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Coordinated Platoon Routing in a Metropolitan Network

Jeffrey Larson*

Abstract

Platooning vehicles—connected and automated vehicles
traveling with small intervehicle distances—use less fuel be-
cause of reduced aerodynamic drag. Given a network de-
fined by vertex and edge sets and a set of vehicles with ori-
gin/destination nodes/times, we model and solve the com-
binatorial optimization problem of coordinated routing of
vehicles in a manner that routes them to their destination
on time while using the least amount of fuel. Common
approaches decompose the platoon coordination and vehi-
cle routing into separate problems. Our model addresses
both problems simultaneously to obtain the best solution.
We use modern modeling techniques and constraints implied
from analyzing the platoon routing problem to address larger
numbers of vehicles and larger networks than previously con-
sidered. While the numerical method used is unable to cer-
tify optimality for candidate solutions to all networks and
parameters considered, we obtain excellent solutions in ap-
proximately one minute for much larger networks and vehicle
sets than previously considered in the literature.

1 Introduction

In 2011, urban traffic congestion resulted in a loss of
5.5 billion man-hours and an extra 2.9 billion gallons
of fuel being consumed, for an economic cost of $121
billion and substantial environmental costs [17]. The
U.S. population will grow by 70 million by 2045, and
75% of this population will live in a “megaregion.”
Thus, new operational technologies are needed to make
urban traffic networks sustainable. Many strategies
can be applied to improve operational characteristics
of a transportation network and to reduce congestion,
including dynamic speed control, ramp metering, and
lane management. We focus on platooning, in which
sets of vehicles travel together with small intervehicle
distances to conserve fuel and improve throughput.
Recent developments in connected and automated
vehicles can improve traffic flow by improving the way
vehicles are driven [15, 16]. Human risk-averse driving
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behavior leads to inefficient use of roads. On average,
the traffic flow changes from free to congested at a
traffic density of 18%. In other words, 82% of the
road space is wasted. Automated driving in a platoon
reduces headways between vehicles while maintaining
traffic flow speed and thus improves road throughput
and avoids traffic flow breakdowns for high-density
traffic flows. The goal of platooning is to improve
three metrics associated with a transportation system:
mobility (reduced congestion), sustainability (reduced
fuel use), and safety.

Fuel use is reduced as a byproduct of the reduced
drag forces experienced by trailing vehicles. Several
field studies show fuel savings ranging from 5% to 15%
from vehicle platoons in isolated test environments [4,
5,6, 7, 18, 19, 20, 22]. Moreover, platoon driving
improves the throughput of a road network. Several
simulation studies show that platoon driving enables
shorter following gaps, thereby increasing the road
capacity from the typical 2,200 vehicles per hour to
almost 4,000 vehicles per hour, assuming all vehicles
have platooning capabilities [20, 27].

In this paper, we analyze a coordinated platoon-
ing model both mathematically and numerically. This
model is a combinatorial problem that involves simul-
taneously routing vehicles through the network and de-
termining when platoons should form or dissolve in or-
der to minimize their collective fuel use. Our analy-
sis strengthens the formulation, enabling us to produce
near-optimal solutions for larger instances. We im-
plement the mixed-integer programming model in the
GAMS modeling language [8], a domain specific lan-
guage for specifying such optimization problems and
conveying them to numerical methods; and we apply
Gurobi [10], a modern branch-and-bound method for
mixed-integer linear and quadratic programs, to test
how quickly we can produce near-optimal solutions.
Our GAMS model and example problem data are avail-
able at

http://www.mcs.anl.gov/~jlarson/Platooning

The routing of existing platoons in small road net-
works has been studied in the literature using ap-
proaches ranging over discretized optimal control [1, 2,
3], dynamic programming [9, 23], and graph-based al-



gorithms [26]. In contrast to our coordinated model,
the platoons in these models are not allowed to merge
with other vehicles and consequently save additional
fuel; they consider only the optimal routing for a given
set of platoons.

