
1

Performance of leader-follower multiagent systems in

directed networks

Fu Lin

Abstract

We consider the leader-follower multiagent systems in which the leader executes the desired tra-

jectory and the followers implement the consensus algorithm subject to stochastic disturbances. The

performance of the leader-follower systems is quantified by using the steady-state variance of the

deviation of followers from the leader. We study the asymptotic scaling of the variance in directed

lattices in 1, 2, and 3 dimensions. We show that in 1D and 2D the variance of the followers’ deviation

increases to infinity as one moves away from the leader, while in 3D it remains bounded.

I. INTRODUCTION

A leader-follower multiagent system consists of a leader, who provides the desired trajectory

of the multiagent system, and a set of followers, who update their states using local relative

feedback. This control strategy has a variety of applications including formation of unmanned

air vehicles, control of rigid robotic bodies, and distributed estimation in sensor networks [1]–

[13].

A fundamental question concerning the performance of leader-follower strategy is how well

the followers are able to keep track the trajectory of the leader when they are subject to stochastic

disturbances. In large networks, the asymptotic scaling of the variance of followers’ deviation

from the desired trajectory is determined by the network architecture. In this paper, we focus on

directed lattices in 1, 2, and 3 dimensions. We show that as one moves away from the leader, the

variance of followers increases unboundedly in 1D and 2D. In 3D, the variance of followers is

bounded above by a constant that is independent of the number of followers. These results have
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a strong resemblance to performance limitation of distributed consensus in undirected tori [10].

For directed networks, our results on the asymptotic scaling of performance appear to be among

the first work in the literature.

Our contributions are twofold. First, we obtain analytical expressions for the steady-state

variance of the deviation of the followers from the leader. These expressions allow us to study

the distribution of energy in leader-follower multiagent systems with directed lattices as the

controller architecture. Second, we characterize the asymptotic scaling trends of the variance

of followers in 1D, 2D, and 3D directed lattices. We show that in 1D and 2D the variance of

followers scales asymptotically as a square-root function and a logarithmic function, respectively,

and in 3D the variance remains bounded regardless of the network size.

This paper is organized as follows. In Section II, we present our main results for the per-

formance of leader-follower multiagent systems on directed lattices. In particular, we obtain

analytical expressions for the variance of followers and derive the asymptotic scaling trends in

large networks. In Section III, we consider the extensions to double-integator models and local

errors between followers as an alternative performance measure. We also discuss connections of

our proof techniques with random walks on undirected lattices. In Section IV, we conclude the

paper and in Appendix, we provide the detailed proofs.

II. LEADER-FOLLOWER MULTIAGENT SYSTEMS ON DIRECTED LATTICES

We consider the performance of leader-follower multiagent systems on directed lattices. By

exploiting the lower triangular Toeplitz structure of the resulting Laplacian matrices, we obtain

analytical expressions for the variance of followers and establish its asymptotic scaling trends

in large networks.

A. 1D lattice

Consider a set of N agents on a line whose dynamics are modeled by the single-integrators

ẋn(t) = un(t) + dn(t), n = 1, . . . , N,

where xn(t) denotes the deviation of the nth vehicle from its desired trajectory, un(t) is the

control input, and dn(t) is a zero-mean, unit-variance stochastic disturbance. A virtual leader,

indexed by 0, is assumed to execute the desired trajectory at all time. Thus, x0(t) ≡ 0, and
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ẋ0(t) = 0. The followers implement the consensus algorithm. Namely, each follower updates its

state information using the relative differences between itself and the agent ahead

ẋn(t) = − (xn(t) − xn−1(t)) + dn(t), n = 1, . . . , N.

Note that we have

ẋ1(t) = −x1(t) + d1(t)

for the first follower after the leader, because x0(t) ≡ 0.

