
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Lemont, Illinois 60439

Bayesian optimization under mixed constraints with a
slack-variable augmented Lagrangian1

Victor Picheny, Robert B. Gramacy, Stefan M. Wild, and

Sébastien Le Digabel

Mathematics and Computer Science Division

Preprint ANL/MCS-P6012-0516

May 2016

Updates to this preprint may be found at

http://www.mcs.anl.gov/publications

1This material was based upon work supported by the U.S. Department of Energy, O�ce of
Science, O�ces of Basic Energy Sciences and Advanced Scientific Computing Research under
Contract No. DE-AC02-06CH11357.

http://www.mcs.anl.gov/publications

Bayesian optimization under mixed constraints with a

slack-variable augmented Lagrangian

Victor Picheny⇤ Robert B. Gramacy† Stefan M. Wild‡

Sébastien Le Digabel§

May 30, 2016

Abstract

An augmented Lagrangian (AL) can convert a constrained optimization problem
into a sequence of simpler (e.g., unconstrained) problems, which are then usually solved
with local solvers. Recently, surrogate-based Bayesian optimization (BO) sub-solvers
have been successfully deployed in the AL framework for a more global search in the
presence of inequality constraints; however, a drawback was that expected improvement
(EI) evaluations relied on Monte Carlo. Here we introduce an alternative slack variable
AL, and show that in this formulation the EI may be evaluated with library routines.
The slack variables furthermore facilitate equality as well as inequality constraints,
and mixtures thereof. We show how our new slack “ALBO” compares favorably to the
original. Its superiority over conventional alternatives is reinforced on several mixed
constraint examples.

1 Introduction

Bayesian optimization (BO), as applied to so-called blackbox objectives, is a modernization
of 1970-80s statistical response surface methodology for sequential design (Mockus et al.,
1978; Box and Draper, 1987; Mockus, 1989, 1994). In BO, nonparametric (Gaussian) pro-
cesses (GPs, Rasmussen and Williams, 2006) provide flexible response surface fits. Sequential
design decisions, so-called acquisitions, judiciously balance exploration and exploitation in
search for global optima. For a review of GP surrogate modeling and optimization in the
context of computer experiments, see Santner et al. (2003), Booker et al. (1999) and Bingham
et al. (2014). For a machine learning perspective, see Brochu et al. (2010), and Boyle (2007).
Until recently, most works in these literatures have focused on unconstrained optimization.

⇤Institut National de Recherche Agronomique–Centre de Toulouse, France
†Corresponding author: The University of Chicago Booth School of Business, 5807 S. Woodlawn Ave.,

Chicago IL, 60605; rbgramacy@chicagobooth.edu
‡Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439
§GERAD and Département de Mathématiques et Génie Industriel, École Polytechnique de Montréal,

Montréal, QC H3C 3A7, Canada

1

Many interesting problems contain constraints, typically specified as equalities or inequal-
ities:

min
x

{f(x) : g(x)  0, h(x) = 0, x 2 B} , (1)

where f : Rd

! R is a scalar-valued objective function, and g : Rd

! Rm and h : Rd

! Rp

are vector-valued constraint functions taken componentwise (i.e., g
j

(x)  0, j = 1, . . . ,m;
h

k

(x) = 0, and k = 1, . . . , p). We di↵erentiate these constraints from B ⇢ Rd, which is a
known (not blackbox) set, typically containing bound constraints; here we assume that B is
a bounded hyperrectangle.1

The typical setup treats f , g, and h as a “joint” blackbox, meaning that providing x to
a single computer code reveals f(x), g(x), and h(x) simultaneously, often at great compu-
tational expense. A common special case treats f(x) as known (e.g., linear); however, the
problem is still hard when g(x)  0 defines a nonconvex valid region. A tacit goal in this
setup is to minimize the number of blackbox runs required to solve the problem, and a com-
mon meter of progress tracks the best valid value of the objective (up to a relaxing threshold
on the equality constraints h) at increasing computational budgets (# of evaluations, n).

Not many algorithms target global solutions to this general, constrained blackbox opti-
mization problem. Statistical methods are acutely few. We know of no methods from the
BO literature natively accommodating equality constraints, let alone mixed (equality and in-
equality) ones. Schonlau et al. (1998) describe how their expected improvement (EI) heuristic
can be extended to multiple inequality constraints by multiplying by an estimated proba-
bility of constraint satisfaction. Here, we call this expected feasible improvement (EFI). EFI
has recently been revisited by several authors (Snoek et al., 2012; Gelbart et al., 2014; Gard-
ner et al., 2014). However, the technique has pathological behavior in otherwise idealized
setups (Gramacy et al., 2016b), which is related to a so-called “decoupled” pathology (Gel-
bart et al., 2014). Some recent information-theoretic alternatives have shown promise in
the inequality constrained setting (Hernández-Lobato et al., 2015; Picheny, 2014); tailored
approaches have shown promise in more specialized constrained optimized setups (Gramacy
and Lee, 2011; Williams et al., 2010; Parr et al., 2012).

We remark that any problem with equality constraints can be “transformed” to inequal-
ity constraints only, by applying h(x)  0 and h(x) � 0 simultaneously. However, the
e↵ect of such a reformulation is rather uncertain. It puts double-weight on equalities and
violates certain regularity (i.e., constraint qualification (Nocedal and Wright, 2006)) condi-
tions. Numerical issues have been reported in empirical evaluations (Sasena, 2002). In our
own empirical work [Section 4] we find unfavorable performance.

In this paper we show how a recent technique (Gramacy et al., 2016a) for BO under
inequality constraints is naturally enhanced to handle equality constraints, and therefore
mixed ones too. The method involves converting inequality constrained problems into a

1The presumption throughout is that a solution of (1) exists so that the feasible region {x 2 Rd : g(x) 
0, h(x) = 0} \ B is nonempty; however, the algorithms we describe can provide reasonable approximate
solutions when the feasible region is empty, so long as the modeling assumptions (e.g., smoothness and
stationarity) on f , g, and h, and constraint qualifications (see, e.g., (Nocedal and Wright, 2006)) are not
egregiously violated.

2

sequence of simpler subproblems via the augmented Lagrangian (AL, Bertsekas, 1982)). AL-
based solvers can, under certain regularity conditions, be shown to converge to locally optimal
solutions that satisfy the constraints, so long as the sub-solver converges to local solutions.
By deploying modern BO on the subproblems, as opposed to the usual local solvers, the
resulting meta-optimizer is able to find better, less local solutions with fewer evaluations of
the expensive blackbox, compared to several classical and statistical alternatives. Here we
dub that method ALBO.

To extend ALBO to equality constraints, we suggest the opposite transformation to the
one described above: we convert inequality constraints into equalities by introducing slack
variables. In the context of earlier work with the AL, via conventional solvers, this is rather
textbook (Nocedal and Wright, 2006, Ch. 17). Handling the inequalities in this way leads
naturally to solutions for mixed constraints and, more importantly, dramatically improves
the original inequality-only version. In the original (non-slack) ALBO setup, the density and
distribution of an important composite random predictive quantity is not known in closed
form. Except in a few particular cases (Picheny et al., 2016), calculating EI and related
quantities under the AL required Monte Carlo integration, which means that acquisition
function evaluations are computationally expensive, noisy, or both. A reformulated slack-
AL version emits a composite that has a known distribution, a so-called weighted non-central
Chi-square (WNCS) distribution. We show that, in that setting, EI calculations involve a
simple 1-d integral via ordinary quadrature. Adding slack variables increases the input
dimension of the optimization subproblems, but only artificially so. The e↵ects of expansion
can be mitigated through optimal default settings, which we provide.

The remainder of the paper is organized as follows. Section 2 outlines the components
germane to the ALBO approach: AL, Bayesian surrogate modeling, and acquisition via EI.
Section 3 contains the bulk of our methodological contribution, reformulating the AL with
slack variables and showing how the EI metric may be calculated in closed form, along with
optimal default slack settings, and open-source software. Implementation details are pro-
vided in our Appendix. Section 4 provides empirical comparisons, and Section 5 concludes.