Given routes for the platoons, several authors de-
termine possible mergers to minimize fuel consump-
tion [24, 25]. These authors include detailed fuel savings
estimates based on the speed changes required to catch
up or slow down to form a single platoon. In contrast to
our coordinated model, they assume the vehicle routes
are known a priori, typically based on the shortest path,
and platoons do not deviate from that route for addi-
tional platooning opportunities.

Opportunistic, distributed platooning using dis-
tributed controllers is studied in [11, 12, 14]. As ve-
hicles approach an intersection in the road network, in-
formation is transmitted to a controller, and platoons
are formed when the vehicles share some subset of route
edges and platooning would reduce fuel costs. In this
paper, we consider a centralized controller that yields
greater fuel savings than can be obtained from dis-
tributed, opportunistic control. Such centralized con-
trollers can be used in practice by companies routing
their commercial vehicle fleet through a metropolitan
network. Moreover, the centralized controllers deter-
mine the maximum possible platooning savings and
serves as an important baseline when studying and as-
sessing the benefits of distributed controllers.

Our previous work [13] on coordinated platooning
constructed a model that combines both routing and
platoon formation and dissolution. To reduce fuel costs,
vehicles can deviate from their shortest path provided
they reach their destination in the required time. The
problem is shown to be NP-complete, and heuristics are
proposed to compute good solutions. In this paper, we
formulate, mathematically analyze, and solve a similar
model without resorting to heuristics. Our modeling ap-
proach produces a compact formulation with a limited
number of variables and constraints, while our mathe-
matical analysis enables us to solve larger problem in-
stances that have previously been addressed in the lit-
erature, in terms of both the network and number of
vehicles. In Section 2, we present our coordinated pla-
tooning model and the mathematical analysis required
to tighten the formulation and make this combinatorial
optimization problem tractable. Section 3 provides nu-
merical results for two metropolitan networks, a 10 x 10
grid and the greater-Chicago-area highway network, and
studies how long it takes to find optimal solutions as a
function of key parameters. We finish with a discussion
in Section 4.

Table 1: Sets and parameters defining the model.

Set Meaning GAMS
\%4 Vehicles to route V,W
I Network nodes I,J,K
ECIxI Network edges E(,I,T)
Parameter Meaning GAMS
O, v € V origin node o)
D, v € V destination node D(V)
7o v € V origin time T_0(V)
P v € V destination time T_D(V)
Cij cost for taking (i,7) € E C(I,D
T; time to take (i,j) € £ (I,
M, ; minimum time from ¢ to j M(I,J)

2 Coordinated Platooning Model

We first declare the model sets, parameters, and vari-
ables. We then declare the model constraints. We also
highlight auxiliary parameters used to decrease the size
of our GAMS formulation.

2.1 Model sets, parameters, and variables In
Table 1, we declare the sets and parameters that are
used to build the model. The values assigned to the
sets and parameters define each instance of the platoon
routing problem.

Note that the first five parameters are declared for
all vehicles in V, while C;; and T ; are declared for
all edges, and M; ; is declared for all pairs of nodes.
Naturally, the nodes O, and D, must be in I, while the
times and costs must be positive real numbers. For a
problem to be feasible,

T, > T) + Mgo rp

for all vehicles.

For any platoon routing problem instance, we can
control the vehicles’ routes and travel times. We list
these decision variables in Table 2. The variables f and
q are binary variables, while e and w are positive reals.

Table 2: Model variables.

Variable Meaning GAMS
foi 1if v travels on (7, 5) £(V,I,0)
Quuwi; 1if v follows won (4,5)  q(V,W,I,J)
€v.ij Time v enters (i, 7) time e(V,I,J)
Wy Time v waits at 7 time w(V,I)

We limit the declaration of some sets, decision
variables, and constraints, in order to reduce the model



size in GAMS. For example, E(V,I,J) need not contain
all edges for a given vehicle but only those edges that
the vehicle can travel on. To this end we use auxiliary
GAMS parameters, listed in Table 3.

Table 3: Auxiliary parameters in the edge-based model.