By stacking the states of all followers into a vector, x(t) = [ x1(t) · · · xN(t) ]T ∈ RN , the

state-space representation of the leader-follower system is given by

ẋ(t) = −Lx(t) + d(t), (1)

where L ∈ RN×N is the Laplacian matrix of the 1D lattice. In particular, L is lower triangular

Toeplitz with 1 on the main diagonal, −1 on the first subdiagonal, and zero everywhere else,

L ∼


1 0 0

−1 1 0

0 −1 1

 . (2)

When the disturbance, d(t) = [ d1(t) · · · dN(t)]T ∈ RN , is absent, the deviation of the

followers asymptotically converges to zero. In other words, the followers converge to the desired

trajectory, that is, the trajectory of the leader. In the presence of the disturbance, however, the

followers converge to the desired state in the mean value. The steady-state variance of the

followers can be used to quantify the deviation from the desired state

Pn := lim
t→∞

E{x2n(t)}, n = 1, . . . , N,

where E{·} denotes the expectation operator.

We are interested in the scaling trend of the variance distribution as one moves away from the

leader. Intuitively, the followers who are farther away from the leader have larger steady-state

variance. It turns out that the variance of the followers increases as a square-root function of the

number of followers. This result is detailed in Lemma 1.
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Lemma 1. The steady-state variance of the nth follower in the 1D lattice (1) is given by

Pn =
n∑
i=1

(2i− 2)!

2 · 22i−2((i− 1)!)2
=

n (2n)!

22n n!n!
, n = 1, . . . , N. (3)

The total variance normalized by the number of followers is

ΠN :=
1

N

N∑
n=1

Pn =
(2N + 1)!

3 · 22NN !N !
.

Furthermore,

lim
n→∞

Pn√
n

=

√
1

π
, lim

N→∞

ΠN√
N

=
2

3
√
π
.

This result has appeared in [11], [12]. We provide the proof in Appendix A for completeness.

B. 2D lattice

We next consider the leader-follower system that consists of a virtual leader and N × N

followers in the formation of a 2D lattice. A follower at the nth row and the mth column of the

2D lattice, indexed by (n,m), updates its state using the relative differences between itself and

its two neighbors

ẋn,m = − (xn,m − xn,m−1) − (xn,m − xn−1,m) + dn,m,

for n,m = 1, . . . , N . Here, we drop the dependence on time to ease the notation. Similar to the

1D case, we assume that the followers on the boundary of the formation have direct access to

the state of the leader. In particular, the followers on the first column and the first row implement

ẋn,1 = − (xn,1 − xn−1,1) − (xn,1 − xn,0) + dn,1,

ẋ1,m = − (x1,m − x0,m) − (x1,m − x1,m−1) + d1,m,

where xn,0 = x0,m = x0 ≡ 0.

Let x = [xT1 · · ·xTN ]T ∈ RN2 be the state of followers where xn = [xn,1 · · · xn,N ]T ∈ RN

denotes the state of followers on the nth row of the lattice. Then the state-space representation

of the leader-follower system is given by

ẋ = −L2x + d, (4)
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where the Laplacian matrix L2 ∈ RN2×N2 is lower triangular block Toeplitz

L2 ∼


K2 0 0

−I K2 0

0 −I K2

 ,
where I ∈ RN×N is the identity matrix and K2 ∈ RN×N is lower triangular Toeplitz with 2 on

its main diagonal, −1 on the first subdiagonal, and zero everywhere else,

K2 ∼


2 0 0

−1 2 0

0 −1 2

 .
In what follows, we derive the analytical expression for the variance of each follower. The

steady-state covariance matrix of leader-follower system can be expressed as

P =

∫ ∞
0

e−L2t e−L
T
2 t dt ∈ RN2×N2

.

Let Pn ∈ RN×N be the nth diagonal block of P and let (Pn)m be the mth diagonal element of

Pn. We have the following result.

Lemma 2. For the leader-follower system in 2D lattice (4), the steady-state variance of the

follower at the nth row and mth column is given by

(Pn)m =
n∑
i=1

m∑
j=1

(2i+ 2j − 4)!

4 · 42i+2j−4((i− 1)!(j − 1)!)2
(5)

for n,m = 1, . . . , N .

The proof of Lemma 2 is similar to the proof of Lemma 1; see Appendix B for details.