2 A review of relevant concepts: EI and AL

2.1 Expected improvement

The canonical acquisition function in BO is expected improvement (EI, Jones et al., 1998).
Consider a surrogate f

n(x), trained on n pairs (x
i

, y

i

= f(x
i

)) emitting Gaussian predictive
equations with mean µ

n(x) and standard deviation �

n(x). Define f

n

min = min
i=1,...,n yi, the

smallest y-value seen so far, and let I(x) = max{0, fn

min � Y (x)} be the improvement at x.
I(x) is largest when Y (x) ⇠ f

n(x) has substantial distribution below f

n

min. The expectation
of I(x) over Y (x) has a convenient closed form, revealing balance between exploitation (µn(x)
under fn

min) and exploration (large �

n(x)):

E{I(x)} = (fn

min � µ

n(x))�

✓

f

n

min � µ

n(x)

�

n(x)

◆

+ �

n(x)�

✓

f

n

min � µ

n(x)

�

n(x)

◆

, (2)

3

where � (�) is the standard normal cdf (pdf). Accurate, approximately Gaussian predictive
equations are provided by many statistical models (GPs, Rasmussen and Williams, 2006).

When the predictive equations are not Gaussian, Monte Carlo schemes—sampling Y (x)
variates from f

n(x) and averaging the resulting I(x) values—o↵er a suitable, if computation-
ally intensive, alternative. Yet most of the theory applies only to the Gaussian case. Under
certain regularity conditions (e.g., Bull, 2011), one can show that sequential designs derived
by repeating the process, generating (n+1)-sized designs from n-sized ones, contain a point
x

i

whose associated y

i

= f(x
i

) is arbitrarily close to the true minimum objective value, that
is, the algorithm converges.

2.2 Augmented Lagrangian framework

Although several authors have suggested extensions to EI for constraints, the BO literature
has primarily focused on unconstrained problems. The range of constrained BO options was
recently extended by borrowing an apparatus from the mathematical optimization literature,
the augmented Lagrangian, allowing unconstrained methods to be adapted to constrained
problems. The AL, as a device for solving problems with inequality constraints (no h(x) in
Eq. (1)), may be defined as

L

A

(x;�, ⇢) = f(x) + �

>
g(x) +

1

2⇢

m

X

j=1

max {0, g
j

(x)}2 , (3)

where ⇢ > 0 is a penalty parameter on constraint violation and � 2 Rm

+ serves as a Lagrange
multiplier. AL methods are iterative, involving a particular sequence of (x;�, ⇢). Given the
current values ⇢k�1 and �

k�1, one approximately solves the subproblem

min
x

�

L

A

(x;�k�1
, ⇢

k�1) : x 2 B

, (4)

via a conventional (bound-constrained) solver. The parameters (�, ⇢) are updated depending
on the nature of the solution found, and the process repeats. The particulars in our setup
are provided in Alg. 1; for more details see (Nocedal and Wright, 2006, Ch. 17). Local con-
vergence is guaranteed under relatively mild conditions involving the choice of subroutine
solving (4). Loosely, all that is required is that the solver “makes progress” on the subprob-
lem. In contexts where termination depends more upon computational budget than on a
measure of convergence, as in many BO problems, that added flexibility is welcome.

However, the AL does not typically enjoy global scope. The local minima found by the
method are sensitive to initialization—of starting choices for (�0

, ⇢

0) or x0; local searches in
iteration k are usually started from x

k�1. However, this dependence is broken when statistical
surrogates drive search for solutions to the subproblems. Independently fit GP surrogates,
f

n(x) for the objective and g

n(x) = (gn1 (x), . . . , g
n

m

(x)) for the constraints, yield predictive
distributions for Y n

f

(x) and Y

n

g

(x) = (Y n

g1
(x), . . . , Y n

gm
(x)). Dropping the n superscripts, the

AL composite random variable

Y (x) = Y

f

(x) + �

>
Y

g

(x) +
1

2⇢

m

X

j=1

max{0, Y
gj(x)}

2 (5)

4

Require: �

0
� 0, ⇢0 > 0

1: for k = 1, 2, . . . do
2: Let xk (approximately) solve (4)

3: Set �k

j

= max
⇣

0,�k�1
j

+ 1
⇢

k�1 gj(xk)
⌘

, j = 1, . . . ,m

4: If g(xk)  0, set ⇢k = ⇢

k�1; otherwise, set ⇢k = 1
2⇢

k�1

5: end for

Algorithm 1: Basic augmented Lagrangian method.

can serve as a surrogate for (3); however, it is di�cult to deduce the full distribution of this
variable from the components of Y

f

and Y

g

, even when those are independently Gaussian.
While its mean is available in closed form, EI requires Monte Carlo.

3 A novel formulation involving slack variables

An equivalent formulation of (1) involves introducing slack variables, s
j

, for j = 1, . . . ,m (i.e.,
one for each inequality constraint g

j

(x)), and converting the mixed constraint problem (1)
into one with only equality constraints (plus bound constraints for s

j

):

g

j

(x)� s

j

= 0, s

j

2 R+, for j = 1, . . . ,m. (6)

The input dimension of the problem is increased from d to d +m with the introduction of
the m (positive) slack “inputs” s.

Reducing a mixed constraint problem to one involving only equality and bound con-
straints is valuable insofar as one has good solvers for those problems. Indeed, the AL
method is an attractive option here, but some adaptation is required. Suppose, for the mo-
ment, that the original problem (1) has no equality constraints (i.e., p = 0). In this case, a
slack variable-based AL method is readily available—as an alternative to the one described
in Section 2.2. Although we frame it as an “alternative”, some in the mathematical op-
timization community would describe this as the standard version (see, e.g., Nocedal and
Wright, 2006, Ch. 17). The AL for this setup is given as follows:

L

A

(x, s;�
g

, ⇢) = f(x) + �

> (g(x)+s) +
1

2⇢

m

X

j=1

(g
j

(x)+s

j

)2 . (7)

This formulation is more convenient than (3) because the “max” is missing, but the extra
slack variables mean solving a higher (d + m) dimensional subproblem compared to (4).
In Section 3.3 we address this issue, and further detail adjustments to Alg. 1 for the slack
variable case.

The AL can be expanded to handle equality (and thereby mixed constraints) as follows:

L

A

(x, s;�
g

,�

h

, ⇢) = f(x) + �

>
g

(g(x)+s) + �

>
h

h(x) +
1

2⇢

"

m

X

j=1

(g
j

(x)+s

j

)2 +
p

X

k=1

h

k

(x)2
#

. (8)

5

Defining c(x) :=
⇥

g(x)>, h(x)>
⇤>
, � :=

⇥

�

>
g

,�

>
h

⇤>
, and enlarging the dimension of s with the

understanding that s
m+1 = · · · = s

m+p

= 0, leads to a streamlined AL for mixed constraints

L

A

(x, s;�, ⇢) = f(x) + �

> (c(x) + s) +
1

2⇢

m+p

X

j=1

(c
j

(x) + s

j

)2 , (9)

with � 2 Rm+p. A non-slack AL formulation (3) may be written analogously as

L

A

(x;�
g

,�

h

, ⇢) = f(x) + �

>
g

g(x) + �

>
h

h(x) +
1

2⇢

"

m

X

j=1

max {0, g
j

(x)}2 +
p

X

k=1

h

k

(x)2
#

,

with �

g

2 Rm

+ and �

h

2 Rp. Eq. (9), by contrast, is easier to work with because it is a smooth
quadratic in the objective (f) and constraints (c). In what follows, we show that (9) facilitates
calculation of important quantities like EI, in the GP-based BO framework, via a library
routine. So slack variables not only facilitate mixed constraints in a unified framework, they
also lead to a more e�cient handling of the original inequality (only) constrained problem.