GAMS Parameter Meaning
PE(V,I,J) 1 if v can take (4, 7)
PQ(V,W,I,J) 1 if v can follow w

The parameter PE(V,I,J) isset to 1 only if v € V
can potentially travel on edge (i,7) € E. Then the
GAMS declaration

E(W,I,NN$PEV,I,])) = yes;

greatly reduces the size of the edge set E within GAMS.
This reduces the model size by, for example, defining
fewer constraints when making a declaration over all
edges. Similarly, the parameter PQ(V,W,I,J) is set to 1
only when vehicles V and W can platoon on (I,J). That
is, they satisfy

max {Tg) + MOv,iaTu? +M0w,i} +Ti,j é

@1) min {TP° — Mp, ;,TY — Mp,, ;}.

In words, vehicles can platoon on an edge (i,j) € E
only if the time the later-arriving vehicle reaches 7 plus
the time it takes to traverse (i,j) allows for the most
time-restricted vehicle to reach its destination on time.
We therefore declare variables q(V,W,I,J) only when
PQ(V,W,I,J)=1.

The use of PQ and PE to reduce the number of model
variables/constraints may seem trivial or distracting.
Their inclusion in the GAMS model, however, is critical
to our ability to solve problems with more than a dozen
vehicles.

2.2 Assumptions We assume that vehicles travel at
free-flow speed on the various edges (therefore there
is no speed consideration). We assume that vehicles
are numbered in the order in which they arrive in the
network, and we assume that vehicles with smaller in-
dices are trailing vehicles with larger indices in platoons.
These assumptions reduce some symmetry in the prob-
lem. In practice, vehicles cannot travel in a platoon in
arbitrary order. Usually, vehicles are ordered by how
quickly they can stop, with those that can stop quick-
est placed at the end of the platoon to avoid collisions
if the platoon needs to unexpectedly stop. Our model
does not take this ordering into consideration. During
postprocessing, the vehicles in each platoon can simply
be sorted by their stopping ability.

2.3 Free-flow speed model constraints We now
declare the constraints that will accurately model the
platoon routing problem.

e Node outflows must equal inflows.

> feii= Y fuji+Bui

j:(1,7)EE j:(Ji)EE
YveV,iel,

(2.2)

where B, ; is 1if ¢ = O,,, -1if i = D,,, and 0 otherwise.
e When platooning, enter times are equal.

—M(1 = quuw,ij) < €vij = €w,ij
S M(l - (JU,w,i,j)
Yo,weV, (i,j) € E, v>w

(2.3)

e Only one vehicle can follow.

(24) ZQU,w,i,' S 1 Vwe ‘/7 (7’3]) S

e Platooning requires flow for the leader.

(25) qv,w,i,j S fw,i,j V’UJ S ‘/7 (%j) € E

e Platooning requires flow for the followers.

(26) QU,w,i,j S fv,i,j V’U S ‘/v (21.7) € E

e T9 plus waiting time is the origin enter time.

_M(l - f'“vovyj) S e’U,Ov,j - TUO - wU7Ov
<M1 - fo0,.4)
YveV, jel

(2.7)

e TP is the final enter time plus the time required to
travel the final edge plus waiting at the end.

- MQ - fuip,)

<TP —e,ip, —wyp,

<M~ foip,)
YveV,iel

- L v,%
o8) b, fuiip,

e Intermediate enter times are equal plus the travel and
waiting times.

- M(2 - fv,i,j - fv,k:,i)
< €uij — Cukyi — Wo,i — LThyifo ki

<MQ2— foij— foki)
Yo eV, (i,7), (4, k) € E, Dy #i# O,

(2.9)



e If there is no flow, the enter time can not be nonzero.

(210) €uvi,j < va,i,j Yo € ‘/7 (27]) cFk

e If there is no flow, the wait time can not be nonzero.

(211)  wyi M (D foij+ foji |VoeViel

4,7
A GAMS formulation of this model can be found at

http://www.mcs.anl.gov/~jlarson/Platooning

The value we choose for M in equations (2.3), (2.7),
(2.8), (2.9), (2.10), and (2.11) is

M:max{TUD}—min{TvO}.

We can tighten some Big-M values: for example, M
in (2.3) needs to only be the largest time-gap between
vehicles that can possibly platoon. GAMS efficiently
removes the Big-M formulation for reasonable time
values.

