neo4j [2], DEX [3], OrientDB [4], G-Store [5], and Titan [6] have been developed to assist in managing large property
graphs.

We are developing a rich metadata management system based on the new concept of unifying metadata into one
generic property graph [1]. In addition to storing the property graphs, a major requirement in the rich metadata use
case is to effectively answer graph traversal queries from metadata management utilities, such as provenance queries,
hierarchical data traversal, and user audit. Graph traversal usually serves as the basic building block for various
algorithms and queries. In fact, it is so fundamental that traversal of simple graphs1 has been used as a benchmark
metric (Graph500) for measuring the performance of supercomputers [7, 8]. Traversal for property graphs is likewise
critical and needs efficient implementation.

Typically, the core execution engine of graph traversal is implemented by following the general structure of the
parallel “level-synchronous” breadth-first search (BFS) algorithm, dating back three decades [9, 10]. Given a graph
G, level-synchronous BFS systematically explores G from a source vertex s level by level. The level is the distance
or hops it travels. BFS implies that all the vertices at level k from vertex s should be “visited” before vertices at level
k + 1; hence, global synchronization is needed at the end of each traversal step. The “level-synchronous” breadth-
first search structure has been adopted not only in graph databases but also in many distributed graph-processing
frameworks, including Pregel [11], Giraph [12], and GraphX [13]. The Bulk Synchronous Parallel (BSP) model is
popular in this context because of its simplicity and performance benefits under balanced workload.

However, such global synchronization could cause serious performance problems in our property graph-based
metadata management case for several reasons. First, as an on-line database system, our system allows concurrent
graph traversals for different management tasks. The interferences among traversals easily create stragglers [14, 15],
which can cause poor resource utilization and significant idling during global synchronization. Second, the imbalance
of the graph partitions, along with the possible variations in attribute sizes among different vertices and edges, leads
to highly uneven loads on different servers (an indication of stragglers) while traversing. The wide existence of small-
world graphs in HPC metadata (e.g., degree of vertices follows the power-law distribution [16, 1]) makes this problem
even worse. Third, in HPC metadata property graphs, possible graph traversal steps could be much larger than the
graph diameter, which traditionally limits the maximal traversal steps in simple graphs. For example, the six degrees
of separation theory exists in social networks [17]. Specifically, in our use case, different attributes of the same vertex
or edge can be used in different steps. Longer traversals introduce more synchronizations and lead to a higher chance
of performance penalty caused by stragglers.

Previous work indicated that asynchronous approaches have the potential to minimize the effects of load im-
balance across different cores in multicore machines [18]. GraphLab [19], PowerGraph [20], and other distributed
frameworks [21, 22] have investigated the use of asynchronous execution models, which could implement the traversal
operations in general. However, these approaches are more suitable for the distributed, batch-oriented graph compu-
tation that runs on the entire graph, instead of interactive traversal and query of subgraphs, which are common in our
HPC-rich metadata management system.

In this research, we explore the design and implementation of an asynchronous traversal engine. We propose opti-
mizations, including traversal-affiliate caching and execution merging, to fully exploit the performance advantage of
the asynchronous traversal engine. In addition, we explore the effect of different graph-partitioning strategies on graph
traversal engines to show the advantage of the asynchronous engine. Also proposed is a general traversal language to
describe diverse patterns of property graph-based rich metadata management. We show that the asynchronous engine
can support this language with detailed progress report functionality comparable to that of a synchronous engine. The
main contributions of this work are fourfold.

• Analysis and summary of the graph traversal patterns in property graph databases for HPC rich metadata man-
agement. Based on these patterns, we propose a graph traversal language to support them.

• Design and implementation of an asynchronous distributed traversal engine. Critical optimizations are also
proposed for the asynchronous traversal engine: traversal-affiliate caching and execution merging to improve
the performance.

1The simple graph indicates a graph defined as a set of nodes connected by weighted edges in this study.
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• Analysis of the effects of vertex-cut vs. edge-cut graph partitioning on graph traversal.

• Evaluation and demonstration of the performance benefits compared with synchronous traversal engine on both
synthetic graphs and real-world graphs, as well as under different graph-partitioning strategies.

The rest of this paper is organized as follows. Section 2 introduces the background of rich metadata graphs and
summarizes their graph traversal patterns by analyzing HPC metadata applications. In Section 3, we introduce the
GraphTrek traversal language designed for these patterns, and we show how to use it to implement the given use
cases. In Section 4, we describe the asynchronous traversal engine in detail, followed by several optimization strate-
gies in Section 5. Section 6 discusses the effect of different graph-partitioning strategies on traversal performance.
In Section 7, we discuss the implementation details of such traversal frameworks. Section 8 presents evaluations,
including comparisons with a synchronous implementation and an analysis of the impact of asynchronous traversal
optimizations. In Section 9, we present conclusions and discuss future work.

2. Background and Requirements on Metadata Graph Traversal

In this section, we provide background on the metadata graph model and the critical attributes that motivate our
design. Then we analyze several use cases of HPC metadata management which can be modeled by using a property
graph. Through this analysis, we summarize the graph traversal patterns as the foundation of our proposed language
design. The graph traversal requirements also motivate the design and implementation of our proposed asynchronous
traversal engine. A more complete discussion and analysis of these use cases can be found in our previous work [1].

2.1. Graph-Based HPC Metadata Management
HPC metadata can be intuitively abstracted as a graphlike structure. For example, metadata—including users,

executions of programs (jobs), data files accessed, or simply a directory—can be neatly mapped into different vertices
in property graphs, as shown in Fig. 1. For example, File represents the basic data unit in storage systems; Execution
indicates the running applications, such as a job submitted by users, processes scheduled within one job, or threads
running inside one process; and User means the real user of the cluster. Between these entities, different interactions
and relationships can be represented as different types of directed edges with properties attached. For example, the
run edge indicates that the user started the corresponding execution instance, the exe edge denotes which executable
file(s) an execution used, and the read/write edges indicate the types of operations performed on files from executions.
Although all the relationships are shown as directed, the relationships can simply be undirected, relying on vertex
attributes to derive meaning. If that is insufficient, there might also be corresponding reverse relationships for traversal
in the opposite direction (e.g., a wasExecutedBy relationship). Some entity properties are shown for vertices, such
as UID/GID, file names, and parameters used by the execution. These properties are by no means exhaustive; and
additional properties can easily be added, such as file permissions and creation time.