3.1 Distribution of the slack-AL composite

If Y
f

and Y

c1 , . . . , Ycm+p represent random predictive variables from m+ p + 1 surrogates
fitted to n realized objective and constraint evaluations, then the analogous slack-AL random
variable is

Y (x, s) = Y

f

(x) +
m+p

X

j=1

�

j

(Y
cj(x) + s

j

) +
1

2⇢

m+p

X

j=1

(Y
cj(x) + s

j

)2. (10)

As in the original AL formulation, the mean of this RV has a simple closed form in terms of the
means and variances of the surrogates, regardless of the form of predictive distribution. In the
conditionally Gaussian case, we can derive the full distribution of the slack-AL variate (10)
in closed form. Toward that aim, we re-develop the composite Y as follows:

Y (x, s) = Y

f

(x) +
m+p

X

j=1

�

j

s

j

+
1

2⇢

m+p

X

j=1

s

2
j

+
1

2⇢

m+p

X

j=1

⇥

2�
j

⇢Y

cj(x) + 2s
j

Y

cj(x) + Y

cj(x)
2
⇤

= Y

f

(x) +
m+p

X

j=1

�

j

s

j

+
1

2⇢

m+p

X

j=1

s

2
j

+
1

2⇢

m+p

X

j=1

h

�

↵

j

+ Y

cj(x)
�2

� ↵

2
j

i

,

with ↵

j

= �

j

⇢+ s

j

. Now decompose the Y (x, s) into a sum of three quantities:

Y (x, s) = Y

f

(x) + r(s) +
1

2⇢
W (x, s), with (11)

r(s) =
m+p

X

j=1

�

j

s

j

+
1

2⇢

m+p

X

j=1

s

2
j

�

1

2⇢

m+p

X

j=1

↵

2
j

and W (x, s) =
m+p

X

j=1

�

↵

j

+ Y

cj(x)
�2

.

6

Using Y

cj ⇠ N

⇣

µ

cj(x), �
2
cj
(x)
⌘

, i.e., leveraging Gaussianity, W can be written as

W (x, s) =
m+p

X

j=1

�

2
cj
(x)X

j

(x, s), with X

j

(x, s) ⇠ �

2

dof =1, �=

✓

µ

cj(x) + ↵

j

�

cj(x)

◆2
!

. (12)

The line above is the expression of a weighted sum of non-central chi-square (WSNC) variates.
Each of the m+ p variates involves a unit degrees-of-freedom (dof) parameter, and a non-
centrality parameter �. A number of e�cient methods exist for evaluating the density,
distribution, and quantile functions of WSNC random variables (e.g., Davies, 1980; Duchesne
and Lafaye de Micheaux, 2010). The R packages CompQuadForm (Lafaye de Micheaux, 2013)
and sadists (Pav, 2015) provide library implementations. Details and code are provided in
Appendix C.

Some constrained optimization problems involve an a priori known objective f(x). In
that case, referring back to (11), we are done: the distribution of Y (x, s) is WSNC (as in (12))
shifted by a known quantity f(x) + r(s), determined by particular choices of inputs x and
slacks s. When Y

f

(x) is conditionally Gaussian we have that W̃ (x, s) = Y

f

(x)+ 1
2⇢W (x, s) is

the weighted sum of a Gaussian and WNCS variates, a problem that is again well-studied.
The same methods cited above are easily augmented to handle that case—see Appendix C.

3.2 Slack-AL expected improvement

Evaluating EI at candidate (x, s) locations under the AL-composite involves working with
EI(x, s) = E

⇥

(ynmin � Y (x, s)) I{Y (x,s)y

n
min}
⇤

, given the current minimum y

n

min of the AL over
all n runs. When f(x) is known, let w

n

min(x, s) = 2⇢ (ynmin � f(x)� r(s)) absorb all of the
non-random quantities involved in the EI calculation. Then, with D

W

(·; x, s) denoting the
distribution of W (x, s),

EI(x, s) =
1

2⇢
E
⇥

(wn

min(x, s)�W (x, s)) I
W (x,s)wmin(x,s)

⇤

=
1

2⇢

Z

w

n
min(x,s)

�1
D

W

(t; x, s)dt =
1

2⇢

Z

w

n
min(x,s)

0

D

W

(t; x, s)dt (13)

if wn

min(x, s) � 0 and zero otherwise. That is, the EI boils down to integrating the distribution
function of W (x, s) between 0 (since W is positive) and w

n

min(x, s). This is a one-dimensional
definite integral that is easy to approximate via quadrature; details are in Appendix C. Since
W (x, s) is quadratic in the Y

c

(x) values, it is often the case, especially for smaller ⇢-values
in later AL iterations, that D

W

(t; x, s) is zero over most of [0, wn

min(x, s)], simplifying the
numerical integration. However, this has deleterious impacts on search over (x, s). We
discuss a useful adaptation for that case in Appendix B.2.

When f(x) is unknown and Y

f

(x) is conditionally normal, let w̃n

min(s) = 2⇢ (ynmin � r(s)).
Then,

EI(x, s) =
1

2⇢
E
h⇣

w̃

n

min(s)� W̃ (x, s)
⌘

I
W̃ (x,s)w̃

n
min(s)

i

=
1

2⇢

Z

w̃

n
min(s)

�1
D

W̃

(t; x, s)dt.

7

Here the lower bound of the definite integral cannot be zero since Y

f

(x) may be negative,
and thus W̃ (x, s) may have non-zero distribution for negative t-values. This presents some
challenges when it comes to numerical integration via quadrature, although many library
functions allow indefinite bounds. We obtain better performance by supplying a conservative
finite lower bound, for example three standard deviations in Y

f

(x), in units of the penalty
(2⇢), below zero: 6⇢�

f

(x). Detailed example implementations are provided Appendix C.

3.3 AL updates, optimal slacks, and other implementation notes

The new slack-AL method is completed by describing when the subproblem (9) is deemed
to be “solved” (step 2 in Alg. 1), how � and ⇢ updated (steps 3–4). We terminate the BO
search sub-solver after a single iteration as this matches with the spirit of EI-based search,
whose choice of next location can be shown to be optimal, in a certain sense, if it is the final
point being selected (Bull, 2011). It also meshes well with an updating scheme analogous
to that in steps 3–4: updating only when no actual improvement (in terms of constraint
violation) is realized by that choice. For those updates, the analog for the mixed constraint
setup is

step 2: Let (xk

, s

k) approx. solve min
x,s

n

L

A

(x, s;�k�1
, ⇢

k�1) : (x, s1:m) 2 B̃

o

step 3: �k

j

= �

k�1
j

+ 1
⇢

k�1 (cj(xk) + s

k

j

), for j = 1, . . . ,m+ p

step 4: If c1:m(xk)  0 and |c

m+1:m+p

(xk)|  ✏, set ⇢k=⇢k�1; else ⇢

k= 1
2⇢

k�1

Above, step 3 is the same as in Alg. 1 except without the “max”, and with slacks augmenting
the constraint values. The “if” statement in step 4 checks for validity at x

k, deploying a
threshold ✏ � 0 on equality constraints; further discussion of the threshold ✏ is deferred to
Section 4, where we discuss progress metrics under mixed constraints. If validity holds at
(xk

, s

k), the current AL iteration is deemed to have “made progress” and the penalty remains
unchanged; otherwise it is doubled. An alternate formulation may check |c1:m(xk)+s

k

1:m|  ✏.
We find that the version in step 4, above, is cleaner because it limits sensitivity to the choice
of threshold ✏. In Appendix B.1 recommend initial (�0

, ⇢

0) values which are analogous to
the original, non-slack AL settings.

Optimal choice of slacks: The biggest di↵erence between the original AL (3) and
slack-AL (9) is that the latter requires searching over both x and s, whereas the former
involves only x-values. In what follows we show that there are automatic choices for the s-
values as a function of the corresponding x’s, keeping the search space d-dimensional, rather
than d+m.