2.4 Objective function Since vehicles travel at
free-flow speeds, the amount of fuel used is quantified
by

(2.12)

Z Cij (fv,i,j - 772%}@,@’,]’) :

v,%,7 w

C;,; is the gallons of fuel used by a vehicle to traverse
edge (i,7). One can consider C;; to be a vehicle-
dependent value, but we do not do so here. One also
can include a cost of waiting for vehicles, but we do not
do so in order to study the upper-bound on possible
platoon savings.

2.5 Additional results and constraints Some
constraints are not necessary for accurately modeling
the platoon routing problem but their inclusion helps
break symmetries in the problem (and therefore speed
the time to solution). For example, without (2.4), if
vy, v2, and vs are platooning on an edge (4,j), either
Qus,v1,4,j = 1 OF Qug0,.4,; = 1 is a valid solution. When
more vehicles are in a platoon, this combinatorial num-
ber of solutions is even more difficult for GAMS and
Gurobi to account for.

The following results help us declare additional
constraints that greatly reduce the problem size. First,
[13, Theorem 2.2] proves the following lemma.

LEMMA 2.1. There exists an optimal platoon routing in
which no two vehicles split and then merge together.

In practice, many vehicles travel from the same
source to the same destination. It is therefore useful
to prove that if a vehicle shares the same origin and
destination with another vehicle and they do not pla-
toon, then we do not need to consider platooning with
later-arriving vehicles. First note that if Mo, p, is the
minimum time from O, to D,, then vehicles v,w € V
sharing origin and destinations can platoon if their ori-
gin and destination times satisfy

(2.13) max {TUO,TL(U)} + Mo, p, < min {TUD,TL?} )
Also note that there is an upper bound on the length of
a detour that a vehicle will take over its shortest path.

LEMMA 2.2. If vehicles use a fraction n less fuel when
trailing in a platooning and ts is the shortest time for
a vehicle to travel from its origin to destination, it will
never travel a path longer than lflnts'

Proof. Suppose a vehicle v travels more than ¢’ > %ts
in an optimal routing. Then keeping all other routes
fixed and switching v to the shortest path route will
remove more than (1 —n)t’ but add ¢, to the objective
resulting in a net improvement in fuel use.

We now prove that there exist optimal solutions
with many gy w,:,; = 0. Therefore, we can enforce this
in our GAMS model and reduce the search time without
degrading the solution quality.

LEMMA 2.3. Let v,w € V satisfy O, = Oy, D, = D,,,
and (2.13). If an optimal solution has Gyw.; = 0
for all (i,j) € E, there exists an optimal solution with
Qo iy = 0 for all (i,7) and w' such that O, = O,
Dy, =Dy, TS < TS, and v,w' satisfy (2.13).

Proof. Assume for contradiction that there are only
optimal solutions where w’ arrives in the network later
than w and follows v but no optimal solution where w
follows v.

For a given optimal routing, let t¢,, t, be the
vehicles’ respective travel times and let ¢&, t& be the
total time each is leading a platoon somewhere along
their routes.

If t,, > t,, having w platoon with v along v’s route
will change the objective by

nth, — tw + (1 =)ty < (1 —=n)(t, —tw) <0,

since if w is leading some platoon for its entire route,
the vehicle it is leading will incur and additional 7tf
units of fuel. Similarly, if ¢,, < t,, having v platoon
with w along w’s route will change the objective by

S (1 - 77) (t’w

nth —t, + (1 — )ty —ty) < 0.
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Figure 1: Networks under consideration: a 10 x 10 grid (left) and the Chicago-area highways (right).

Both of these cases contradict the platoon routing being
optimal.

If t, = t,, having w follow v and w’ follow w
changes the objective by

nth —ty + (1 =)ty <ty —tw + (1 —n)t, =0

If the above is a strict inequality, this contradicts the
optimality of the platoon routing. If it holds with
equality, this contradicts the assumption that there are
no optimal solutions where w follows v.