User 

Execution

File 
run

exe

readread

write

write

run

name:john
group:admin

name:dset-1
size:1020M
..., ...

name:job201405
params:-n 1024
..., ...

name:app-01
size:256KB
..., ...

exe

ts:20140501
writeSize:7M
..., ...

name:sam
group:cgroup

Figure 1: A metadata graph example in HPC Systems.

The graph-based metadata management approach also allows users to define their own entities and map them to
new types of vertices. For example, users can create workflow entities to connect different executions for a workflow
system.
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2.2. Rich Metadata Graph Attributes

Our previous work examined the structure of graphs representing HPC metadata [1], informing the design chal-
lenges of the graph traversal engine we will face. Specifically, we generated graphs from one-year publicly avail-
able [23] Darshan I/O logs [24, 25] on the Argonne Intrepid Blue Gene/P supercomputer and analyzed the resulting
graph structure, leading to the following key observations.

2.2.1. Large Scale
HPC metadata graphs can have hundreds of millions of vertices and edges, which we expect would increase both

with supercomputer scale and with more complex use-cases. In Table 1, the first two columns show the total number
of users and jobs in the Darshan trace collection. The column I/O Ranks records all ranks (processes) that have
I/O operations. In many cases, this indicates the rank 0 process or the aggregators in two-phase I/O. The column
Ranks records all the ranks as processes whether they performed I/O or not. The column Files shows all the files that
have been visited by those jobs. This table clearly shows the possible scale of HPC metadata graphs. Hence, graph
traversal engines that operate on such graphs must consider scalability and load balancing. In addition, HPC batch
jobs typically involve a large amount of data/metadata activity up front and on regular intervals (e.g., checkpointing).
A graph traversal engine in this environment must therefore operate safely in the presence of high-volume concurrent
updates to the graph and thus most provide a consistent model to determine which data should be returned or discarded.

Table 1: Statistics of Metadata Graph.
Users Jobs I/O Ranks Ranks Files

Num 177 47,592 10,085,931 113,278,038 34,608,033

2.2.2. Power-Law Distribution
Similar to POSIX file metadata, where a vast majority of directories contain a reasonably small file count while

the remaining contain huge counts, rich metadata graphs follow the same pattern with additional unbalanced entities
such as users, jobs, and files. In our previous work, we applied the maximum likelihood estimator approach [26] to
formalize these observations. In that approach, we first assume the sample fits the power-law distribution, then use the
maximum likelihood estimator to estimate the possible parameters. With these parameters as a hypothesis, we then
use p-value to quantify the plausibility of the hypothesis Based on this strategy, we look through the user, process,
and file degree distribution again.
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Figure 2: Degree CDF for different entities. The red line denotes the power-law distribution.
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The results in Fig. 2 show a strong indication that rich metadata graphs, similar to social networks, follow the
skewed power-law distribution [16]. Specifically, the User, Process, and File entities fit the power-law distribution
well. By integrating the results from node degree distribution figures shown in our previous work [1], we assert that
the user, process, and file degrees fit the power-law distribution.

The imbalanced nature of metadata graphs presents a challenge for efficient traversal: a single overloaded server
may slow down the whole traversal significantly. In addition, the power-law distributed graphs require complex graph
partitioning algorithms that in turn increase the complexity of the graph traversal engine.

2.3. Use Cases

In this section we highlight examples of the types of queries that could be performed on rich metadata that is
stored by using a property graph data model.

2.3.1. POSIX Filesystem Namespace Management
The hierarchical namespace of POSIX filesystems can be mapped to the graph model by abstracting directories

and files as linked vertices. The operations on those files or directories can be mapped to vertex and edge mutations,
while operations such as readdir can be satisfied by neighbor queries on a particular vertex (a scan). A multilevel
directory traversal can be efficiently expressed as a graph traversal. Moreover, the graph-based model can extend the
POSIX namespace capabilities by allowing logical organizations of data files as appropriate for the scientific domain.
For example, it can allow scientists to simply retrieve all data files generated by a particular experiment.

2.3.2. Data Auditing
Data auditing is critical in large computing facilities where different users share the same cluster. One type of audit

query is the following: Find the set of files read by a specific user during a given timeframe. Based on the property
graph abstraction, this query can be mapped to a graph traversal operation in two steps: (1) beginning at the given
user, traverse the edges with the run property type to compute the set of executions the user has performed, filtering
the results by the given time frame; and (2) traverse the read edges from the executions to the resulting files.

2.3.3. Provenance Support
Provenance is widely used in metadata management systems, including data sharing, reproducibility, and workflow

management [27, 28, 29, 30]. After modeling rich metadata such as user/file system interactions as property graphs,
we can answer provenance questions such as the following: Find the execution whose model is A and input files
have annotation as B (here, model indicates the critical component of the execution, and annotation refers to the
user-specified attributes on data files). This kind of query, which is a generalized version of a problem from the First
Provenance Challenge [31], can be expressed as a graph traversal search that starts from execution vertices to file
vertices while checking needed attributes during the traversal. In contrast to typical graph traversal operations, this
query requires the source vertices (executions) as the returned value instead of the final file vertices.

2.4. Graph-based Metadata Traversal Patterns

Many other use cases have needs similar to those of the cases discussed above. Based on these use cases, we
summarize the typical traversal patterns as follows:

• Like BFS, graph traversal starts from a set of vertices and travels in steps. In each step, since it travels through
property graphs, it needs to filter the vertices and edges according to attributes.

