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Abstract—Two-tiered direct network topologies such as Drag-
onflies have been proposed for future post-petascale and exascale
machines, since they provide a high-radix, low-diameter, fast
interconnection network. Such topologies call for redesigning
MPI collective communication algorithms in order to attain the
best performance. Yet as increasingly more applications share a
machine, it is not clear how these topology-aware algorithms
will react to interference with concurrent jobs accessing the
same network. In this paper, we study three topology-aware
broadcast algorithms, including one designed by ourselves. We
evaluate their performance through event-driven simulation for
small- and large-sized broadcasts (both in terms of data size and
number of processes). We study the effect of different routing
mechanisms on the topology-aware collective algorithms, as well
as their sensitivity to network contention with other jobs. Our
results show that while topology-aware algorithms drastically
reduce link utilization, their advantage in terms of latency is
more limited.

I. INTRODUCTION

As the number of cores in petascale and post-petascale
supercomputers increases, traditional low-radix networks such
as torus fail to meet cost and performance requirements of
HPC infrastructures. Consequently, a number of novel, high-
radix topologies such as Dragonflies [1] and variants [2], [3]
have been proposed.

The Dragonfly topology is a two-tiered direct topology
consisting of groups of routers connected to terminals. Routers
belonging to the same group form an all-to-all network, while
groups themselves act as high-radix, virtual routers connected
in an all-to-all manner. This design enables a cost-efficient,
low diameter network. Indeed, any two terminals in such a
topology are at most 5 hops away from one another. Dragonfly
topologies have been used in a number of machines such as
the Cori and Edison supercomputers at NERSC [4], and will
be used by the future Theta machine at ANL [5].

Yet such a topology poses new challenges. High-radix
routers and low network diameter make job isolation more
difficult and force network resources to be shared across inde-
pendent jobs. Communication interference between jobs [6],
[7], [8], one of the main causes of performance variability
in HPC applications [9], becomes increasingly difficult to
avoid. This interference issue is further amplified by the
fact that Dragonfly networks perform best under uniform
random traffic [10], which motivates for random placement
of processes across the network, and non-minimal or adaptive
routing strategies [11], [1].

While random placement of processes and appropriate
routing strategies can help mitigate interference, collective

communication provides another opportunity for reducing
interference. Topology-aware algorithms can minimize traffic
between groups, reducing utilization of these key links. These
algorithms must be evaluated not only for jobs spanning
the full network and running individually, but for random
allocations of any size, and in presence of background traffic.

Broadcast algorithms adapted to the Dragonfly network have
been proposed in the literature [12], [13]. Xiang and Liu [12]
have proposed the group first and router first algorithms, which
we call GLF (Global Links First) and LLF (Local Links
First) in this paper. An algorithm similar to LLF has also
been proposed for the PERCS topology by Jain et al. [13].
These works, however, focus on a single job spanning the full
machine.

In this paper, we evaluate three topology-aware broadcast al-
gorithms for the Dragonfly topology: LLF, GLF, and FOREST.
The later is an algorithm designed by ourselves that mixes LLF
and GLF to try to overcome the limitations of both. Using
the CODES framework [14] for discrete-event simulations
of the Dragonfly network, we demonstrate their performance
across a range of allocation sizes, for different types of
routing methods, different data sizes, and with the presence
of background traffic. Our results show that, while topology-
aware algorithms drastically decrease link utilization, they do
not necessarily decrease the execution time, and deeper studies
should be conducted to find out what makes each algorithm
perform particularly well (or particularly poorly) in a given
context. For example, LLF presents a high run time and a
large variability for small allocations, compared with other
algorithms.

The rest of this paper is organized as follows. In Section II
we present the background and related work of our study.
Three topology-aware algorithms, LLF, GLF, and FOREST,
are presented in Section III. Section IV evaluates these al-
gorithms through packet-level network simulations using the
CODES simulation framework. Finally Section V concludes
and opens to future work.

II. BACKGROUND AND RELATED WORK

In this section we first describe the Dragonfly topology, in-
cluding common problems related to routing, task placement,
and communication interference. We then describe common,
non-topology-aware broadcast algorithms, showing their po-
tential drawbacks on a Dragonfly network.



Fig. 1: Illustration of a Dragonfly topology with g = 3, a = 2,
p = 2, and h = 1.