Lemma 2.3, along with the assumption that all
vehicles have the same cost to traverse an edge, implies
that if v and w share origin and destination nodes,
PQ(V,W,I,J) should be 1 only if w arrives directly after
v, assuming that if 70 < T9 < TY and (v,w’) satisfy
(2.13) then (w,w’) do as well. (For our experiments, we
study the case where all vehicles are willing to wait the
same amount of time at the origin, so this assumption
is valid.) In Section 3.3 we test the effect of using this
fact.

Lemma 2.1 implies that vehicles that share the same
source and destination either platoon the entire way or
never platoon. That is, if O, = O,, and D, = D,, and
(v, w) satisfy (2.13), then we need to consider platooning
only with the next arriving vehicle. In Section 3.3 we
test the effect of using this fact.

3 Numerical results

To test the capabilities of the proposed model, we
perform experiments on a 10 x 10 grid and a 4553-node
representation of the greater-Chicago highway network.
The networks are shown in Figure 1. We believe
both networks provide important tests for the platoon
routing problem in a metropolitan network.

We test the ability of our model to quickly pro-
duce optimal solutions to the platoon routing prob-
lem with 25 vehicles, a number that is much greater
than considered in the literature. (We are unaware of
any paper that simultaneously coordinates the routes
and platoons of more than 10 vehicles.) Specifically,
25 pairs of vehicle origin/destinations nodes are drawn
uniformly random for vehicles in the grid, and 25 com-
mon origin/destination nodes are uniformly drawn from
the morning commute routes from a simulation of the
Chicago highway system [21]. The costs of traversing
edges in the Chicago network are taken from this same
simulation; we assume a unit cost for traversing any
edge in the grid network. Origin times T for each ve-
hicle are drawn uniformly from [0, 100], and destination
times are set to

(3.14) T =TH + Mo, .p, +p,
where Mo, p, is the minimum time between the vehi-
cle’s origin and destination and p is some pause time.
We assume that trailing vehicles in a platoon use 10%
less fuel do than vehicles leading a platoon or traveling
alone on a given edge. That is, n = 0.1 in (2.12).
Although the regularity of the grid network may
suggest simplicity, we find that the opposite is the case.
Many different routes of the same length exist between
most pairs of origin/destination nodes; the number of
shortest paths between (0,0) and (m,n) in a grid is
(m:") The Chicago highway network, on the other
hand, has a unique shortest path between most ori-
gin/destination pairs. Also, we need not consider many
alternative paths (longer than a vehicle’s shortest path)
because of the assumed 10% savings for platooning ve-
hicles.



— Objective value

Lower bound

== Afterl minute]

4000

1700

3500

3000

N
v
=}
<)

2000

Seconds to solution
G
o
o

1000

500

11680

11660

11640

11620

11600

41580

41560

40

60

80

100

126540

Fuel use

— Objective value

Lower bound

== After1 minute]

4000

1700

3500

3000

N
%
=}
=)

2000

Seconds to solution
G
o
=

1000f

500

11680

11660

11640

11620

11600

41580

1560

40

60

80

100

126540

Fuel use

Pauses

Pauses

(a) Chicago highway network, waiting allowed at intermediate (b) Chicago highway network, waiting allowed only at origin

nodes

nodes

Figure 2: Solution time and objective function value as pausing time increases. Blue line is the mean time to
solution of five replications, with the maximum and minimum times shown as error bars. Solid green line is the
objective value at termination (optimality gap of zero or runtime more than 1 hour), dotted line is the objective
lower bound for unsolved instances, and dashed line shows objective value after one minute.

Origin/destination nodes/times, network informa-
tion, optimization model, and other necessary param-
eters for many problem instances can be found at the
website

http://www.mcs.anl.gov/~jlarson/Platooning

3.1 Increasing pauses in Chicago highway net-
work One of the most important parameters for de-
termining the possibility for saving fuel by platooning
is the upper bound on the amount of time vehicles are
willing to wait. In general, the longer vehicles are will-
ing to wait, the more platooning possibilities exist, and
more savings can occur. If the pause time p in (3.14)
is zero, then every vehicle must travel from its origin to
its destination along its shortest path, without allowing
for any platooning. If p is larger, a vehicle can wait to
lead /follow another vehicle, thereby decreasing the col-
lective fuel use. In our experiments, increasing p past
some point provides no additional savings.