• Unlike BFS, graph traversal may revisit the same vertex in different steps in order to check different attributes
or edges. This kind of revisit is considered as cyclic or redundant in BFS, but it is acceptable in our use case.

• Unlike BFS, graph traversal need not always return the destination vertices. As the provenance example shows,
any vertices accessed during the traversal could be needed by users.

Based on these observations, we introduce the proposed traversal language in the following section.
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3. Traversal Language

A number of query languages either directly represent or can be used for property graphs [32]. These languages
include SPARQL [33] for RDF data [34], GraphGrep for regular expression queries in graphs [35], Cypher for Neo4j
graph databases [36], Gremlin from the Thinkerpop project [37], specific query language for provenance [38], Quasar
for QMDS [39], and SQL (SemiJoin) for relational databases [40, 41, 42]. Among these languages, previous re-
search [43] suggests that a low-level language such as Gremlin provides better performance because it allows users to
manually control each traversal step in detail. But, extremely low-level abstractions—for example, the vertex-centric
or edge-centric graph programming primitives used in distributed graph-processing frameworks such as Giraph and
Pregel—place too many implementation burdens on the users, who need to implement their own BFS algorithm using
these primitives to finish a traversal. In this research, we propose a more restrictive traversal language that allows
users to manually control each step while remaining simple and easy to use.

3.1. Traversal Language API
We define an iterative query-building language to represent property graph traversal operations. The language

prototype is implemented in Java. The primary class defined is called GTravel, whose methods return the caller
GTravel instance to allow call chaining. The most important core methods are defined as follows; we omit other
functions such as progress report in this work for brevity.

• Vertex/Edge selectors v() and e()

The vertex selector method v() represents an entry point for a graph. These IDs can be initially retrieved with
searching or indexing mechanisms provided by any underlying graph storage. The edge selector method e()
selects specific edges from the working set of vertices (frontier) by its label argument, at the point the method
call is placed in the call chain.

• Property filters va() and ea()

Property filters take the property key, type of filter, and comparison property values as arguments to filter out
vertices and edges. Property key, the name of the property, normally is a byte array. The filter types currently
include EQ, IN, and RANGE, which indicate that the given properties of vertices or edges must be equal to the
value, within a set of values, or in between the given ranges, respectively. Note that multiple property filters can
be applied in one step to filter more entities by using the AND operation. OR is not explicitly supported in the
current version, but users can issue different traversals and combine their results for this purpose.

• Return indicator rtn()

A return method tells the graph traversal engine that the working set of vertices at the point of the call should be
returned to the user, but only for those vertices whose resulting traversals reach the end of the call chain. Nor-
mally, graph traversals return the final destination vertices or all visited vertices. But, as our HPC provenance
example shows, it is useful to be able to return the intermediate results, such as executions whose connected
vertices satisfy given conditions. For such traversals, we simply add rtn() to the call chain after the traversal
step of interest, in order to return the needed vertices.

The graph traversal instance (GTravel) encapsulates multiple steps into a single batch. To start a graph traversal,
users will need to build such a GTravel instance by chaining multiple operations sequentially and then submit it to
the traversal engine. To join the results from multiple requests, users need to submit them individually and manually
combine them in client-side.

3.2. Traversal Commands Applied to Use Cases
Given the graph traversal language, we can easily describe the traversal operations for the use cases discussed in

the preceding section.
POSIX File Location. The query locate a file through a given path can be expressed as a graph traversal request

as follows. It starts from the root directory in POSIX file systems (i.e., “/”), then travel through the “contains” edges
to locate all its subdirectories. The file names are used as filters on those vertices during traversal. The destination file
will be returned.
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1 GTravel.v(’/’).e(’contains ’).va(’name’, EQ , ’exp1’).e(’contains ’).va(’name’, EQ, ’input1 ’).rtn()

Data Auditing. The query find all files ending in .txt read by “userA” within a timeframe can be expressed as
follows. First, a vertex selector is used to choose the user vertex of interest. Then, the traversal follows the “run” and
“read” edges with property filters applied. As rtn() suggests, this command will return the file vertices encountered.

1 GTravel.v(’userA’).e(’run’).ea(’start_ts ’, RANGE , [t_s , t_e]).e(’read’).va(’type’, EQ, ’text’).rtn()

Provenance Query. The example provenance request find the execution whose model is A and inputs have an-
notation as B is shown below. In this command, we first select all the vertices with given type (i.e., execution) and
then denote that these execution vertices are the return vertices using rtn(). In this way, the paths that satisfy all these
constraints will return their source execution vertices to users.

1 GTravel.v().va(’type’, EQ, ’Execution ’).rtn().va(’model ’, EQ, ’A’).e(’read’).va(’annotation ’, EQ , ’B’)

4. Asynchronous Traversal Engine Design

A graph traversal begins from the moment users submit their GTravel instances and ends when users receive all
returned vertices. In this section, we introduce the proposed asynchronous traversal execution in detail.

4.1. Execution Engine

The proposed asynchronous traversal execution starts from submitting the GTravel instance in a different way
from most existing graph databases (e.g., OrientDB and Titan), in which the traversal is submitted by simply splitting
the multistep traversal into multiple queries. Clients issue one query each time and aggregate results to build the
next query, as Fig. 3(a) shows. We consider this design as a client-side traversal since the client plays a central
controller role during the traversal. This design usually leads to performance problems because the clients need all
the intermediate results transferred from servers through the busy client-server network. Furthermore, compared with
servers, the client is error-prone, thus significantly affecting the system stability.
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Figure 3: Comparison of client-side traversal and server-side traversal.