A. Dragonfly networks
1) Overview: The Dragonfly topology is a two-tier network

topology composed of g groups of a routers. Each router is
connected to a number p of terminals through terminal links.
Routers in a given group are all connected to one another
through local links in an all-to-all topology. Each router in
a given group is also connected through global links to h
routers belonging to other groups. In our study, we consider
a Dragonfly topology in which, for any two groups G and
G′, there is exactly one router R belonging to G and one
router R′ belonging to G′ such that R shares a global link
with R′. This translates into h = g−1

a and corresponds to the
architecture originally proposed by Kim et al. [1].

2) Routing on a Dragonfly: A message sent from a terminal
T1 to a target terminal T2 connected to the same router R1

needs to cross 2 terminal links (for example terminals 0 and 1
in Figure 1). If T2 is in the same group but connected to R2 6=
R1, the message has to cross one terminal link (T1 → R1), one
local link (R1 → R2), and one terminal link (R2 → T2). This
is the situation of terminals 0 and 2, for example. Finally if
the target terminal is in another group, the message first needs
to be routed from R1 to a router R′1 that has a global link to
a router R′2 in the target group, then from R′2 to R2 through
a local link, and finally to the target terminal (note that R′1
may be equal to R1 if R1 has a global link to a router in the
destination group, and similarly R′2 may be R2). Hence in this
situation the message crosses 2 terminal links (T1 → R1 and
R2 → T2), 1 global links (R′1 → R′2), and anywhere from
0 to 2 local links (R1 → R′1 if R1 6= R′1 and R′2 → R2

if R2 6= R′2). In Figure 1 for example, a message sent from
terminal 0 to terminal 11 needs to cross two terminal links and
one global link. A message sent from terminal 0 to terminal
4 needs to cross one local link in addition to the global link
and the two terminal links. A message sent from terminal 0
to terminal 7 needs to cross one more local link.

The above routing method is called minimal, or direct. Non-
minimal (or indirect) and adaptive routing strategies using
Valiant’s algorithm [15] and variants [16] have be proposed
to randomize the inter-group traffic and avoid congestion [1],
[17], [18]. When sending a message from a terminal to another
in different groups, non-minimal routing randomly selects an
intermediate group through which the packet will transit. This
technique has the benefit of making the network traffic look
more like a uniform random traffic pattern, for which the
Dragonfly topology is well suited [10]. Adaptive routing con-
sists of switching between minimal and non-minimal routing
depending on whether congestion is detected.

Although the adaptive routing mechanism proposed by

Kim et al. [1] along with the Dragonfly topology can help
avoid congestion, Prisacari et al. have shown that it still
has limited capabilities to really randomize the traffic [10].
Besides, non-minimal routes increase the number of hops
required to transfer a packet, which increases the latency
and energy consumption. It is therefore not sufficient to rely
only on routing mechanisms to address congestion issues; we
need to develop topology-aware communication algorithms
that effectively minimize global and local link utilization.

3) Job and process placement: The intuition to avoid shar-
ing links across jobs would be to isolate jobs on as few routers
as possible [6], [8]. Process placements strategies have been
proposed depending on the dominant communication patterns
of applications [18]. Bhatele et al. show that while topology-
aware task placement strategies can achieve better performance
under minimal routing, non-minimal routing makes such op-
timization unnecessary at the cost of higher latencies.

Jain et al. [19] have shown that random process placement,
along with adaptive or non-minimal routing, help spread the
traffic across the network and avoid hot spots. Yet randomizing
task placement is still not sufficient to fully randomize the
network traffic, as shown by Prisacari et al. [20].

As a result of random process placement, most of the
messages generated by any non-topology-aware collective
communication algorithms transit through a global link. This
problem is further amplified by non-minimal and adaptive
routing, which select a random intermediate group through
which to route messages, therefore doubling the utilization of
global links. If the goal is to minimize link utilization, a key
focus must be on leveraging topology information to avoid
unnecessary traffic outside groups.

4) Taking advantage of Dragonfly: Several observations
can be made from the design of the Dragonfly topology and
from its routing method. First, sending data to a process in
a different group requires traversing more hops than send-
ing data to a process in the same group. In a production
system where multiple applications run concurrently, it may
be desirable to keep inter-group communications and global
link utilization to a minimum to avoid network congestion
and performance variability. Doing so will also minimize
the impact of routing decisions on the performance of the
algorithm. Indeed, as fewer inter-group communications are
performed, there will be fewer opportunities for non-minimal
or adaptive routing to increase the latency by making messages
transit through a randomly-selected group. Consequently, it
will also minimize the communication volume.