For an observed c

j

(x) value, associated slack variables minimizing the AL (9) can be
obtained analytically. Using the form of (11), observe that min

s2Rm
+
y(x, s) is equivalent to

min
s2Rm

+

P

m

j=1 2�j

⇢s

j

+ s

2
j

+ 2s
j

c

j

(x). For fixed x, this is strictly convex in s. Therefore,
its unconstrained minimum can only be its stationary point, which satisfies 0 = 2�

j

⇢ +
2s⇤

j

(x) + 2c
j

(x), for j = 1, . . . ,m. Accounting for the nonnegativity constraint, we obtain
the following optimal slack as a function of x:

s

⇤
j

(x) = max {0,��

j

⇢� c

j

(x)} , j = 1, . . . ,m. (14)

8

Above we write s⇤ as a function of x to convey that x remains a “free” quantity in y(x, s⇤(x)).
Recall that slacks on equality constraints are zero, s

k

(x) = 0, k = m + 1, . . . ,m + p, for all
x.

In the blackbox c(x) setting, y(x, s⇤(x)) is only directly accessible at the data locations
x

i

. At other x-values, however, the surrogates provide a useful approximation. When Y

c

(x)
is (approximately) Gaussian it is straightforward to show that the optimal setting of the
slack variables, solving min

s2Rm
+
E[Y (x, s)], are s⇤

j

(x) = max{0,��

j

⇢�µ

cj(x)}, i.e., the same
as (14) with a prediction µ

cj(x) for Ycj(x) unknown c

j

(x) value. Again, slacks on the equality
constraints are set to zero.

Other criteria can be used to choose slack variables. Instead of minimizing the mean of
the composite, one could maximize the EI. In Appendix A we explain how this is of dubious
practical value. Compared to the settings described above, searching over EI is both more
computationally intensive and provides near identical results in practice.

Implementation notes: Code supporting all methods in this manuscript is provided
in two open-source R packages: laGP (Gramacy, 2015) and DiceOptim (Ginsbourger et al.,
2015), both on CRAN (R Development Core Team, 2004). Implementation details vary
somewhat across those packages, due primarily to particulars of their surrogate modeling ca-
pability and how they search the EI surface. For example, laGP can accommodate a smaller
initial design size because it learns fewer parameters (i.e., has fewer degrees of freedom).
DiceOptim uses a multi-start search procedure for EI, whereas laGP deploys a random can-
didate grid, which may optionally be “finished” with an L-BFGS-B search. Nevertheless,
their qualitative behavior exhibits strong similarity. Both packages also implement the orig-
inal AL scheme (i.e., without slack variables) updated (8) for mixed constraints. Further
details are provided in Appendix B.2.

4 Empirical comparison

Here we describe three test problems, each mixing challenging elements from traditional
unconstrained blackbox optimization benchmarks, but in a constrained optimization format.
We run our optimizers on these problems 100 times under random initializations. In the case
of our GP surrogate comparators, this initialization involves choosing random space-filling
designs. Our primary means of comparison is an averaged (over the 100 runs) measure of
progress defined by the best valid value of the objective for increasing budgets (number of
evaluations of the blackbox), n.

In the presence of equality constraints it is necessary to relax this definition somewhat, as
the valid set may be of measure zero. In such cases we choose a tolerance ✏ � 0 and declare
a solution to be “valid” when inequality constraints are all valid, and when |h

k

(x)|  ✏ for
all k = 1, . . . , p. In our figures we choose ✏ = 10�2; however, the results are similar under
stronger thresholds, with a higher variability over initializations. As finding a valid solution
is, in itself, sometimes a di�cult task, we additionally report the proportion of runs that
find valid and optimal solutions as a function of budget, n, for problems with equality (and
mixed) constraints.

9

0 10 20 30 40

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

blackbox evaluations (n)

be
st

 v
al

id
 o

bj
ec

tiv
e

(f)

Initial Design
Gramacy, et al. (2016)

20 25 30 35 40

−7
−6

−5
−4

blackbox evaluations (n)

lo
g

ut
ilit

y
ga

p

Original AL
Slack AL
Slack AL + optim
PESC

Figure 1: Results on the LSQ problem with initial designs of size n = 10. The left panel
shows the best valid value of the objective over the first 40 evaluations, whereas the right
shows the log utility-gap for the second 20 evaluations. The solid gray lines show comparators
from Gramacy et al. (2016a).

4.1 An inequality constrained problem

We first revisit the “toy” problem from Gramacy et al. (2016a), having a 2-d input space
limited to the unit cube, a (known) linear objective, with sinusoidal and quadratic inequal-
ity constraints (henceforth LSQ problem; see the Appendix D for details). Figure 1 shows
progress over repeated solves with a maximum budget of 40 blackbox evaluations. The left-
hand plot in Figure 1 tracks the average best valid value of the objective found over the
iterations, using the progress metric described above. Random initial designs of size n = 5
were used, as indicated by the vertical-dashed gray line. The solid gray lines are extracted
from a similar plot from Gramacy et al. (2016a), containing both AL-based comparators,
and several from the derivative-free optimization and BO literatures. The details are omit-
ted here. Our new ALBO comparators are shown in thicker colored lines; the solid black
line is the original AL(BO)-EI comparator, under a revised (compared to (Gramacy et al.,
2016a)) initialization and updating scheme. The two red lines are variations on the slack-AL
algorithm under EI: with (dashed) and without (solid) L-BFGS-B optimizing EI acquisition
at each iteration. Finally, the blue line is PESC Hernández-Lobato et al. (2015), using the
Python library available at https://github.com/HIPS/Spearmint/tree/PESC. The take-
home message from the plot is that all four new methods outperform those considered by
the original ALBO paper Gramacy et al. (2016a).

Focusing on the new comparators only, observe that their progress is nearly statistically
equivalent during the first 20 iterations. At iteration 10, for example, the ordering from
best to worst is PESC (0.861), Slack-AL (0.902), Orig-AL (0.942), and Slack-AL+optim
(0.957). Combining the 100 repetitions of each run, only the best (PESC) versus worst
(Slack-AL+optim) is statistically significant in a one-sided t-test, with a p-value of 0.0011.

10

Apparently, aggressively optimizing the EI in the slack formulation in early iterations hurts
more than it helps. The situation is more nuanced, however, for later iterations. At iter-
ation 30, for example, the ordering is Slack-AL+optim (0.6002), PESC (0.6004), Slack-AL
(0.6010), and Orig-AL (0.689). Although the numbers are more tightly grouped, only the
first two (Slack-AL+optim and PESC), both leveraging L-BFGS-B subroutines, are statis-
tically equivalent. In particular, both Slack-AL variants outperform the original AL with
p-values less than 2.2e�16. This discrepancy is more easily visualized in the left of the figure
with a so-called “utility-gap” log plot (Hernández-Lobato et al., 2015), which tracks the log
di↵erence between the theoretical best valid value and those found by search.

4.2 Mixed inequality and equality constrained problems

Next consider a problem in four input dimensions with a (known) linear objective and two
constraints, one inequality and one equality. The inequality constraint is the so-called “Ack-
ley” function in d = 4 input dimensions. The equality constraint follows the so-called
“Hartman 4-dimensional function”. Appendix D provides a full mathematical specification.
Figure 2 shows two views into progress on this problem. Since it involves mixed constraints,

0 10 20 30 40 50

0
1

2
3

4

blackbox evaluations (n)

be
st

 v
al

id
 (1

e−
2

fo
r e

qu
al

ity
) o

bj
ec

tiv
e

(f) Original AL
Slack AL
Slack AL + optim
EFI

nlopt/140
NOMAD−P1/15
NOMAD−AL−P1/15
NOMAD−AL−PBP1/15

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

blackbox evaluations (n)

pr
op

or
tio

n
of

 v
al

id
 a

nd
 s

ol
ve

d
ru

ns

Figure 2: Results on the Linear-Hartman-Ackley mixed constraint problem. The left panel
shows a progress comparison based on laGP code with initial designs of size n = 10. The
x-scale has been divided by 140 for the nlopt comparator. A value of four indicates that no
valid solution has been found. The right panel shows the proportion of valid (thin lines) and
optimal (thick lines) solutions for the EFI and “Slack AL + optim” comparators.

comparators from the BO literature are scarce. Our EFI implementation deploys the (�h, h)
heuristic mentioned in the introduction. As representatives from the nonlinear optimization
literature we include nlopt (Johnson, 2014) and three adapted NOMAD (Le Digabel, 2011)
comparators, which are detailed in Appendix B.3. In the left-hand plot we can see that
our new ALBO comparators are the clear winner, with an L-BFGS-B optimized EI search

11

under the slack-variable AL implementation performing exceptionally well. The nlopt and
NOMAD comparators are particularly poor. We allowed those to run up to 7000 and 1000
iterations, respectively, and in the plot we scaled the x-axis (i.e., n) to put them on the same
scale as the others. The right-hand plot provides a view into the distribution of two key
aspects of performance over the MC repetitions. Observe that “Slack AL + optim” finds
valid values quickly, and optimal values not much later. Our adapted EFI is particularly
slow at converging to optimal (valid) solutions.