In this research, we propose a different strategy, namely, server-side traversal. As Fig. 3(b) shows, the client sends
the GTravel instance to one selected backend server (s3 in this example) to start a graph traversal. This selected
server (s3) will serve as the coordinator for this traversal. The traversal is executed among backend servers and
returns the status and results to the coordinator. In this way, server-side traversal reduces unnecessary client-server
communications, which are typically slower comparing with backend servers. More important, server-side traversal
takes advantage of data locality in backend servers hence can provide better performance. This server-side traversal
is similar to job submission in graph-processing frameworks such as Giraph, Pregel, and GraphX.

The server-side traversal is scheduled upon the coordinator’s receipt of the client’s GTravel instance. The coordi-
nator develops a multi-step execution plan from the traversal command execution plan and executes it asynchronously,
as shown in Fig. 4. Because of the page limit, we omit the property filters on vertices and edges, which in this case
are applied locally on each server.
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Figure 4: Asynchronous execution of a traversal command. Numbered circles represent the order of operations, circles with numbers represent
data (vertex/edge) transfers, and circles with ‘R’ represent traversal status updates.

In this example, the two-step GTravel instance (gt1) begins from userA. The coordinator server first learns that
userA is stored in server2 from the underlying graph databases and then sends the request to server2 with an extra
parameter specifying the current step 1. Upon receiving the request, server2 will iterate all the “run” edges from the
given vertices and filter them based on specified filter functions. Optimizations can be applied in underlying storage
for iterating edges: since we usually iterate edges by type, storing all the edges of one vertex together based on their
type will provide better performance for such behavior. With the storage optimizations, the edge iteration on server2
would become sequential, which could obtain the best performance on block-based storage devices.

After iterating edges, we get a new set of vertices, which will be the starting vertices in the second step. Without
any synchronization, server2 will concurrently send the GTravel instance (gt1) to all servers that the vertices are stored
at (server3 and server4 in this example). Similarly, the extra parameter that denotes the second step is also attached
with the request. Upon receiving this data, server3 and server4 will perform the similar edge iterations to get a new
set of vertices and will dispatch requests to more servers. If the current execution is the last step in the traversal
command, instead of dispatching the traversal to a further step, the server will return the vertices to the coordinator
server, shown as step 3 in Fig. 4. (Returning non-“end” vertices is discussed in Section 4.2.) Once all the vertices
are fully returned, the coordinator server starts to reply the client, and the whole graph traversal finishes. A buffered
pipeline can be created to transfer results from the coordinator to the clients if the return dataset is too large. We left
this optimization as future work.

The asynchronous graph traversal still follows the breadth-first structure: each vertex iterates all its neighbors in
parallel, and there is no accessing order among these neighbors. However, different from traditional BFS implemen-
tation, which needs synchronization among different steps, we allow each server to start the next step without explicit
synchronizing with other servers. Hence, it can coordinate the unnecessary waiting for the slow servers and provides
a better overall performance.

4.2. Traversal Return
A traversal stops when it reaches the last step of the GTravel instance. Typically, these final executions will

transmit the final vertices to the coordinator and to the clients. But as rtn() suggests, we allow users to return the
intermediate or even the source vertices. In order to support such functionality, each time that a backend server starts
a traversal execution, it will check whether the generated vertices are marked as returned by users. If yes, the server
will change the report destination of all the downstream traversal executions to return the needed vertices.

As Fig. 5 shows, changing the “reporting destination” causes the graph traversal to execute in a slightly different
way. Assume that the vertices (v1 and v2) are generated in a certain step of the traversal, which is marked with rtn().
Then, the servers actually storing v1 and v2 will force the downstream servers to change their “reporting destination”
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Figure 5: Example of a graph traversal that returns the intermediate vertices.

from coordinator to themselves. The servers that execute the last step will send their final results to these reporting
destinations. For example, as step R shows, after one more step traversal, the backend servers return to s2 and
s3 instead of the coordinator server. When replies arrive, servers (s2 and s3) will know the status of downstream
executions and will send the vertices to the coordinator server accordingly. In this way, we can return vertices in
arbitrary steps in the graph traversal.

4.3. Status and Progress Tracing

In asynchronous graph traversal, each server independently executes its actions and spreads the traversal to more
servers if needed. No global traversal status can be obtained. This situation introduces a correctness concern such as
silent failure, which means that if the asynchronous execution fails, the system may not be informed. Because of the
existence of such failures, the coordinator server will not be able to decide whether the entire traversal has finished
correctly. We introduce a status-tracing mechanism to identify failures to guarantee the traversal correctness. We leave
for future work the implementation of full fault tolerance features such as restarting traversal from where it failed.

Consider one backend server as an example. During the traversal, it repeats the same operation: it receives the
GTravel instance from another server, performs the needed vertex and edge filtering to get a new set of vertices, then
concurrently sends the traversal instance to more servers according to the new set of vertices. We consider this whole
procedure on a specific server as one traversal execution. An asynchronous graph traversal consists of many such
concurrent traversal executions. Intuitively, tracing the status of each execution will give us a global view of the
traversal. To trace each execution, we log the creation and termination events of executions in the coordinator server.
If any execution was logged as created but did not terminate (as the result of a timeout or similar reasons), we consider
that the server failed.

In Fig. 4, the circles denoted with ‘R’ show the example tracing reports from the backend servers to the coordinator
during graph traversal. Whenever one server successfully sends the GTravel instance to other servers to start the next
step, it will report an execution creation event to the coordinator telling it that the new execution is created in the
target servers. In addition, after the GTravel instances have been successfully sent, the server will report the execution
termination event denoting its own termination. An execution will not be considered finished in the coordinator
unless it has registered all its downstream executions in the coordinator server and has reported its own termination.
Similarly, a graph traversal does not finish unless all the executions created are marked as terminated in the coordinator
server.

The status reports of the traversal executions from the backend servers also help track the traversal progress.
Although it is not feasible to have the exact current step of the traversal as it is executed in an asynchronous way, the
count of current unfinished traversal executions in each step can still help users estimate the remaining work and time.
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5. Asynchronous Traversal Optimizations

To achieve even better performance for asynchronous graph traversal, we introduce two critical optimizations:
traversal-affiliate caching and execution merging.