The second observation is that once a process in a group has
received its data, it can broadcast that data internally within
the group without using global links, hence the number of
messages traversing global links in a topology-aware broadcast
can be reduced down to one per group in which the application
runs.

Third, provided that multiple terminals in a group have
received the data, the data can be sent in parallel to terminals
of other groups through distinct global links.

These three observations have driven the design of some
topology-aware collective algorithms [12], [13], which attempt
to minimize the transfer through global links. However, one
consideration that has been left aside in these previous works



is the fact that Dragonfly networks use high-radix routers.
Sending data only across local links, or only across global
links during one step of a broadcast prevents the router from
leveraging its input and output ports and buffers associated
with unused links. Counter-intuitively, minimizing global link
utilization might therefore not be the best way to get the short-
est run time of the collective algorithms out of a Dragonfly
network. The evaluation we conduct in this paper precisely
aims to explore this tradeoff.

B. Non-topology-aware broadcast algorithms
1) State of the art: Current implementations of MPI such

as MPICH [21] provide several broadcast methods that are
selected based on the size of the message and the number of
processes involved. For small messages (size ≤ 12288 bytes),
MPICH uses a binomial tree algorithm. For long messages,
MPICH splits the data and performs a scatter across processes
followed by an allgather. The scatter phase uses a binomial-
tree algorithm. The allgather phase uses a recursive-doubling
algorithm [22] for medium-size messages (size ≤ 524288)
and power-of-two number of processes. For long messages and
for medium-size messages and non-power-of-two number of
processes the allgather phase uses a ring algorithm. OpenMPI
also provides a number of broadcast algorithms, including a bi-
nomial tree algorithm [23]. Contrary to MPICH, which selects
the algorithm based on data sizes thresholds and number of
processes independently of the machine, OpenMPI’s algorithm
are selected based on prior benchmarking and an encoded
decision function [24]. None of these algorithms, however,
take into account the network topology and job placement.

In our study, we chose to compare topology-aware algo-
rithms against the binomial-tree algorithm (from this point
onward, we will refer to it as TREE). The two other algorithms
provided by MPICH are composed of scatter and allgather
phases that could themselves be redesigned for the Dragonfly
network. Such a design is left for future work.

III. BROADCASTING IN A DRAGONFLY NETWORK

In this section, we present three algorithms –LLF, GLF, and
FOREST– specifically designed for the Dragonfly topology.
These algorithms aim at minimizing the utilization of global
links in order to prevent congestion with other applications
running on the platform. LLF and GLF have been presented
by Xiang et al. [12] under the terms “router first” and “group
first” respectively. LLF has also been presented by Jain et
al. [13] for the PERCS network topology, another two-tier
direct network topology. FOREST is an algorithm we designed
as hybrid between GLF and LLF, aiming at overcoming the
limitations of LLF in the context of small allocations or small
number of routers per group compared with the number of
groups used by the job.

A. Terminology and topology information
1) Notations: In the following we use the term root ter-

minal to refer to the terminal containing the process from
which the broadcast is initiated. We call the router to which
this terminal is connected the root router. Similarly, we call
root group the group that contains this router. We call remote
groups the groups that do not contain the root router/terminal.

2) Querying topology and placement information: The
algorithms presented hereafter are based on the assumption
that some information about the topology and the process
placement can be obtained. Each terminal, router, and group is
assigned a unique terminal, router, and group id, respectively.

a) Process placement: Any process can have access to
the terminal id of any other process belonging to the same
application.

b) Topology: From a terminal id, any process can retrieve
the id of the router connected to this terminal and the id of
the group containing this router.

c) Connectivity: Given two group ids G1 and G2, any
process (not necessarily part of G1 or G2) can retrieve the ids
of the routers R1 in G1 and R2 in G2 that share a common
global link.

Such information can reasonably be obtained from tools
such as the Portable Network Locality (netloc) [25].

B. Algorithm 1: Local-Links-First (LLF)

The LLF algorithm consists of four steps.
1) The root process sends its data to at least one process in

every router of its group that is involved in the broadcast.
This first broadcast is done using a binomial tree. The
goal of this step is to have as many routers as possible
having a terminal that holds the data in the root group.
This step uses terminal and local links.

2) Processes that have the data (including the root) in the
root group send it to one process in each remote group
involved in the job. The receiving processes are chosen
based on their distance to the sending processes. The
source processes send data in serial to the destination
processes. The goal of this step is to send the data to
one terminal in each remote group. This step is the only
one that uses global links.