Our final problem involves two input dimensions, an unknown objective function (i.e., one
that must be modeled with a GP), one inequality constraint and two equality constraints.
The objective is a centered and re-scaled version of the “Goldstein–Price” function. The
inequality constraint is the sinusoidal constraint from the LSQ problem [Section 4.1]. The
first equality constraint is a centered “Branin” function, the second equality constraint is
taken from Parr et al. (2012) (henceforth GBSP problem). Appendix D contains a full
mathematical specification. Figure 3 shows our results on this problem. Observe (left panel)

0 50 100 150

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

blackbox evaluations (n)

be
st

 v
al

id
 (1

e−
2

fo
r e

qu
al

ity
) o

bj
ec

tiv
e

(f) Original AL
Slack AL
Slack AL + optim
EFI

nlopt/46
NOMAD−P1/8
NOMAD−AL−P1/8
NOMAD−AL−PBP1/8

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

blackbox evaluations (n)

pr
op

or
tio

n
of

 v
al

id
 a

nd
 s

ol
ve

d
ru

ns

Figure 3: Results on the GBSP problem. See Figure 2 caption.

that the original ALBO comparator makes rapid progress at first, but dramatically slows
for later iterations. The other ALBO comparators, including EFI, converge much more
reliably, with the “Slack AL + optim” comparator leading in both stages (early progress and
ultimate convergence). Again, nlopt and NOMAD are poor, however note that their relative
comparison is reversed; again, we scaled the x-axis to view these on a similar scale as the
others. The right panel shows the proportion of valid and optimal solutions for “Slack AL
+ optim” and EFI. Notice that the AL method finds an optimal solution almost as quickly
as it finds a valid one—both substantially faster than EFI.

12

5 Discussion

The augmented Lagrangian (AL) is an established apparatus from the mathematical opti-
mization literature, enabling unconstrained or bound-constrained optimizers to be deployed
in settings with constraints. Recent work involving Bayesian optimization within the AL
framework (ALBO) has shown great promise, especially toward obtaining global solutions
under constraints. However, those methods were deficient in at least two respects. One is
that only inequality constraints could be supported. Another was that evaluating the acqui-
sition function, combining predictive mean and variance information via EI, required Monte
Carlo approximation. In this paper we showed that both drawbacks could be addressed
via a slack-variable reformulation of the AL. Our method supports inequality, equality, and
mixed constraints, and to our knowledge this updated ALBO procedure is unique in the BO
literature in its applicability to the general mixed constraints problem (1). We showed that
the slack ALBO method outperforms modern alternatives in several challenging constrained
optimization problems.

We conclude by remarking on a potential drawback: we have found in some cases that
our slack variable approach is a double-edged sword, especially when the unknown slacks are
chosen in a default manner, i.e., s⇤(x) as in Section 3.3. Those choices utilize the surrogate(s)
of the constraints, particularly the posterior mean, which means that those surrogates are
relied upon more heavily than in the original (non-slack) AL context. Consequently, if
the problem at hand matches the surrogate modeling (i.e., Gaussian process) assumptions
well, then by a leveraging argument we can expect the slack method to do better than the
original. However, if the assumptions are a mismatch, then one can expect them to be
worse. The motivating “Lockwood” problem from Gramacy et al. (2016a) had a constraint
surface that was kinked at its boundary {x 2 Rd : c(x) = 0}, which obviously violates the
smoothness assumptions of typical GP surrogates. We were therefore not surprised to find
poorer performance in our slack method compared to the original.

Acknowledgments

We are grateful to Mickael Binois for comments on early drafts. RBG is grateful for par-
tial support from National Science Foundation grant DMS-1521702. The work of SMW is
supported by the U.S. Department of Energy, O�ce of Science, O�ce of Advanced Sci-
entific Computing Research under Contract No. DE-AC02-06CH11357. The work of SLD
is supported by the Natural Sciences and Engineering Research Council of Canada grant
418250.

A Optimal and default slack variables

This continues the discussion from Section 3.3, which suggests choosing slack variables by
minimizing the slack-AL. One alternative is to maximize the EI. Recall that EI mixes data
quantities (at the x

i

) and predictive quantities at candidate locations (x, s) via the im-

13

provement I(x, y) = max(0, ynmin � Y (x, s)), the former coming from y

n

min = min(y1, . . . , yn),
where y

i

= y(x
i

, s). If one seeks improvement over the lowest possible y

n

min, then the op-
timal s-values to pair with the x

i

s are given in Eq. (14): use y

i

= y(x
i

, s

⇤(x
i

)). Choosing
slacks for candidate (x, s) locations is more challenging. Solving max

s2Rm
+
EI(x, s) for a fixed

x is equivalent to solving max
s2Rm

+
E{Y (x, s)I

Y (x,s)ymin}, for which a closed-form solution
remains elusive. Numerical methods are an option; however, we have not discovered any
advantage over the simpler min

s2Rm
+
E{Y (x, s)}-based settings described above. Empirically,

we find that the two criteria either yield identical s⇤
j

(x)-values, or ones that are nearly so.
As an illustration, we consider a 2-d problem with a linear objective and two inequality

constraints (see the LSQ problem in Section D, Eq. (15), below). We focus here on a
“static” situation, where a 9-point grid defines the set of observations. f1 is treated as a
known function and two GP models are fitted to c1 and c2. The AL parameters are set to
⇢ = 1/16 and � = [1, 1]. The top-left panel of Figure 4 shows the EI surface (computed on
a 2-d grid), when s

⇤
j

(x) = max (0,��

j

⇢� µ

j

(x)) is used for each grid element x. The shape
of the contours is typical of EI, with a plateau of zero values and two local maxima. The
remaining panels show the value of the EI metric for each of the three x-values shown in the
top-left panel. These are computed on a 2-d grid in s space. Despite its complex formulation
(13), on this example EI is apparently unimodal with respect to s1 and s2. Moreover, the
optimal values (computed from the grid used to plot the image) coincide (up to numerical
error) with the associated s

⇤ values, plotted as diamonds matching the color in the top-left
plot.

B Implementation notes

B.1 Initializing the AL parameters in the slack setup

To initialize (�0
, ⇢

0), we update the settings suggested in Gramacy et al. (2016b)—balancing
the scales of objective and constraint in the AL on the initial design of size n0—to our new
mixed constraint context. Let v(x) be a logical vector of length m+ p recording the validity
of x in a zero-slack setting. That is, let v

j

(x) = 1 if c
j

(x)  0, for j = 1, . . . , p, and v

j

(x) = 1
if |c

j

(x)|  ✏, for j = p+ 1, . . . ,m; otherwise let v
j

(x) = 0. Then, take

⇢

0 =
min

i=1,...,n0{

P

m+p

j=1 c

j

(x
i

)2 : 9j, v
j

(x
i

) = 0 }

2min
i=1,...,n0{f(xi

) : 8j, v
j

(x
i

) = 1}
,

and �

0 = 0. The denominator above is not defined if the initial design has no valid values
(i.e., if there is no x

i

with v

j

(x
i

) = 1 for all j). When that happens we use the median of
f(x

i

) in the denominator instead. On the other hand, if the initial design has no invalid
values and hence the numerator is not defined, we use ⇢

0 = 1.