5.1. Traversal-Affiliate Caching
One potential drawback of asynchronous traversal is the redundant vertex visit. Unlike the repeated vertex visit,

these redundant vertex visits are from the same step on the same vertex and are triggered by asynchronous execution.
Figure 6 shows an example of such a scenario: three different paths arrive at vH in the same step starting from va.
These three paths (i.e., a → c → H, a → d → H, and a → e → H) go through two servers. Because of the
asynchronous execution model, they may arrive at three different times and cause redundant disk I/Os. This drawback
wastes precious I/O bandwidth, leading to a performance problem.

a

b c d e

s1

s3

f
g H i

gt_1

s2

s4

1

2 2

3 3 3

Figure 6: Example of a redundant vertex visit in an asynchronous graph traversal: a, b, ... are vertices. S1, S2, ..., are backend servers.

To avoid this problem, we introduce a traversal-affiliate cache. In each backend server, a preallocated cache is
created once the servers start. During the graph traversal, the server caches the current execution into this buffer with
the identification of a {travel-id, current-step, vertex-id} triple. While serving a new request, the server first queries
the cache to check whether it has been served before. If there is a cache hit, then the server can safely abandon the
request. By doing so, we also avoid conducting graph traversal multiple times.

Although the traversal-affiliate caching buffers only three-element triples, complex and concurrent graph traversal
requests can still fill it up. To substitute the cached elements, we use the time-based replacement strategy: for each
traversal instance, the triples with the smallest step Ids are substituted. The rationale comes from the fact that the
existence of a larger step Id indicates that the oldest steps are already finished. This is still true even under the
asynchronous execution model. The distance between the largest step and the smallest step is controlled by using an
optimized execution scheduling and merging strategy introduced in next subsection.

5.2. Execution Scheduling and Merging
In the proposed asynchronous graph traversal, each server receives a traversal instance and current step from its

ancestor servers. It puts the received requests into a local queue and replies to the ancestor servers before processing
these requests. In this way, the ancestor servers can finish asynchronously, and the local server will have a number
of buffered requests. A pool of worker threads is waiting on this queue for new requests. This leads to a dynamic
queue size in each server: if a server is slower or with heavier loads, its internal queue is longer, and more requests
are buffered. This presents an opportunity to improve performance via scheduling and merging. Otherwise, the queue
is shorter, and the server responds quickly for new requests.

A worker thread takes one queued request at a time for processing. The upper queue in Fig. 7 shows an initial
status after receiving a number of requests from ancestor servers. We show only a single graph traversal in this figure.
During scheduling, the worker thread always chooses the request with the smallest step Id in the queue. In this way,

10



... ....

Local Requests Queue

step1, v0  step1, v1 step2, v0 step0, v2 step2, v1

... ....
[step1, step2], v0 [step1, step2], v1step0, v2

Merge Requests

... ....
step0, v2 step1, v1 step1, v0 step2, v0 step2, v1

Schedule Requests

Figure 7: Request queue in local server under scheduling and merging.

all the requests are ordered by their step Ids, as the middle queue in Fig. 7 shows. Using this execution scheduling
strategy, we can process the slow steps with higher priority in order to help them catch up. This approach also helps
control the maximal step difference between the fastest one and the slowest one in the traversal, thus reducing the
traversal-affiliate cache usage.

In addition to execution scheduling, we introduce execution merging. As Fig. 7 shows, we consolidate different
steps on the same vertex; for example, traversal executions on v2 for step 1 and step 2 will be combined as one disk
request. In this way, we need only to retrieve the vertex attributes or to scan its edges once locally. This optimization
significantly reduces the amount of disk I/O.

The scheduling and merging on the buffered queue provide an automatic load-balancing mechanism among asyn-
chronous executions inside the same graph traversal. If executions are slower because of stragglers, more requests
will be buffered in the queue, providing an opportunity to schedule and merge executions more efficiently. These op-
timizations can significantly improve the execution of asynchronous graph traversals as confirmed by the evaluation
test.

6. Graph Partitioning

Since the metadata graphs are typically distributed across the whole cluster, partitioning the graphs across multiple
servers is necessary. Graph partitioning strategies can make a huge difference in the performance of graph traversal.
For example, if one vertex with millions of edges is assigned to a single server, traversing through this vertex will
be more costly than those low-degree vertices (this can be observed in Section 8). However, partitioning a graph to
account for both load balance and vertex-edge locality is difficult. In fact, finding an optimal partitioning strategy for
power-law graphs is an NP-complete problem [44], although numerous heuristic algorithms have been developed [45,
46].

.... ....

(a) Edge-cut (b) Vertex-cut

v1 v1 v1
v2

v3 v2v3

v2

Figure 8: Edge-cut and vertex-cut graph partitioning methods. Solid circles/lines represent vertex/edge storage location, respectively.

Basic graph partitioning strategies include edge-cut and vertex-cut [20], shown in Figure 8. Edge-cuts distribute
vertices, together with their outgoing edges, shown in Figure 8(a). Many distributed graph databases including Ti-
tan [6] and OrientDB [4] use this strategy due to both simplicity and vertex/edge locality (i.e., edges are always kept
with their source vertices). However, edge-cuts can be problematic for highly imbalanced graphs like a metadata
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graph, where vertices can have millions of outgoing edges. On the other hand, vertex-cut distributes edges instead of
vertices into different servers based on the edge source destination, as Figure 8(b) shows. In this way, the vertices are
cut and stored in multiple servers, as its name indicates. This strategy is usually used in graph processing frameworks
such as GraphX [13] and PowerGraph[20], where time-consuming computations are applied on each vertex. In this
case, vertex-cut is proven to have better performance than edge-cut [47, 48, 49]. Vertex-cut strategies, however, are in-
efficient in many cases as they result in unnecessary network communication during traversal for low-degree vertices.
Vertex-cut and edge-cut can be considered as two extreme cases optimized for high-degree vertices and low-degree
vertices, respectively. Between them, there are a large number of graph partitioning algorithms that cut the graphs
adaptively [46, 50, 51, 20].