Although we have fixed the randomly chosen ori-
gin/destination nodes, and origin times, each value of
p induces a different destination time and therefore
requires recalculating the PQ(V,W,I,J) indicator vari-
ables for all pairs of vehicles and all shared edges. In
other words, we must check whether vehicles v and w
satisfy (2.1) for shared edges (i,j) when T° and T2
increase.

It is not known what capabilities will exist for

forming vehicle platoons on existing roadways. For
example, vehicles may or may not be able to wait
at intermediate nodes in their path to facilitate more
platoon formation. We study the effect of waiting at
intermediate nodes as well.

We are interested in studying the time required
for Gurobi (with a single thread) to determine that
a given solution is optimal. We consider a solution
returned from Gurobi to be certified optimal if Gurobi’s
relative optimality gap and absolute optimality gap
parameters are set to zero. We limit the solution
time given to Gurobi, and we record the best objective
function value at termination. If Gurobi is stopped
because it exhausted the time budget, we also report
the lower bound on the best objective value. We are
also interested in studying the objective function value
after running Gurobi for one minute.

Figure 2 shows the fuel cost and Gurobi solution
time (limited to one hour) for the Chicago highway
network. In the few cases where Gurobi does not certify
an optimal solution in under one hour, the lower bound
on the objective is shown. It is nearly impossible to see
the difference between the one-minute solution and the
best-found solution for most pause values.

The variation in the time required for Gurobi to
certify a solution is optimal may seem surprising, but we
believe it can be explained by the following observations.
When no pause is allowed, Gurobi quickly recognizes
that all vehicles must take their shortest paths, and no
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platooning can occur. (The fuel use when the pause
is zero is the sum of the fuel required for each vehicle
to travel from its origin to destination along a shortest
path.)

When the pause time is sufficiently large, it takes
relatively little effort for Gurobi to “greedily” wait until
all platooning possibilities have been exploited for each
vehicle. The problem becomes much more difficult when
Gurobi must determine whether a given platoon routing
is optimal when many alternatives exist.

Waiting up to one hour to find a platoon routing is
not ideal for real-time routing. As is often the case with
many combinatorial optimization problems, most of this
time is spent certifying that a solution is optimal and
not because improvement is found uniformly over the
hour. For the Chicago highway network, the quality
of Gurobi’s best solution after one minute is almost
indistinguishable from the solution after one hour.

Allowing vehicles to wait at intermediate nodes does
not provide much improvement in objective function
value. For example, a pause of 120 produces an
objective function value of 1557.92 when waiting is
allowed, but 1558.65 if no waiting at intermediate nodes
is allowed. This relative difference (less than 0.04%)
is surprisingly negligible. For the Chicago highway
network, fuel savings when allowing vehicles to wait only
at their origin nodes is very close to the possible savings
when allowing vehicles to wait at any node in their path
from their origins to their destinations. The total fuel

used for every vehicle taking its shortest path is 1689.05,
which means that if vehicles are willing to wait, savings
of 8% can be achieved. This is surprisingly close to
the upper bound of 10% savings, given that n = 0.1 in
(2.12).

3.2 Increasing pauses in grid network We now
quickly discuss the results of an identical study where
the pause length (3.14) is adjusted for vehicles traveling
in the grid network, the results of which appear in
Figure 3. In this case, Gurobi provided certified optimal
solutions within one hour. It is surprising that the
time required to find an optimal solution is significantly
less when waiting is allowed at intermediate nodes. If
waiting is allowed only at origin nodes, the solution after
one minute is noticeably different for some pause values.
This result highlights the difficulty of routing vehicles
in a grid.