3) Processes that have the data in remote groups broadcast
it inside their group. This is done by sending it to one
process in each router using a binomial tree broadcast.
The goal here is that every router in every group has at
least one terminal holding the data. This step uses only
terminal and local links.

4) Each process that has the data in each router proceeds
with sending it to the rest of the processes connected to
the same router, using a binomial tree broadcast. This
step only uses terminal links.

This algorithm takes advantage of the parallelization across
global links. After the root process has sent its data to other
processes in its group in step 1, these processes can indepen-
dently send their data to remote groups without interfering
with one another.

Degraded placement cases. The worst case placement for
this algorithm appears when the root group contains a single
process: the root of the broadcast. In this situation, the root
process will have to send its data to one process of each group
in serial by itself. This worst-case scenario can be avoided for
example by first sending the data to a process in a group that
has a large number of routers used by the job. This process
will serve as the new root of the LLF broadcast. An alternative
consists of first broadcasting the data across global links using



a binomial tree broadcast, then only broadcast inside each
group. This solution is provided in the next section.

C. Algorithm 2: Global-Links-First (GLF)

The GLF algorithm consists of three phases.
1) The root process broadcasts the data to one process in

each group. This first step is completed using a binomial-
tree algorithm. This step uses terminal, local, and global
links. The goal is to have the data present in one process
of every group.

2) Each receiving process of the first step, as well as the
root, become the root of an intra-group broadcast to
send the data to one process in each router. This step
is performed using a binomial-tree algorithm. It uses
terminal and local links. The goal is to send the data to
at least one process in every router.

3) Each receiving process in each router becomes the root
of a broadcast across processes connected to the same
router. This last phase is also done using a binomial-tree
broadcast. This step uses only terminal links.

Degraded placement cases. The GLF algorithm does not
suffer from an unbalanced number of processes per group.
However for a given number of processes, assuming that it
is more costly to send through global links than it is to send
through local links, allocations that span fewer total groups
will tend towards higher performance (i.e., lower latency).
The worst-case occurs when the largest number of groups
are involved (forcing the deepest tree for the first broadcast).
Remaining process can be placed in one group spanning the
largest number of routers (for instance by first placing one
process per router) to force the deepest possible tree in the
second step as well. Finally by placing remaining processes
in all the terminals of at least one router, one can force the
deepest tree for the third step as well.

D. Algorithm 3: FOREST

FOREST is an algorithm we have proposed to overcome
the limitation of LLF in situations where LLF would perform
the worst, that is, when a small number of processes in the
root group have to send their data to comparatively many
destinations in remote groups in step 2. In this worst-case
situation, the fact that source processes send data in serial with
LLF makes the root group become a bottleneck, and impacts
performance. Instead, FOREST builds several binomial trees
(hence the name of the algorithm) across the groups, one per
source process in the root group, to perform this step. The
next steps (sending data within each group and within each
router) remain the same.

E. Analytical estimation of link utilization

In this section, we provide an estimation of link utilization
for each algorithm. We start by computing some probabilities
on the number of links required to reach one terminal from
another, assuming minimal routing.

1) Probability of crossing a global link: Given 2 distinct
terminals T1 and T2, the probability that they belong to the
same group is P = ap−1

gap−1 . Hence the probability that sending

a message from T1 to T2 requires the use of one global link
is

P (1 global link) = 1− ap− 1

gap− 1

2) Probability of crossing local links: A message sent from
T1 to T2 will either cross 0, 1, or 2 local links. The probability
that it crosses 0 local links is

P (0 local link) =
p− 1

gap− 1
+

hp

gap− 1
.

The first term corresponds to the probability that the two ter-
minals belong to the same router. The second term corresponds
to the probability that they belong to different groups but that
the routers to which they are connected share a global link.
The probability that the message has to cross 1 local link is

P (1 local link) =
(a− 1)p

gap− 1
+2

h(a− 1)p

gap− 1
= (2h+1)

(a− 1)p

gap− 1
.

The first term corresponds to the probability that the terminals
belong to the same group but not the same router. The
second term corresponds to the probability that they belong
to different groups, and that one local link is required in one
of the groups but not in the other.

Finally the probability that the message has to cross 2 local
links is

P (2 local links) = 1− P (0 local link)− P (1 local link).

3) Estimating link utilization for TREE: Assuming a ran-
dom job allocation of n terminals, tree being non-topology-
aware, any message sent from a terminal to another during a
broadcast will have to cross an average number of global links
equal to

E(global links) = P (1 global link) = 1− ap− 1

gap− 1
,

thus the expected total number of global links used is

E(total global links) = (n− 1)(1− ap− 1

gap− 1
).