... ....

iterate A

A A' A''

... .... ... ....

Local Read Remote Read

... ....
s1

s1

Figure 9: Steps in graph traversal showing effect from graph partitioning.

Graph traversal performance is significantly affected by these partitioning strategies. The basic unit of graph
traversal is scanning connected edges of a vertex and broadcasting to more vertices as iterate A shown in Fig. 9. The
cost of such operation contains broadcasting requests to multiple possible servers that store A and its edges plus further
reading destination vertices from local or remote servers. Based on this simple model, distributing A to more servers
increases the broadcasting overhead. On the other hand, aggregating all edges of a vertex together may lead to more
remote reading for the destination vertices. The best trade-off clearly is determined by both the network overhead
and local read overhead, which are distinct on different clusters. The complexity of traversal performance makes it
difficult to analyze the effect of different partitioning algorithms analytically. In addition, the use of asynchronous
traversal further complicates such an analysis through overlap of edge scanning and server communication. In this
research, we compare those two graph partitioning algorithms through empirical experiments (detailed results are
shown in Section 8). Note that, other than the evaluation presented in Section 8, all evaluations are conducted based
on edge-cut graph partitions for both synchronous and asynchronous traversal engines.

7. Implementation: GraphTrek

We designed the proposed asynchronous graph traversal engine as a standalone component along with the backend
storage system (i.e., the property graph storage system). As Fig. 4 shows, the asynchronous graph traversal engine
runs on each backend server independently with the graph databases instances. These traversal engine components
communicate with each other through RPC calls but retrieve data and information from the underlying graph storage
system using provided APIs. The information that the graph storage provides mainly includes the data and location
of a given vertex and edges.

Although numerous distributed property graph storage systems have been proposed and developed, they are all
general solutions without considering the requirements of our HPC metadata management use case. For example,
Titan stores the property graphs on general column-based NoSQL storage systems such as HBase [52] or Cassan-
dra [53], where all vertices are mapped as different rows; edges and attributes are mapped as separate columns in the
same row; key-value storages were also used to implement graph functionalities [54]. Systems such as Noe4j store
the graph structure and attributes separately in order to gain performance on queries of graph structure.
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In this study, we implemented the proposed traversal engine (namely, GraphTrek) and evaluated it based on our
own concise but complete graph storage system developed for HPC metadata management.2 First, it contains client-
side portion including libraries providing the graph traversal APIs to support server-side traversal submission. It
also has an interactive shell for building and submitting graph traversal queries. Second, the server-side components
process graph traversal queries and manage graph distribution and storage. The backend storage system uses consistent
hashing to manage the back-end storage cluster by mirroring Dynamo’s approach [55]. The mapping from virtual
nodes to physical servers is kept in the distributed coordinating service zookeeper [56]. The whole storage system
runs as a standalone service, similar to IndexFS [57], which runs on I/O nodes or compute nodes using the parallel
file system as the storage back-end.

In detail, the graph data such as vertex, edges, and their attributes are organized into different key-value pairs.
Those key-value pairs are sequentially stored using RocksDB [58] for better scan performance. The RPC layer
is implemented by ZeroMQ [58] as a high-speed network transmission protocol to provide efficient data exchange
between graph traversal instances. A graph-partitioning component provides vertex and edge location information to
the traversal engine. The graph traversal engine is implemented as described in the previous section.

For comparison, we also implemented synchronous graph traversal in our framework for use as a baseline. In
a synchronous graph traversal, a control server typically is used to synchronize each step of the traversal. This
control server can be a client or a selected backend server. Using a client as a controller makes the traversal more
vulnerable to failures and has worse performance because of multiple rounds of client-server communication. Thus,
in our synchronous graph traversal implementation, we follow the same server-side traversal design to obtain a fair
comparison. The execution of the synchronous traversal is straightforward. Each time, the controller makes sure that
all previous executions have finished and then starts the next step. In order to obtain the best performance, the data
flows are transferred between involved backend servers without going through the controller. Each server waits for
the signal from the controller to start the next step, in order to realize global synchronization between sequential steps.

8. Evaluation

In this section, we evaluate the performance of GraphTrek on synthetic graphs and on a real-world HPC rich meta-
data management use case. We implemented the synchronous graph traversal (denoted Syn-GT), plain asynchronous
traversal without any optimizations (denoted Asyn-GT), and GraphTrek (denoted GraphTrek) for comparison.

All evaluations were conducted on the Fusion cluster at Argonne National Laboratory [59] and CloudLab Utah
APT cluster [60]. Fusion contains 320 nodes, and we used 2 to 32 nodes as backend servers in these evaluations.
Each node has a dual-socket, quad-core 2.53 GHz Intel Xeon CPU with 36 GB memory and 250 GB local hard disk.
Fusion nodes are connected by high-speed network interconnection (InfiniBand QDR 4 GB/s per link, per direction).
The global parallel file system includes a 90 TB GPFS file system. CloudLab Utah APT cluster has 128 nodes, and
we used 32 nodes as the backend servers. Each node has a 8-core Xeon E5-2450 processor, 16GB RAM and 2 TB
local hard disk. CloudLab nodes are connected through 1GbE Dual port embedded NIC. The CloudLab cluster was
specifically used to evaluate the performance of different graph partitioning algorithms.

GraphTrek servers are currently able to run using either local storage or parallel file systems by changing the
location of RocksDB database files. They can be placed on local disks for better performance or on parallel file
systems (e.g., GPFS in the Fusion environment) to provide data resiliency in the case of a server/component failure.
In the following evaluations, unless explicitly pointed out, we evaluated GraphTrek atop GPFS. While not presented,
the local disk approach improves performance by roughly 10% on Fusion, with the caveat that the resulting service is
fault-intolerant.