3.3 Clusters of vehicles with the same ori-
gin/destination One might consider the proposed
model to be an “edge-based” model since edges are the
units that define how a vehicle travels from its origin
to destination. Another valid formulation would be to
declare routes for each origin/destination pair and then
restrict each vehicle to take one route. This may help
Gurobi since a given route determines the edges a ve-
hicle will traverse, leaving only the coordination of ve-
hicles’ enter times on the edges. Routes also allow us
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times shown as error bars. Solid green line is the objective value at termination (optimality gap less than 1% or
runtime more than ten minutes), dotted line is the objective lower bound for unsolved instances, and dashed line
shows objective value after one minute.

to describe additional constraints, for example, those We then replace constraints (2.2) with
implied by Lemma 2.1.
To include routes in the GAMS model, we first (3.15) foij = Z Uy YWEV, (3,5) € E,
declare N routes for all vehicles, and we set R, ; ; = 1if Rn.i;
route n € N contains edge (¢,7) € E. We then include a
decision variable u, ., if vehicle v € V uses route n € V. and we constrain vehicles to take only one route by
Although routes can share edges, a vehicle can take a
route n only if the route’s first vertex is 7O and its (3.16) Zu”’" =1 VeV
last vertex is T'°. Similar to before, we enforce this "
constraint with the indicator variable PR(V,N), which

Both of the summations in (3.15) and (3.16) occur only
is 1 if and only if V' can take route N.

for routes such that PR(V,N)=1.



We are interested in studying what effect (if any)
routes have on the time required to solve larger platoon
routing problems. We study the ability of our model
to route 100 vehicles in the Chicago highway network.
We take the five most common origins/destinations
from the POLARIS simulation of the Chicago highway
network and assign each pair to 20 different vehicles.
Each of the 100 vehicles is given a random origin time
drawn uniformly from [0, 100], and destination times are
(again) taken to be the origin time plus the shortest
path time plus some pause as in (3.14). Duplicating
origin/destination pairs is similar to reality where many
vehicles enter the highway at the same on-ramp and
leave the highway at the same exit.

We set Gurobi to stop when its relative optimal-
ity gap is less than 1%, and we limit the solution
time to at most ten minutes. We compare the orig-
inal model from Section 2, a model using the addi-
tional route variables/constraints described in (3.15)
and (3.16), and a model constraining vehicles with the
same origin/destination nodes to either platoon the en-
tire way or not platoon at all (implied by Lemma 2.1).
For vehicles sharing the same origin/destination, we set
PQ(V,W,I,J)=1 only if W arrives at the origin after V'
(implied by Lemma 2.3).

Figure 4 shows the effects of including route con-
straints and these implied constraints in the model. We
note that the inclusion of routes in the model does
not have an appreciable effect on the time required to
find a solution with an optimality gap less than 1%.
Including the constraints implied by Lemma 2.1 and
Lemma 2.3 significantly reduces the time required to
solve this problem instance for all pause levels. Al-
though the one-minute solution is not optimal when the
pause is set to 70 or 80, we can see that a solution with
a 1% optimality gap is found in less than 100 seconds.

For the original model (with or without the addi-
tional route variables/constraints), the one-minute so-
lution is particularly poor. This may be due to the
default Gurobi settings, which devote considerable time
preprocessing the problem even when the time limit is
relatively small. Such effort may be worthwhile, given
that Gurobi does find an optimal solution in under 200
seconds for most pause values.

4 Discussion

By using parameters PQ, PE, and PR to limit the dec-
laration of variables and constraints, our model is able
to route vehicles and form/dissolve platoons through-
out their routes in an optimal fashion. The inclusion
of implied constraints dramatically decreases the time
required to find optimal solutions for realistic problem
instances. Often, the constraints apply to vehicles that

share the same origin and destination nodes (a common
occurrence), but our declaration of PQ only for vehicles
and edges that satisfy (2.1) is also effective at reducing
the problem complexity. We believe that additional im-
plied constraints that are inherent in the platoon rout-
ing problem can similarly increase the size of problems
that can be solved optimally.

Current work involves better modeling of fuel con-
sumption. While a general formulation likely requires
a nonconvex objective, turning our mixed-integer pro-
gram into a mixed-integer nonlinear program, we believe
piecewise-linear models of fuel consumption can accu-
rately approximate true fuel-usage rates while keeping
the model linear. These models will also allow us to
consider vehicles traveling at non-free-flow speeds.

Solving the platoon routing problem to optimality
for millions of vehicles in real-world networks is likely
intractable. Nevertheless, the models presented here
can be used to solve subproblems within such larger
platoon routing settings.
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