Since we are summing up positive quantity in (5), we conclude that (Pn)m is monotonically

increasing as both n and m increase. In other words, the variance of the follower grows as one

moves away from the leader. We next show that the variance of the followers on the diagonal

of the lattice scales asymptotically as a logarithmic function.

Proposition 1. Consider the leader-follower system in 2D lattice (4). Let Vn be the steady-state

variance of the follower at the nth row and the nth column of the lattice for n = 1, . . . , N . Then
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Vn scales asymptotically as a logarithmic function of n, denoted as

Vn ∼ O(log(n)).

Proof. We begin by writing Vn as

Vn =
n−1∑
i=0

n−1∑
j=0

f(i, j)

where

f(i, j) =
(2i+ 2j)!

4 · 42(i+j) i! i! j! j!
.

In other words, Vn is the summation of a positive function f over the square Sn := {(i, j) | 0 ≤

i, j ≤ n− 1}. Let ∆n be the summation of f over the triangle

Tn := {(i, j) | 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− i}, (6)

with vertices (0, 0), (0, n− 1), and (n− 1, 0)

∆n :=
n−1∑
i=0

n−i∑
j=0

f(i, j).

Then ∆n < Vn < ∆2n, because the triangle Tn is a subset of the square Sn which itself is a

subset of the triangle T2n.

To show Vn ∼ O(log(n)) for large n, it suffices to show ∆n ∼ O(log(n)). We compute the

summation of f along the line segment i+ j = k

Sk :=
k∑
i=0

f(i, k − i) =
k∑
i=0

(2k)!

4 · 42k i! i! (k − i)! (k − i)!

=
1

4 · 42k

(2k)!

k!k!

k∑
i=0

k!k!

i! i! (k − i)! (k − i)!

=
1

4 · 42k

(
(2k)!

k!k!

)2

, k = 0, 1, . . . , n− 1, (7)

where we have used the fact that
∑k

i=0

(
k
i

)2
=
(
2k
k

)
= (2k)!

k!k!
. From the expression (3) and the

approximation (17), we conclude that Sk behaves similar to the harmonic series for large k,

Sk ≈
1

4πk
, k � 1.
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It follows that

∆n =
n−1∑
k=0

Sk ∼ O(log(n)).

This completes the proof.

From Proposition 1, it follows that the total variance of the followers on the main diagonal

normalized by N scales logarithmically for large N ,

1

N

N∑
n=1

Vn ∼ O(log(N)).

C. 3D lattice

While the variance of the followers increases unboundedly with the size of lattices in 1D

and 2D, it turns out that in 3D, the variance of the followers is bounded by a constant that is

independent of the lattice size. For undirected networks, similar results have been shown for

distributed consensus [10] and distributed estimation [2], [3].

Consider the leader-follower system that consists of a virtual leader and N×N×N followers

on the 3D lattice. The coordinates of the follower at the nth row, mth column of the lth cross-

section is denoted by (n,m, l) for n,m, l = 1, . . . , N . The follower updates its state using local

feedback subject to disturbance

ẋn,m,l = − (xn,m,l − xn−1,m,l) − (xn,m,l − xn,m−1,l)

− (xn,m,l − xn,m,l−1) + dn,m,l.

Similar to the 1D and 2D cases, the followers on the boundary, indexed by (1,m, l), (n, 1, l),

and (n,m, 1), have access to the state of the leader, x0 ≡ 0.

The state-space representation of the leader-follower system in 3D lattice is given by

ẋ = −L3x + d, (8)

where the Laplacian matrix L ∈ RN3×N3 is lower triangular block Toeplitz

L3 ∼


K 0 0

−I K 0

0 −I K


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where K ∈ RN2×N2 is also lower triangular block Toeplitz

K ∼


K3 0 0

−I K3 0

0 −I K3


where K3 ∈ RN×N is lower triangular Toeplitz with 3 on the main diagonal, −1 on the first

subdiagonal, and 0 everywhere else

K3 ∼


3 0 0

−1 3 0

0 −1 3

 .
Similar to the 1D and 2D cases, we obtain expression for the steady-state variance of followers.