For experiments with synthetic graphs, we used scale-free graphs generated by the RMAT graph generator [61].
The RMAT graph generator uses a “recursive matrix” model to create graphs that model real-world graphs as social
network graphs. We generated directed property graphs with 220 vertices and an average out-degree of 16. The vertices
and edges in these synthetic graphs are the same type, with randomly generated attributes attached (the attribute size
is 128 bytes). The graph (denoted RMAT-1 graph) was generated with parameters a = 0.45, b = 0.15, c = 0.15, and
d = 0.25, which create a power-law graph with moderate out-degree skewness. In addition to this parameter set, we

2GraphMeta Prototype, http://discl.cs.ttu.edu/gitlab/dongdai/graphfs
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tried different RMAT configurations during the evaluation. They all generated largely similar results, so we included
only this single set because of space limitations.

We execute 2-step, 4-step, and 8-step graph traversal examples starting from the same randomly selected vertex
on 2 to 32 backend servers. No extra workloads are generated on any backend servers during the experiments; any
workload imbalance is due to the properties of the graph itself. All evaluations are carried out from a cold start in
order to force disk access in the traversal engine. Note that the graph size is held constant as we vary the number of
servers. In larger-scale experiments, each individual server therefore stores fewer vertices and edges.

8.1. Sensitivity to Asynchronous Traversal Optimizations
We begin our evaluation by investigating the impact of the asynchronous traversal optimizations described in

Section 5. GraphTrek introduces two optimizations, traversal-affiliate caching and execution scheduling/merging, to
improve the performance of asynchronous graph traversal. To verify the benefits of these optimizations, we evaluate
the performance analysis of Sync-GT, ASync-GT, and GraphTrek in a specific case, an 8-step graph traversal on the
RMAT-1 graph, as shown in Fig. 10. Here, We Syn-GT denotes the synchronous graph traversal; Asyn-GT indicates
plain asynchronous traversal without any optimizations. Other examples are omitted because they show similar results.

●

●

●

●

●

5 10 15 20 25 30

0
10

20
30

40
50

60

Server Number

E
xe

cu
tio

n 
T

im
e 

(s
)

● Sync−GT Async−GT GraphTrek

Figure 10: Performance comparison on RMAT-1 graph.

In this series of tests, the Async-GT is the plain asynchronous engine without optimizations. As the results
indicate, it has worse performance than that of both the GraphTrek and Sync-GT. The plain asynchronous traversal
is even slower than Sync-GT mostly due to the large number of redundant visits. The main performance difference
between Async-GT and GraphTrek comes from the proposed optimizations. To further understand the benefits of
these optimizations, we placed instruments inside the GraphTrek engine to collect the statistics during the execution.
In each server, we collected three statistics: (1) redundant visits, which indicates the number of repeated vertex
requests detected by the traversal-affiliate caching; (2) combined visits, which counts the number of vertex requests
that can be combined together by the execution merging; and (3) real I/O visits, which counts the real vertex accesses
to backend storage systems. The sum of these three numbers equals the total vertex requests received in one server
during the traversal. Figure 11 shows the results of a typical run of an 8-step graph traversal on 32 servers (servers are
reordered for better presentation).

These statistics show a significant reduction from the received requests to real I/O visits as a result of the proposed
optimizations. The redundant vertex visits actually dominate the majority of received requests. Traversal-affiliate
caching can effectively remove them in each server, thereby boosting performance. On the other hand, another
optimization—execution merging—has different impacts on the different servers: the combined visit is much more
obvious in the first 10 servers than in the other servers. From an in-depth analysis of these 10 servers, we found that
they actually stored more high-degree vertices. Because of this imbalance of graph structure, they were much slower
than the other servers while serving the same number of vertex requests. Thus, in an asynchronous engine, the local
queue can buffer more requests, and the execution merging was able to merge more vertices together. Therefore, as
Fig. 11 shows, these servers end up with fewer real vertex requests and hence can catch up with other servers. This
optimization significantly reduces the actual disk I/Os and helps improve the overall performance.
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Figure 11: Statistics collected from an 8-step traversal on 32 servers.
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Figure 12: 2-step graph traversal on
RMAT-1.
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Figure 13: 4-step graph traversal on
RMAT-1.
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Figure 14: 8-step graph traversal on
RMAT-1.

Based on these results, we omit the Async-GT evaluation from all subsequent experiments and focus on the
comparison between asynchronous traversal with optimizations (GraphTrek) and synchronous traversal (Sync-GT).

8.2. Performance Comparison on Synthetic Workloads

In this section we use a wider sampling of synthetic workloads. The results obtained by using RMAT-1 are shown
in Fig. 12 to Fig. 14. The number of servers is shown on the x-axis, while the y-axis shows the elapsed time (ms) for
graph traversal requests.

From these figures we see that for graph traversals with smaller steps and fewer servers, the synchronous imple-
mentation actually performs better than does the GraphTrek, as Fig. 12 shows. The reason is that the short traversal
does not provide enough optimization opportunities for asynchronous executions. GraphTrek’s relative performance
improves when more servers are involved in the traversal and the potential for stragglers increases. Figure 13 and
Figure 14 also illustrate that GraphTrek performs well with more traversal steps. For example, in Fig. 14, with an
8-step graph traversal, the performance improvement over 32 servers is around 24%, compared with the 5% improve-
ment over 2 servers. The increased number of traversal steps (as would be common in HPC metadata management
use cases) also significantly increases the potential for straggler servers to affect performance. With different RMAT
graphs, a similar performance pattern can be observed.