The average number of local links used by a single message
is equal to

E(local links) = P (1 local link) + 2P (2 local links)

= 2− 2 + p(1 + 2ha+ a)

gap− 1
,

hence the expected total number messages transiting through
local links is

E(total local links) = (n− 1)(2− 2 + p(a+ 2ha+ a)

gap− 1
).

4) Estimating link utilization for LLF, GLF, and FOREST:
Topology-aware algorithms attempt to make a minimal use
links. It is in fact not necessary to rely on probabilities to
compute their link utilization, and the following analysis is
common to all of them. All the algorithms will only use
one global link per remote group, leading to a global link
utilization bounded by g − 1. During the step where data is
sent to remote groups, at worst 2(g − 1) messages transit in
local links. Once one terminal in each group has the data,



broadcasting within one group requires to send at worst a− 1
messages through local links. The final step does not require
any local or global links. Hence the number of messages
crossing global links is bounded by g − 1 and the number of
messages crossing local links is bounded by 2(g−1)+g(a−1).

IV. EVALUATION

A. Methodology

1) Preliminary study: To evaluate the algorithms, we first
conduct a preliminary study, looking only at the generated
communication pattern. We determine the number of links
used and the makespan, without taking into account the
particular behavior of routers and the congestion that could
occur between different processes running the algorithm, or
interference with other jobs.

2) Event-driven simulations: We then use the CODES
network simulation framework [14] to simulate the behavior of
the network during the execution of each algorithm at packet-
level detail. CODES is based on the ROSS parallel discrete
event simulator [26]. It has already demonstrated its accuracy
in modeling high performance networks such as torus [27], and
has been used to evaluate various routing strategies on Drag-
onfly networks [28]. CODES has also been used to evaluate
the performance of MPI collective communications in torus
and Dragonfly networks [29], yet the collective algorithms
were simply modeled using a fan-in/fan-out communication
pattern instead of point-to-point messages generated by the
actual algorithms, as done in our work.

3) Background traffic: After evaluating the network perfor-
mance with no other traffic than the collective communication,
we observe how the algorithms react to background traffic
in the network (Section IV-D). The background traffic is
generated as follows: each terminal not participating in the
broadcast has a payload of x MB to send (x being chosen
such that the background traffic lasts at least until the broadcast
has completed). It sends it in 1024 byte messages addressed
to another randomly selected terminal not participating in
the broadcast. The inter-arrival time of such send operations
follows an exponential distribution of mean 100 microsec-
onds. Given the facts that uniform random traffic enables
peak performance on a Dragonfly network, and that jobs
are consequently allocated randomly, such a traffic pattern
is representative of background traffic observed in Dragonfly
networks. This methodology for generating random traffic is
the same as that employed by Besta and Hoefler for the
simulation of Slim-fly networks [30], and by Kim et al. for
the Dragonfly topology [1].

4) Parameter space: In our CODES-based simulations, we
consider Dragonfly networks of 5,616 and 16,512 terminals,
using minimal, non-minimal, and adaptive routing. We evalu-
ate the broadcast of small messages (1 KB) and large messages
(1 MB) using the TREE, LLF, GLF, and FOREST algorithms,
with and without background traffic. Each simulation yields
the total run time of the algorithm (difference between the
time at which the last process receives the data and the time
at which the root issues its first send), the average number of
hops encountered by packets, and the average and maximum
latency of packets from source to destination processes.
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Fig. 2: Makespan of the broadcast algorithms (average over
20 random allocations, error bars representing maximum and
minimum).

B. Preliminary study
We consider a Dragonfly network composed of g = 129

groups of a = 16 routers each. Each router is connected to
p = 8 terminals, for a total of 16,512 terminals in the network.
Each router is connected to all other routers in its group, and
to h = 8 routers in remote groups.

The makespan is here measured by number of links. We
assume that (1) any send operation lasts as many time units
as the number of links the message has to traverse to reach its
destination (no matter the nature of the links traversed) and
(2) a sending process has to wait for the message to reach its
destination before being able to send another message. Hence
for example, sending a message from a terminal to another
through two routers requires 3 time units (terminal 1→ router
1 → router 2 → terminal 2). This constitutes a worst case
scenario. In practice, a send would complete as soon as the
message has fully crossed the first link and is buffered in the
first router.

For all these experiments, we run the algorithms 20 times on
randomly-generated allocations of given sizes. We distinguish
small job allocations (spanning up to 1024 terminals) from
large job allocations (2048 and more).