Lemma 3. Consider the leader-follower system on 3D lattice (8). The steady-state variance of

the follower at coordinates (n,m, l) of the 3D lattice can be expressed as

((Pn)m)l =
n∑
i=1

m∑
j=1

l∑
k=1

66−(2i+2j+2k)(2i+ 2j + 2k − 6)!

6((i− 1)!(j − 1)!(k − 1)!)2
. (9)

The proof is similar to the proof of Lemma 2; see Appendix C.

From (9), we see that ((Pn)m)l is monotonically increasing as n, m, and l increase. In other

words, the variance of the follower grows as one moves away from the leader. We next show that

the variance of the followers on the diagonal of the 3D lattice is bounded above by a constant

independent of lattice size.

Proposition 2. Consider the leader-follower system on 3D lattice (8). Let Vn be the steady-state

variance of the follower at the coordinates (n, n, n) of the 3D lattice for n = 1, . . . , N . Then

Vn is bounded above by a constant that is independent of network size, denoted as Vn ∼ O(1).

The proof technique is analogous to the proof of Proposition 1; see details in Appendix D.

III. DISCUSSIONS

A. Connections with random walks

The connections between random walks and distributed estimation and control problems have

been studied by several authors; see [1]–[3], [10], [12], [13], [15], [16]. All existing work focuses

June 2, 2016 DRAFT



9

on undirected networks. We next show that the asymptotic scaling for the variance of followers

in directed lattices can be expressed as

Vn ∼
1

2D

n−1∑
k=0

u2k

where D = 1, 2, or 3 is the dimension and u2k is the probability of a random walk of length

2k returning to the starting point on the undirected lattices.

Recall that for 1D lattice, u2k is given by [17, Section 7.2]

u2k =
1

22k

(
2k

k

)
=

(2k)!

22k k! k!
.

From expression (3), it follows that

Pn =
1

2

n−1∑
k=0

u2k. (10)

In other words, the steady-state variance of the nth follower can be expressed as the sum of the

probability of a random walk returning to the starting point of length 2k for k = 0, 1, . . . , n− 1.

In 2D lattice, u2k is given by [17, Section 7.3]

u2k =

(
1

22k

(
2k

k

))2

=
1

42k

(
(2k)!

k!k!

)2

.

From expression (7), it follows that Sk = (1/4)u2k. Then the summation of the positive function

f over the triangle Tn in 2D lattice (6) can be expressed as

∆n =
1

4

n−1∑
k=0

u2k. (11)

In 3D lattice, u2k is given by [17, Section 7.3]

u2k =

p∑
j=0

p−j∑
k=0

1

22p

(
(2p)!

p!p!

)(
p!

3pj!k!(p− j − k)!

)2

.

From expression (18), it follows that Gk = (1/6)u2k. Then the summation of the positive function

over the triangular pyramid is given by (see Appendix C)

Tn =
1

6

n−1∑
k=0

u2k. (12)

From (10), (11), and (12), we observe that the asymptotic scaling for the variance in directed
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lattices can be expressed as

Vn ∼
1

2D

n−1∑
k=0

u2k, D = 1, 2, 3.

B. Local errors

For distributed consensus on undirected networks, the steady-state variance of the local error

between two neighboring agents is upper bounded by constants that are independent of both the

size and the dimension of the lattice [10]. Similar results can be obtained for leader-follower

systems in directed lattices. We focus on the 1D case and omit the calculations for 2D and 3D

cases because they are more involved.

Consider the local error between two neighboring agents yn(t) := xn(t) − xn−1(t) for n =

1, . . . , N. The steady-state variance is given by

lim
t→∞

E{y2n(t)} = Pn + Pn−1 − 2Pn(n−1).

A similar calculation as in the proof of Lemma 1 shows that

Pn(n−1) =
n(2n)!

22n(n!)(n!)
− 1

2
= Pn −

1

2

for n ≥ 2. It follows that

lim
n→∞

lim
t→∞

E{y2n(t)} = lim
n→∞
{Pn−1 − Pn + 1} = 1.

In other words, the steady-state variance of the local error is upper bounded by a constant in

1D lattice.