8.3. Performance Comparison with External Interference

Servers may experience transient straggling behavior because of concurrent I/O activity from other traversals or
external applications. To investigate the performance impact on the traversal engine, we emulated this phenomenon by
inserting a fixed (50 ms) delay into individual vertex data accesses. Each time, multiple delays (500 times, indicating
500 slow vertices accesses) were created to emulate a straggler that lasts a certain period of time. By creating fixed
delays, we can make sure that the two traversal engines are facing the same amount of external delays. During the
whole traversal, three stragglers were created in three selected servers at chosen steps (step 1, 3, and 7). Specifically,
we created one straggler chosen by round-robin from these three selected servers in each step. Figure 15 shows how
this affected performance for an 8-step RMAT-1 graph traversal.
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Figure 15: Performance comparison with simulated external stragglers. Each bar shows an average of three runs.

The results suggest an obvious performance advantage of GraphTrek (2x with 32-server) compared with syn-
chronous solutions. The asynchronous traversal can make productive traversal progress despite the presence of exter-
nal interference because it does not require synchronization after each step of the traversal. The execution scheduling
and merging optimizations also allow straggling servers to more quickly catch up with the other servers.

8.4. Performance Comparison with Graph-Partitioning Algorithms
We implemented both vertex-cut and edge-cut graph-partitioning algorithms in order to investigate their impact

on traversal performance. The synthetic graph (RMAT-1) is used in this evaluation. To highlight the performance
difference caused by different vertex degrees, instead of randomly choosing one vertex to travel, we selected one
representative vertex from each vertex degree set and issued traversal requests from it. The results are shown in
Fig. 16 and Fig. 17. Here, the maximal degree of generated RMAT-1 graph is 640 and the minimal degree is 1, so
the x-axis is in the range of [1, 640]. The y-axis shows the value of Time(vertex−cut)

Time(edge−cut) , where Time(x) indicates the time
consuming of finishing traversal requests for specific graph partition algorithm x. For each start vertex, we issue
1-step, 2-step, and 3-step graph traversal using both synchronous and asynchronous traversal engines. All tests ran on
the CloudLab Utah APT cluster with 32 servers storing the graph and one client issuing traversal requests.
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Figure 16: Performance difference of edge-cut and vertex-cut parti-
tioning under synchronous engine.
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Figure 17: Performance difference of edge-cut and vertex-cut parti-
tioning under asynchronous (GraphTrek) engine.

From Fig. 16 and Fig. 17, we can make several observations. First, vertex-cut consistently performs worse than
edge-cut in our test case (i.e., the y-axis values are always larger than 1). The reason is that the largest vertex degree
is still relatively small (i.e., around 600) in the test data. The local read cost of iterating through the edges is therefore
still relatively low in the edge-cut case when compared with the increased communication cost (32X) introduced by
the vertex-cut.

Another important observation is that different partitioning strategies have a significant effect on synchronous
traversal performance (up to 10X). However, the effect of different partitioning strategies is much smaller when using
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asynchronous traversal as Fig. 17 shows (up to 4X). The asynchronous execution avoids global synchronization, so
even when some servers have imbalanced and heavy workloads, they will not affect others and can catch up through
merging requests. This indicates that GraphTrek is able to work efficiently under a broader variety of partitioning
algorithms.

8.5. HPC Metadata Management Workloads
We also evaluated the impact of the proposed asynchronous graph traversal and the GraphTrek framework for

real HPC rich metadata management use cases. To build the heterogeneous property graph, we imported one year
of Darshan traces (2013) from the Intrepid supercomputer at Argonne National Laboratory into a property graph for
the evaluation [25, 23]. This collection of Darshan logs characterizes the I/O activity of approximately 42% of all
core-hours consumed on the Intrepid over the course of a year. Statistics for the generated graph are listed in Table 2.
Our previous work shows that this rich metadata graph is also a small-world graph with a power-law distribution [1].

Table 2: Statistics of Rich Metadata Graph
No. of Users Jobs Executions Files Edges

177 47600 123.4 million 34.6 million 239.8 million

Because of page limit constraint, we show only one example data auditing query and its performance. This query
is used for analyzing the influence of a suspicious user on the system. It lists all files that were written by executions
whose input files are suspicious. The graph traversal can be expressed as follows.

1 GTravel.v(suspectUser).e(’run’).ea(’ts’, RANGE , [ts, te]) // select jobs
2 .e(’hasExecutions ’) // select executions
3 .e(’write ’) // select outputs
4 .e(’readBy ’) // select executions
5 .e(’write ’).rtn(); // outputs of executions

Running this request for a randomized user on 32 servers with different graph traversal implementations has
different performance results, as reported in Table 3. Similar to synthetic graphs, the GraphTrek clearly outperforms
the synchronous design and approach.

Table 3: Performance comparison on Darshan graph.
No. Servers Sync-GT Async-GT GraphTrek

32 3575 ms 4159 ms 2839 ms

9. Conclusion and Future Work

Rich metadata is being recognized as increasingly important in future HPC systems in order to support advanced
metadata management functionalities. To uniformly manage different types of rich metadata, we proposed a graph-
based model and leveraged graph storage systems to efficiently store them. However, existing graph traversal engines
are not efficient for metadata graph queries, which are characterized by imbalanced graphs, long traversal lengths,
and concurrent workloads. Motivated by the needs of graph-based HPC rich metadata management use cases, we
have proposed a graph traversal language to help describe complex queries. We have designed and implemented an
asynchronous graph traversal engine called GraphTrek in order to avoid the performance bottleneck caused by strag-
glers while traveling through rich metadata graphs. To achieve better asynchronous traversal performance, we have
also introduced two critical optimizations, traversal-affiliate caching and execution merging, for the asynchronous
traversal design. We discussed how graph-partitioning algorithms affect the performance of both synchronous and
asynchronous traversal engines. We conducted a detailed comparison of the synchronous and asynchronous traversal
engines performance on both synthetic datasets and real-world workloads. The results confirm that for larger sys-
tems with deeper traversals, the proposed asynchronous engine achieves better performance than does the traditional
synchronous approach. For future work, we will focus on developing fault tolerance capabilities in order to make
traversals capable of continuing in the event of faults.
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