1) Makespan: Figure 2 shows the makespan of the four al-
gorithms. For small allocations, LLF requires a long makespan
to complete. This makespan is also highly variable. This is due
to the fact that the root terminal is more likely to be isolated in
its group. Hence, it will send its data to representatives of other
groups one by one in series. This problem wasn’t highlighted
in previous work were LLF was presented, as it was evaluated
in full-machine allocations, a situation that allows maximum
parallelism in its step 2. This problem does not appear with
GLF, FOREST, and TREE. In larger allocations, the root group
contains more processes belonging to the job, allowing better
parallelism when sending from the root group to other groups.
Hence, LLF becomes better than GLF and TREE. FOREST
goes one step further by replacing step 2 of LLF by parallel
tree-based broadcasts, which further decreases the makespan.

2) Link utilization: Figure 3 shows the total number of
messages transiting through global and local links. Because
of their design, LLF, GLF, and FOREST never use global
links more than once per remote group involved in the job
(128 here), as each group receives the data only once. The
global link utilization is therefore bounded to 128 regardless
of the allocation size with topology-aware algorithms. The
TREE algorithm has a global link utilization proportional to
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Fig. 3: Total number of messages transiting over global (a,b)
and local (c,d) links during the broadcast.

the allocation size, as expected by the formulas provided in
Section III-E. We also observe that, like global link utilization,
the local link usage remains small and bounded for topology-
aware algorithms, while increasing proportionally to the allo-
cation size with the TREE algorithm.

Note that the numbers of terminal links used for all the
algorithms are the same, since each process has to receive the
data once, an operation that requires to always cross 2 terminal
links.

According to the formulas provided in Section III-E, the
number of local links used by TREE for a 10240-terminal
allocation is 19,122, and the number of global links is 10,160.
Those numbers match our experimental results. The upper
bounds for topology-aware algorithms are 128 global links
and 2191 local links. These upper bounds are respected in our
experiments.

3) Visual analysis: Figure 4 displays the traffic generated
during one of the runs for each algorithm (each figure has
been generated for a different random allocation. Hence the
root of the broadcast changes in each figure) for a broadcast
across 1024 processes on a 16K network. Terminals are placed
on a circle, organized by router and by group. This figure
shows that, as predicted in Section IV-B2 the TREE algorithm
generates a lot of traffic across global links. When executing
LLF, all global-link traffic originates from the root group. This
unbalanced traffic pattern may however become a problem
in the presence of background traffic. The tree formed by
representative terminals of each participating group in the
GLF algorithm appears clearly in Figure 4c. Trees executed
in parallel and originating from the root group are also clear
in Figure 4d.

4) Preliminary observations: The above study seems to
indicate that for allocations of up to 1024 terminals, the non-
topology-aware algorithm has the lowest makespan, despite us-
ing several orders of magnitude more links. For larger terminal
counts, FOREST presents the lowest makespan. Interestingly,
LLF presents a very high and variable makespan for small
allocations, suggesting that contrary to what is stated in papers

(a) TREE (b) LLF

(c) GLF (d) FOREST

Fig. 4: Visualization of the network traffic through global
links when broadcasting data from 1024 terminals on a 16K-
terminal Dragonfly network. Note that LLF, GLF and FOREST
all use the same number of global links (128).

that have introduced it [12], [13], this algorithm has limitations
that deserve further considerations.

5) Shortcomings of the preliminary study: The evaluation
conducted in the previous subsections gives a rough idea of the
behavior of each algorithm, but may be far from the reality. It
assumes that a send completes when the receiving terminal has
received all the data, which corresponds to an upper bound on
the transfer time for large data sizes. In practice, an MPI Send
is allowed to return when the data has been pushed to a local
buffer on the network interface, allowing the terminal to issue
other send operations to other destinations without waiting.
The preliminary evaluation did not take into consideration
the contention for links or buffers in routers, nor the routing
strategy employed by the network, the fact that messages are
further divided into packets (that may take different routes
in case of non-minimal or adaptive routing), or the potential
presence of other jobs contending for network resources. The
next sections address these shortcomings by using the CODES
network simulator to evaluate the algorithms at packet-level,
and accurately reproduce the behavior of all network entities.