C. Double-integrator model in 1D lattice

We consider the double-integrator model for followers using relative position and absolute

velocity feedback. In 1D formations, we show that the steady-state variance of followers has the

same scaling trend as the single-integrator model for followers using relative position feedback.

The state-space representation of the leader-follower system in 1D with double-integrator

model is given by

ẋ(t) = Ax(t) + Bd(t)
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where A =

 0 I

−I −L

 , B =

 0

I

 . The steady-state covariance matrix is determined

by the solution of the Lyapunov equation

AP + PAT + BBT = 0.

Expanding the 2-by-2 block matrix P =

 P1 P2

P T
2 P3

 , we have three matrix equations

P2 + P T
2 = 0

P3 − P1 − P2L
T = 0

−LP3 − P3L
T − P2 − P T

2 + I = 0.

It is readily verified that the unique, positive-definite solution satisfies {P1 = P3, P2 = 0} where

P3 is the solution of the Lyapunov equation LP3 + P3L
T = I. Note that P3 is equal to the

covariance matrix P in (13). Therefore, the steady-state variance of the position and the velocity

of followers with the double-integrator model is the same as the variance of the position of

followers with the single-integrator model.

For double-integrator model using relative velocity feedback, numerical computations suggest

that the variance of followers grows as an exponential function of the lattice size. For asymmetric

bidirectional control of vehicular platoons, the exponential growth of H∞-norm is shown in [18].

The connection between the scaling trend of variance in the double-integrator model and the

exponential growth of H∞-norm of vehicular platoons is a topic of future work.

IV. CONCLUSIONS

We have obtained explicit formulas for the steady-state variance distribution of leader-follower

multiagent systems on directed lattices in 1, 2, and 3 dimensions. We show that the variance

of followers scales as a square-root function of the distance from the leader in 1D lattice, it

scales as a logarithmic function along the diagonal of the 2D lattice, and it is bounded by a

network-size independent constant in 3D lattice.
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APPENDIX

A. Proof of Lemma 1

We begin with the steady-state covariance matrix

P := lim
t→∞

E{x(t)xT (t)} =

∫ ∞
0

e−Lte−L
T tdt. (13)

We compute the matrix exponential by using the inverse Laplace transform

e−Lt = L−1{(sI + L)−1}.

Since L is a lower triangular Toeplitz matrix (see (2)), it follows that (sI + L)−1 is also lower

triangular Toeplitz

(sI + L)−1 ∼


(s+ 1)−1 0 0

(s+ 1)−2 (s+ 1)−1 0

(s+ 1)−3 (s+ 1)−2 (s+ 1)−1

 .
In particular, (s + 1)−i is the ith entry of the first column. By using the formula for inverse

Laplace transform

L−1{(s+ 1)−i} =
ti−1

(i− 1)!
e−t, i = 1, . . . , n,

we obtain the nth diagonal element of the matrix e−Lte−L
T t

(
e−Lte−L

T t
)
n

=
n∑
i=1

(
ti−1

(i− 1)!
e−t
)2

.

Performing the integration from 0 to ∞ yields

Pn =
n∑
i=1

1

((i− 1)!)2

∫ ∞
0

τ 2(i−1)e−τ

22i−1 dτ

=
n∑
i=1

1

((i− 1)!)2
· Γ(2i− 1)

22i−1 ,

where we have used the change of variable τ = 2t and the formula for the Gamma function

Γ(z) =

∫ ∞
0

tz−1e−τdτ. (15)

Since Γ(z) = (z − 1)!, we have the desired formula (3)
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To show the asymptotic scaling of Pn, we use Stirling’s formula

n! ≈
√

2πn
(n

e

)n
. (16)

With some algebra, we get

Pn ≈
√
n

π
. (17)

Summing Pn with respect to n yields the expression for the average variance ΠN = (2N+1)!
3·22NN !N !

.

By applying Stirling’s formula, we obtain ΠN ≈ 2
3

√
N/π.