14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ●

● ● ●

● ● ●

x1

x2

x3

EI(x, ŝ(x))

x1

x 2

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

EI(x1, s1, s2)

s1

s 2

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

EI(x2, s1, s2)

s1

s 2

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

EI(x3, s1, s2)

s1

s 2

Figure 4: Illustration of the influence of the slack variables. The top left figure shows EI as
a function of x, when the slack variables are chosen as ŝ. The three other figures show the
EI metric as a function of the slack variables for three di↵erent x-values (at locations shown
in the top left graph). The horizontal and vertical lines show the s

⇤-values, and the points
show the optimal values.

B.2 Open source software

Code supporting all methods described here is provided in two open source R packages:
laGP (Gramacy, 2015) and DiceOptim (Ginsbourger et al., 2015) packages, both on CRAN.
Implementation details vary somewhat across those packages, due primarily to particulars of
their surrogate modeling capability and how they search the EI surface. For example laGP
can accommodate a smaller initial sample size because it learns fewer parameters (i.e., has
fewer degrees of freedom). DiceOptim uses a multi-start search procedure for EI, whereas

15

laGP deploys a random candidate grid, which may optionally be “finished” with an L-BFGS-
B search. Nevertheless, their qualitative behavior exhibits strong similarity. Both utilize
library subroutines for dealing with weighted non-central chi-square deviates, as described
in Appendix C below. Some notable similarities and di↵erences are described below. The
empirical work we present in Section 4 provides results from our laGP only. Those obtained
from DiceOptim are similar; we encourage readers to consult the documentation from both
packages for further illustration.2

Both initialize ⇢ and � as described above in Section B.1 above; both update those pa-
rameters according to the modifications of steps 2–4 in Alg. 1; and both define x

k in those
updates to be the value of x

i

corresponding to the best y
i

= y(x
i

, s

⇤(x
i

)) using (�k�1
, ⇢

k�1),
for data values indexed by i = 1, . . . , n. By default, both utilize (x, s⇤(x)) to evaluate EI
at candidate x-locations, via the surrogate mean µ

c

(x) values. The laGP implementation
optionally allows randomization of (x, S⇤(x)), where S

⇤(x) is chosen via (14) with a draw
Y

cj(x) in place of c
j

(x). Alternatively, DiceKriging can optimize jointly over (x, s) via its
multi-start search scheme. Those two options are variations which allow one to test the “opti-
mality” of s⇤(x) under EI calculations. We report here that such approaches have been found
to be uniformly inferior to using s

⇤(x), which is anyways a much simpler implementation
choice.

Choosing s

⇤(x), as opposed to random S

⇤(x) above, renders the entire EI calculation for
a candidate x value deterministic. In turn, that means that local (numerical) derivative-
based optimization techniques, such as L-BFGS-B (Liu and Nocedal, 1989), can be used to
optimize over EI settings. The laGP package has an optional “optim” setting, initializing
local L-BFGS-B searches from the best random candidate point via. DiceKriging uses the
genoud algorithm (GENetic Optimization Using Derivatives, Mebane Jr and Sekhon, 2011)to
handle potentially multi-modal EI surfaces (Figure 4). Neither of these options is available for
the original AL (without slacks), since evaluating the EI required Monte Carlo, e↵ectively
limiting the resolution of search. In later iterations, the original AL would fail to “drill”
down into local troughs of the EI surface. In our empirical work [Section 4], we show that
being able to optimize over the EI surface is crucial to obtaining good performance at later
iterations. The predictive entropy search adaptation for constrained optimization (PESC;
Hernández-Lobato et al., 2015) is similarly deterministic, and also utilizes L-BFGS-B to
optimize over selections. We conjecture that the correspondingly suboptimal selections made
by the original AL, and the poor initialization of updates of ⇢ pointed out by Picheny et al.
(2016), explains the AL-versus-PESC outcome reported by Hernández-Lobato et al. (2015).
Our revised experiments show a reversed (if extremely close) comparison.

Finally, we find that the following simple-yet-very-e�cient numerical trick can be help-
ful when the EI surface is mostly zero, as often happens at later stages of optimization—a
behavior that can be attributed to the quadratic nature of the AL, guaranteeing zero im-
provement in certain situations (Gramacy et al., 2016a). In the original laGP implementation

2At the time of writing, updated versions of laGP and DiceOptim are not “pushed” to CRAN; alpha
testing versions are available from the authors upon request. Subsequent CRAN updates will include all
slack AL enhancements made for this paper.

16

this drawback was addressed by “switching” to mean-based search (rather than EI). In the
slack variable formulation, observe that zero EI may be realized when w

n

min < 0, in which
case the w

n

min value itself (as it is less than zero) may stand in as a sensible replacement:
capturing both mean and (deterministic aspects) of the penalty information. For example,
when optimizing over EI in DiceOptim we find that this wn

min replacement helps the solver
escape large plateaus of (otherwise) zero values.

B.3 Adapted NOMAD comparators

The three methods NOMAD-P1, NOMAD-AL-P1, and NOMAD-AL-PB-P1 are based on the NOMAD
software Le Digabel (2011) that implements the Mesh Adaptive Direct Search derivative-free
algorithm Audet and Dennis, Jr. (2006) using the Progressive Barrier (PB) technique Audet
and Dennis, Jr. (2009) for inequality constraints. All three methods begin with a first
phase (P1) that focuses on obtaining a feasible solution, with the execution of NOMAD
on the minimization of

P

p

k=1 h
2
k

(x) subject to g

j

(x)  0, j = 1, . . . ,m. Then, NOMAD-P1
follows with an ordinary NOMAD run where equalities are transformed into inequalities
of the form |h

k

(x)|  0, k = 1, . . . , p. NOMAD-AL-P1 is a straightforward extension of the
augmented Lagrangian method of Gramacy et al. (2016a), with the inclusion of equality
constraints in the Lagrangian function, while the unconstrained subproblem is handled by
NOMAD. NOMAD-AL-PB-P1 is a hybrid version where equalities are still in the Lagrangian
while inequalities are transferred into the subproblem where NOMAD treats them with the
PB. Note that the non-use of the first phase P1 was also tested, but it did not work as well
as the others so it was not included in order to save space.

C Code for calculations with WSNC RVs

Here we provide R code for calculating EI and related quantities using the sadists (Pav,
2015) and CompQuadForm (Lafaye de Micheaux, 2013) libraries, in particular their WNCS
distribution functions (e.g., Davies, 1980; Duchesne and Lafaye de Micheaux, 2010).

Let mz and sz denote the vectorized means and variances of the normal Z
i

quantity in
(12), that is mx[j] = µ

cj(x)+↵

j

. Below, rho contains the AL parameter ⇢, and we presume
f(x), r(s), and y

n

min quantities have been pre-calculated and stored in variables of the same
name. Then, the relevant quantities for calculating EI in the case of a known f(x) can be
computed as:

R> ncp <- (mz / sz)^2
R> wmin <- 2*rho*(ymin - fx - gs)

Using sadists, EI may be computed as follows using simple “quadrature”.