C. Packet-level simulations using CODES
We consider the same network of 16,512 terminals as in

the previous section. The bandwidth numbers for the global,
local, and terminal links in the dragonfly are respectively
4.7 GB/s, 5.25 GB/s, and 5.25 GB/s, inspired by the CrayXC30
architecture [14], [31]. The virtual channel capacity is 16 KiB
for terminal links and local links, and 32 KiB for global
links so that 32, 32 and 64 full-sized packet can fit into the
terminal, local and global virtual channels respectively. Each



MPI message gets split into 512-byte packets for transportation
over the network. For MPI messages that are smaller than 512
bytes, the exact message size is transported over the network
as data packet. The application broadcasting runs alone on the
network on a randomly-generated allocation of terminals. Five
runs (each with a different random allocation) are executed for
each allocation size.

Figure 5 presents the results for the broadcast of 1 KB
of data, in terms of run time (a,d,g), average number of
hops per packet (b,e,h), and average and maximum latency
of each packet (c,f,i). Experiments are performed with the
three different types of routing mechanisms: minimal, non-
minimal, and adaptive. These results show that topology-aware
algorithms all exhibit a lower latency than TREE, with LLF
being about twice faster than TREE. They also show that,
as the allocation size grows, topology-aware algorithms take
advantage of the topology and reduce the average number of
hops. The fact that LLF and GLF both minimize the global
link utilization is also illustrated by the fact that regardless of
the routing strategy, the average hop count converges towards
1, while the average hop count of TREE remains at 4, 6, and 5,
for minimal, non-minimal, and adaptive routing, respectively.
Interestingly, LLF remains the best algorithm even for small
allocations, which contradicts the prediction made in our
preliminary study. Taking a closer look at what happens in
routers, the explanation is that the message sent is small
enough to fit in the channel buffers of the routers. While step
2 in LLF is supposed to send messages in series, it is in fact
parallelized when reaching the first router. This also explains
why FOREST does not perform better than LLF.

Figure 6 presents the results for a broadcast of 1 MB of
data. The picture here is very different from that of a 1 KB
broadcast. For minimal routing, it corresponds more to what
was expected from the preliminary study. The TREE algorithm
performs better than topology-aware algorithms for allocations
of up to 2048 terminals. FOREST then becomes the best
algorithm. LLF presents a much higher and more variable
run time for small allocations. It then outperforms TREE for
allocations of 10240 terminals and more, but remains worse
than GLF and FOREST.

Going from minimal to non-minimal routing has a positive
effect on all algorithms (note that because of the change of
scale from Figure 6a to 6c, it may seem that that the runtime
of GLF, TREE, and FOREST have increased. This is not
the case. They have in fact decreased.) The reason why non-
minimal routing boosts the performance of all algorithms is
because the packets that constitute messages can take different
routes in parallel. This comes at the price of an increased link
utilization. LLF remains relatively inefficient under adaptive
routing. In general, our results here show that the advantage
of topology-awareness is minimal in terms of latency, or even
non-existent for some algorithms that perform worse than the
TREE algorithms. In particular, all algorithms have similar
performance for allocations of more than 2048 terminals under
non-minimal routing.

While TREE remains better (or at least competitive) in
most cases for broadcasting large amounts of data, it is worth
observing that in current implementations of MPI, such data
sizes are not handled by a tree-based broadcast, but by a
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Fig. 6: Run time when broadcasting 1 MB on a 16K-terminal
Dragonfly network with different routing mechanisms. The
job runs alone on the machine. Figures show the median,
minimum and maximum across 5 executions for each job size.

scatter followed by an all-gather, which breaks the data into
chunks that can be sent in parallel to multiple destinations
and recomposed later. Such a strategy, particularly interesting
in the context of a Dragonfly topology, could be applied with
topology-awareness to develop better algorithms for large data
sizes. Such algorithms are left for future work.

D. Impact of background traffic
The low diameter of Dragonfly networks, along with the

random allocation strategy, makes multiple jobs running on
the platform share the same links and contend for the same
network resources. In this context, it is therefore necessary to
evaluate how topology-aware algorithms perform in presence
of background traffic. Because of the long run times and
high memory footprint of packet-level simulations involving
background traffic, we use a smaller network topology and
execute only one run for each allocation size.1 The network is
composed of 73 groups of 12 routers. Each router is connected
to 6 routers of remote groups and to 11 routers in its group,
and to 6 terminals, for a total number of terminals of 5,616
(a = 12, p = 6, h = 6, g = 73).

Figure 7 presents the run time of each algorithm for a 1 KB
broadcast. It shows that even in presence of background traffic,

1A subset of the experiments were run at larger scale and results are similar
to those observed at this scale.
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Fig. 5: Run time, average packet hops, and average and maximum packet latency when broadcasting 1 KB on a 16K-terminal
Dragonfly network with different routing strategies. The job runs alone on the network. Figures show the median, minimum
and maximum across 5 executions for each job size.