R> library(sadists)
R> m <- length(mz)
R> lt <- 1000

17

R> t <- seq(0, wmin, length=lt)
R> df <- pow <- rep(1, mz)
R> ncp <- (mx / sx)^2
R> EI <- (sum(psumchisqpow(q=t, sz^2, df, ncp, pow))*wmin/(lt-1)) / (2*rho)

Alternately, via the integrate function built-into R:

R> EIgrand <- function(t) { psumchisqpow(q=t, wts, df, ncp, pow) }
R> EI <- integrate(EIgrand, 0, wmin)$value / (2*rho)

The code using CompQuadForm is similar. Greater care is required to code the EI inte-
grand, as the main function (davies) is not vectorized. Also, we have found that NaN is
often erroneously returned when the integrand is actually zero.

library(CompQuadForm)
R> EIgrand <- function(x) {
+ p <- rep(NA, length(x))
+ for(1 in 1:length(c))
+ p[i] <- 1 - davies(q=x[i], lambda=sz^2, delta=ncp)$Qq
+ p[!is.finite(p)] <- 0
+ return(p)
}
R> EI <- (sum(EIgrand(t)*wmin/(lt-1)) / (2*rho)
R> EI <- integrate(EIgrand, 0, wmin)$value / (2*rho) ## alternately

Although this may at first seem more cumbersome, it is actually fairly easy to vectorize
davies, and at the same time replace NaN values with zero in the underlying C implemen-
tation. The result is a method which is much faster than the sadists alternative, and has
the added bonus of being callable from the C functions inside our laGP implementation. For
more details on this re-implementation of davies in our setup, please see the source for the
laGP and/or DiceOptim package(s).

Some slight modification is required for the unknown objective case. Let mf and sf
denote µ

f

(x) and �

f

(x) in the code below. We have concluded that only the methods from
CompQuadForm are applicable in this case.

R> alpha <- 2*rho*lambda + 2*s
R> wmin <- 2*rho*ymin - sum(s^2) - s %*% t(lambda) + sum(alpha^2/4)
t <- seq(-6*rho*sf, wmin, length=lt)
R> EIgrand <- function(x) {
+ p <- rep(NA, length(x))
+ madj <- 2*rho*mf
+ sadj <- 2*rho*sf
+ for(1 in 1:length(c))
+ p[i] <- davies(q=x[i]-madj, lambda=sz^2, delta=ncp, sigma=sadj)$Qq

18

+ p <- 1-p
+ p[!is.finite(p)] <- 0
+ return(p)
}
R> EI <- (sum(EIgrand(t))*(wmin+6*rho*s)/(lt-1)) / (2*rho)
R> EI <- integrate(EIgrand, -6*rho*sf, wmin)$value / (2*rho) ## alternately

As when f(x) is known, vectorizing the davies routine leads to dramatic speedups.

D Test problems

Below we detail the components of the three test problems explored in Section 4. They com-
bine classic benchmarks from the Bayesian optimization and computer (surrogate) modeling
literature. In total there are two objective functions and six constraints.

Objective functions: f1 is a simple linear objective, treated as known, and f2 is the
Goldstein-Price function (rescaled and centered) Dixon and Szego (1978); Molga and Smut-
nicki (2005); Picheny et al. (2013). Further description, as well as R and MATLAB imple-
mentations, is provided by Bingham et al. (2014).

f1(x) =
d

X

i=1

x

i

f2(x) =
log [(1 + a)(30 + b)]� 8.69

2.43
, with

a = (4x1 + 4x2 � 3)2 ⇥
⇥

75� 56 (x1 + x2) + 3 (4x1 � 2)2 + 6 (4x1 � 2) (4x2 � 2) + 3 (4x2 � 2)2
⇤

b = (8x1 � 12x2 + 2)2 ⇥
⇥

�14� 128x1 + 12 (4x1 � 2)2 + 192x2 � 36 (4x1 � 2) (4x2 � 2) + 27 (4x2 � 2)2
⇤

Constraint functions: c1 and c2 are the “toy” constraints from Gramacy et al. (2016a); c3 is
the “Branin” function (centered) “Branin” function (Dixon and Szego, 1978; Forrester et al.,
2008; Molga and Smutnicki, 2005; Picheny et al., 2013); c4 is taken from Parr et al. (2012).
c5 is the “Ackley” function (centered) (for details see Adorio and Diliman, 2013; Molga and
Smutnicki, 2005; Bäck, 1996); c6 the “Hartman” function (centered, rescaled) (see Dixon
and Szego, 1978; Picheny et al., 2013, for details). Again Surjanovic and Bingham (2014)
provides a convenient one-stop reference containing R and MATLAB code and visualizations.

19

c1(x) = 0.5 sin(2⇡(x2
1 � 2x2)) + x1 + 2x2 � 1.5

c2(x) = �x

2
1 � x

2
2 + 1.5

c3(x) = 15�

✓

15x2 �
5

4⇡2
(15x1 � 5)2 +

5

⇡

(15x1 � 5)� 6

◆2

� 10

✓

1�
1

8⇡

◆

cos(15x1 � 5)

c4(x) = 4�

4� 2.1 (2x1 � 1)2 +
(2x1 � 1)4

3

!

(2x1 � 1)2 � (2x1 � 1) (2x2 � 1)

� 16
�

x

2
2 � x2

�

(2x2 � 1)2 � 3 sin [12 (1� x1)]� 3 sin [12 (1� x2)]

c5(x) = 3 + 20 exp

0

@

�0.2

v

u

u

t

1

4

4
X

i=1

(3x
i

� 1)2

1

A+ exp

1

4

4
X

i=1

cos(2⇡(3x
i

� 1))

!

�20�exp(1)

c6(x) =
1

0.8387

"

�1.1 +
4
X

i=1

C

i

exp

�

4
X

j=1

a

ji

(x
j

� p

ji

)2
!#

,

with:

C =

2

6

6

4

1.0
1.2
3.0
3.2

3

7

7

5

, a =

2

6

6

4

10.00 0.05 3.00 17.00
3.00 10.00 3.50 8.00
17.00 17.00 1.70 0.05
3.50 0.10 10.00 10.00

3

7

7

5

, p =

2

6

6

4

0.131 0.232 0.234 0.404
0.169 0.413 0.145 0.882
0.556 0.830 0.352 0.873
0.012 0.373 0.288 0.574

3

7

7

5

.

Problems:

(LSQ) min
x2[0,1]2 f1(x) s.t. c1(x)  0, c2(x)  0 (15)

(GSBP) min
x2[0,1]2 f2(x) s.t. c1(x)  0, c2(x) = 0, c3(x) = 0 (16)

(LAH) min
x2[0,1]4 f1(x) s.t. c5(x)  0, c6(x) = 0 (17)

Figure 5 shows the two dimensional problems.

References

Adorio, E. and Diliman, U. (2013). “MVF: Multivariate Test Functions Library in C for
Unconstrained Global Optimization.” Retrieved June 2013, from http://www.geocities.
ws/eadorio/mvf.pdf.

Audet, C. and Dennis, Jr., J. (2006). “Mesh Adaptive Direct Search Algorithms for Con-
strained Optimization.” SIAM Journal on Optimization, 17, 1, 188–217.

— (2009). “A Progressive Barrier for Derivative-Free Nonlinear Programming.” SIAM
Journal on Optimization, 20, 1, 445–472.

20

 0.05
 0.15

 0.2
 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6
 1.65

 1.7

 1.75

 1.8

 1.85 1.9

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 −2.8
 −2.4

 −2.2

 −2

 −1.8

 −1.6

 −1.4

 −1.2
 −1

 −0.8

 −0.8

 −0.6

 −0.4

 −0.4

 −0.2

 −0.2

 0

 0

 0

 0.2

 0.2

 0.2

 0.4

 0.4

 0.4

 0.4

 0.4

 0
.6

 0.

6

 0.6

 0.6

 0.6

 0.
8

 0.8

 0.8

 0.8

 1

 1

 1

 1
.2

 1.2

 1.2

 1.4

 1.
4

 1.6

 1.8

 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5: LSQ (left) and GSBP (right) problems. The contour lines show the objective
functions, the bold lines the constraints, and the squares the solutions of the problems.
Equality constraints are shown with two lines to represent the tolerance, the infeasible space
defined by the inequality constraints are shaded.

Bäck, T. (1996). Evolutionary algorithms in theory and practice: evolution strategies, evolu-
tionary programming, genetic algorithms . Oxford University Press.

Bertsekas (1982). Constrained Optimization and Lagrange Multiplier Methods . New York,
NY: Academic Press.