FOREST, LLF, and GLF perform better than TREE, with LLF
outperforming the other algorithms in all situations. Note that
while the execution time increases with the allocation size
when no traffic is added, it decreases when adding traffic.
This is because as the allocation size increases, the number
of terminals generating background traffic decreases, thus the
effect of background traffic diminishes.

Figure 8 shows the run time for a 1 MB broadcast.
Without traffic, the same conclusions can be made from
the 5K-terminal network as from the 16K-terminal network:
LLF performs poorly, especially at small scale, and we do
not observe any noticable difference in the performance of
the algorithms when non-minimal routing is applied. When
adding background traffic, the TREE algorithm exhibits a
lower latency in most cases, regardless of the routing strategy
employed.

V. CONCLUSION

In this paper, we have evaluated three topology-aware and
one non-topology-aware algorithms for broadcasting on a

Dragonfly network. Our experimental campaign conducted
through event-driven simulations using the CODES framework
explored the effect of varying the allocation size, the data size,
and changing the routing strategy. Additionally, we studied the
performance of these algorithms in the presence of background
traffic as well.

1) Lessons learned: The advantage of topology awareness
in collective algorithms in terms of link utilization is clear. Our
study shows that topology-aware broadcasts have a number of
messages crossing global links that is bounded by the number
of groups involved, while this number increases proportionally
to the allocation size for a non-topology-aware broadcast.
However the fact that an algorithm is topology-aware does not
necessarily makes it perform better in terms of latency than
non-topology-aware ones. This is the main lesson we learned
from our study with topology-aware broadcasts, among other
ones:

1) The size of the job allocation has an impact on the
performance of topology-aware broadcasts. Because of
the random task placement employed on Dragonfly
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Fig. 7: Run time of a 1 KB broadcast on a 5K-terminal
Dragonfly network, with and without background traffic, and
with different routing mechanisms.

network to randomize traffic, small jobs end up spread
across a large number of groups. In this context, trying
to improve the parallelism across global links, as done
with LLF, may lead to larger execution time than state-
of-the-art algorithms like binomial trees. In fact, the
good execution time obtained by LLF when broadcasting
small-sized data in small allocation is mainly explained
by the parallelism obtained from the root router, not by
the algorithm itself.

2) For broadcasts of large data sizes, the non-topology-
aware algorithm performs better (for small jobs) or
equivalently well (for large jobs) than topology-aware
algorithms. This is explained by the fact that non-
topology-aware algorithms have a better chance at ran-
domizing the traffic across more links.

3) The routing strategy plays an important role in the
performance of broadcast algorithms. For example when
broadcasting 1 MB on a 16K-terminal network, non-
minimal routing mitigates the limitation of LLF for
small locations by randomizing the traffic across links
connected to the root router.

4) Interference with background traffic is not mitigated by
the use of topology-aware algorithms. On the contrary,
some topology-aware algorithms such as LLF present
hot spots that could be more subject to interference.
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Fig. 8: Run time of a 1 MB broadcast on a 5K-terminal
Dragonfly network, with and without background traffic, and
with different routing mechanisms.

We hope that our study will motivate further research in
practical, topology-aware collective algorithms. In particular,
a promising direction consists of considering more carefully
the high radix offered by routers, and to take into account their
resources (such as buffers capacity). We think that higher radix
tree algorithms could be an important direction for further
optimization.

2) Future work: Our work opens several directions. Other
algorithms based on a scatter+allgather strategy are usually
employed for large-sized broadcasts. These algorithms have
not been evaluated in our study. They could benefit from
topology-aware versions of scatter and allgather.

A second aspect that is worth investigating is energy con-
sumption. While topology-aware algorithms do not necessarily
perform better than non-topology-aware ones, they greatly
minimize the network utilization, which in turn decreases the
energy consumption of the supercomputer. As DARPA set a
20 MW limit for exascale machines [32], such performance
vs. energy tradeoff becomes worth considering.

Finally with respect to interference between jobs, we have
studied how the algorithms react to background traffic, but
haven’t studied how another job would react to one that
executes a broadcast. If all jobs were to use topology-aware
communication, this would greatly reduce the overall traffic
and consequently decrease interference. Such a study could
motivate a broad utilization of topology-aware algorithms to



reduce link utilization at the level of the entire machine.
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