Bingham, D., Ranjan, P., and Welch, W. (2014). “Sequential design of computer experiments
for optimization, estimating contours, and related objectives.” In Statistics in Action: A
Canadian Outlook , ed. J. Lawless, 109–124. Chapman & Hall.

Booker, A. J., Dennis, Jr., J. E., Frank, P. D., Serafani, D. B., Torczon, V., and Tros-
set, M. W. (1999). “A Rigorous Framework for Optimization of Expensive Functions by
Surrogates.” Structural Optimization, 17, 1–13.

Box, G. E. P. and Draper, N. R. (1987). Empirical Model Building and Response Surfaces .
Oxford: Wiley.

Boyle, P. (2007). “Gaussian Processes for Regression and Optimization.” Ph.D. thesis,
Victoria University of Wellington.

Brochu, E., Cora, V. M., and de Freitas, N. (2010). “A Tutorial on Bayesian Optimization
of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical
Reinforcement Learning.” Tech. rep., University of British Columbia. ArXiv:1012.2599v1.

Bull, A. D. (2011). “Convergence Rates of E�cient Global Optimization Algorithms.” Jour-
nal of Machine Learning Research, 12, 2879–2904.

21

Davies, R. (1980). “Algorithm AS 155: The Distribution of a Linear Combination of chi-2
Random Variables.” Journal of the Royal Statistical Society. Series C (Applied Statistics),
29, 3, 323–333.

Dixon, L. and Szego, G. (1978). “The global optimization problem: an introduction.” To-
wards global optimization, 2, 1–15.

Duchesne, P. and Lafaye de Micheaux, P. (2010). “Computing the distribution of quadratic
forms: Further comparisons between the Liu-Tang-Zhang approximation and exact meth-
ods.” Computational Statistics and Data Analysis , 54, 858–862.

Forrester, A., Sobester, A., and Keane, A. (2008). Engineering design via surrogate mod-
elling: a practical guide. Wiley.

Gardner, J. R., Kusner, M. J., Xu, Z., Weinberger, K. W., and Cunningham, J. P. (2014).
“Bayesian Optimization with Inequality Constraints.” In Proceedings of the 31st Interna-
tional Conference on Machine Learning , vol. 32. JMLR, W&CP.

Gelbart, M. A., Snoek, J., and Adams, R. P. (2014). “Bayesian optimization with unknown
constraints.” In Uncertainty in Artificial Intelligence (UAI).

Ginsbourger, D., Picheny, V., Roustant, O., with contributions by C. Chevalier, Marmin,
S., and Wagner, T. (2015). DiceOptim: Kriging-Based Optimization for Computer Exper-
iments . R package version 1.5.

Gramacy, R. (2015). “laGP: Large-Scale Spatial Modeling via Local Approximate Gaussian
Processes in R.” Journal of Statistical Software, to appear. Available as a vignette in the
laGP package.

Gramacy, R., Gray, G., Le Digabel, S., Lee, H., Ranjan, P., Wells, G., and Wild, S. (2016a).
“Modeling an Augmented Lagrangian for Blackbox Constrained Optimization.” Techno-
metrics , 58, 1–11.

— (2016b). “Rejoinder to Modeling an Augmented Lagrangian for Blackbox Constrained
Optimization.” Technometrics , 58, 1, 26–29.

Gramacy, R. B. and Lee, H. K. H. (2011). “Optimization under Unknown Constraints.” In
Bayesian Statistics 9 , eds. J. Bernardo, S. Bayarri, J. O. Berger, A. P. Dawid, D. Hecker-
man, A. F. M. Smith, and M. West, 229–256. Oxford University Press.

Hernández-Lobato, J. M., Gelbart, M. A., Ho↵man, M. W., Adams, R. P., and Ghahra-
mani, Z. (2015). “Predictive Entropy Search for Bayesian Optimization with Unknown
Constraints.” In Proceedings of the 32nd International Conference on Machine Learning ,
vol. 37. JMLR, W&CP.

Johnson, S. G. (2014). “The NLopt nonlinear-optimization package.” Via the R package
nloptr.

22

Jones, D. R., Schonlau, M., and Welch, W. J. (1998). “E�cient Global Optimization of
Expensive Black Box Functions.” J. of Global Optimization, 13, 455–492.

Lafaye de Micheaux, P. (2013). CompQuadForm: Distribution function of quadratic forms in
normal variables . R package version 1.4-1.

Le Digabel, S. (2011). “Algorithm 909: NOMAD: Nonlinear Optimization with the MADS
algorithm.” ACM Transactions on Mathematical Software, 37, 4, 44:1–44:15.

Liu, D. C. and Nocedal, J. (1989). “On the limited memory BFGS method for large scale
optimization.” Mathematical Programming , 45, 1-3, 503–528.

Mebane Jr, W. R. and Sekhon, J. S. (2011). “Genetic optimization using derivatives: the
rgenoud package for R.” Journal of Statistical Software, 42, 11, 1–26.

Mockus, J. (1989). Bayesian Approach to Global Optimization: Theory and Applications .
Springer.

— (1994). “Application of Bayesian Approach to Numerical Methods of Global and Stochas-
tic Optimization.” J. of Global Optimization, 4, 347–365.

Mockus, J., Tiesis, V., and Zilinskas, A. (1978). “The Application of Bayesian Methods for
Seeking the Extremum.” Towards Global Optimization, 2, 117-129, 2.

Molga, M. and Smutnicki, C. (2005). “Test functions for optimization needs.” Retrieved
June 2013, from http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. 2nd ed. Springer.

Parr, J., Keane, A., Forrester, A., and Holden, C. (2012). “Infill sampling criteria for
surrogate-based optimization with constraint handling.” Engineering Optimization, 44,
1147–1166.

Pav, S. E. (2015). sadists: Some Additional Distributions . R package version 0.2.1.

Picheny, V. (2014). “A stepwise uncertainty reduction approach to constrained global op-
timization.” In Proceedings of the 7th International Conference on Artificial Intelligence
and Statistics , vol. 33, 787–795. JMLR W&CP.

Picheny, V., Ginsbourger, D., and Krityakierne, T. (2016). “Comment: Some Enhancements
Over the Augmented Lagrangian Approach.” Technometrics , 58, 1, 17–21.

Picheny, V., Wagner, T., and Ginsbourger, D. (2013). “A benchmark of kriging-based infill
criteria for noisy optimization.” Structural and Multidisciplinary Optimization, 48, 3,
607–626.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning .
The MIT Press.

23

Santner, T. J., Williams, B. J., and Notz, W. I. (2003). The Design and Analysis of Computer
Experiments . New York: Springer-Verlag.

Sasena, M. J. (2002). “Flexibility and E�ciency Enhancement for Constrained Global Design
Optimization with Kriging Approximations.” Ph.D. thesis, University of Michigan.

Schonlau, M., Welch, W. J., and Jones, D. R. (1998). “Global versus local search in con-
strained optimization of computer models.” Lecture Notes-Monograph Series , 11–25.

R Development Core Team (2004). R: A language and environment for statistical computing .
R Foundation for Statistical Computing, Vienna, Aus. ISBN 3-900051-00-3.

Snoek, J., Larochelle, H., Snoek, J., and Adams, R. P. (2012). “Bayesian optimization of
machine learning algorithms.” In Neural Information Processing Systems (NIPS).

Surjanovic, S. and Bingham, D. (2014). “Virtual Library of Simulation Experiments:
Test Functions and Datasets.” Retrieved December 4, 2014, from http://www.sfu.ca/

~ssurjano.

Williams, B. J., Santner, T. J., Notz, W. I., and Lehman, J. S. (2010). “Sequential Design
of Computer Experiments for Constrained Optimization.” In Statistical Modeling and
Regression Structures , eds. T. Kneib and G. Tutz, 449–472. Springer-Verlag.

24

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy
O�ce of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said article to reproduce, prepare deriva-
tive works, distribute copies to the public, and perform publicly and display publicly,
by or on behalf of the Government.