B. Proof of Lemma 2

Since L2 is lower triangular block Toeplitz, it follows that (sI+L2)
−1 is also lower triangular

block Toeplitz. In particular, (sI +K2)
−i is the ith block entry of the first column. By using the

inverse Laplace transform

L−1{(sI +K2)
−i} =

ti−1 e−K2t

(i− 1)!
, i = 1, . . . , N,

we obtain the nth diagonal block of e−Lte−L
T t, that is,(

e−Lt e−L
T t
)
n

=
n∑
i=1

t2i−2

((i− 1)!)2
e−K2t e−K

T
2 t.

An analogous calculation shows that the mth diagonal element of e−K2t e−K
T
2 t is given by(

e−K2t e−K
T
2 t
)
m

=
m∑
j=1

t2j−2

((j − 1)!)2
e−2t e−2t.

Putting it together, we have

(Pn)m =

∫ ∞
0

n∑
i=1

m∑
j=1

t2i−2

((i− 1)!)2
t2j−2

((j − 1)!)2
e−4t dt.

Performing the integration yields the desired formula (5).

C. Proof of Lemma 3

The steady-state covariance matrix is given by

P =

∫ ∞
0

e−L3t e−L
T
3 t dt.
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The matrix exponential e−L3t = L−1{sI + L3} ∈ RN3×N3 is lower triangular block Toeplitz

with the ith block of the first column being

L−1{(sI +K)−i} =
ti−1

(i− 1)!
e−Kt ∈ RN2×N2

.

Since the jth block of the first column of e−Kt is

L−1{(sI +K3)
−j} =

tj−1

(j − 1)!
e−K3t ∈ RN×N ,

and since the kth element of the first column of e−K3t is

L−1{(s+ 3)−k} =
tk−1

(k − 1)!
e−3t,

putting the above calculations together, we have

((Pn)m)l =

∫ ∞
0

n∑
i=1

m∑
j=1

l∑
k=1

t2i+2j+2k−6 · e−6t

((i− 1)!(j − 1)!(k − 1)!)2
dt.

Performing the integration yields the desired formula (9).

D. Proof of Proposition 2

By setting n = m = l in (9) yields the variance of the follower (n, n, n)

Vn =
n−1∑
i=0

n−1∑
j=0

n−1∑
k=0

f(i, j, k)

where

g(i, j, k) =
(2i+ 2j + 2k)!

6 · 62(i+j+k)(i!j!k!)2
.

In other words, Vn is the summation of the positive function g over the cube Cn := {0 ≤ i, j, k ≤

n−1}. Let Tn be the summation of g over the triangular pyramid Pn := {0 ≤ p ≤ n−1, 0 ≤ j ≤

p, 0 ≤ k ≤ p− j}, whose vertices are given by {(0, 0, 0), (n−1, 0, 0), (0, n−1, 0), (0, 0, n−1)}.

It follows that Tn < Vn < T2n. This is because Pn is a subset of Cn which itself is a subset of

P2n. Thus, it suffices to show that Tn ∼ O(1).

We compute the sum of g across the triangle segment of the pyramid Tn =
∑n−1

p=0 Gp, where
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Gp is the sum of g over the triangle i+ j + k = p,

Gp =

p∑
j=0

p−j∑
k=0

f(p− j − k, j, k)

=

p∑
j=0

p−j∑
k=0

1

6 · 22p

(
(2p)!

p!p!

)(
p!

3pj!k!(p− j − k)!

)2

. (18)

To evaluate the summation, we employ a probability argument [17]. Consider dropping p balls

into three boxes A, B, and C. The probability of dropping j balls into A, k balls into B, and

p−j−k balls into C is p!
3pj!k!(p−j−k)! . Since the largest probability occurs when the same number

of balls drop in three boxes, it follows that

Gp ≤
1

6 · 22p
· (2p)!

p!p!
· p!

3p(bp
3
c!)3

p∑
j=0

p−j∑
k=0

(
p!

3pj!k!(p− j − k)!

)2

where bp
3
c denotes the largest integer that is no greater than p/3. Note that

p∑
j=0

p−j∑
k=0

(
p!

3pj!k!(p− j − k)!

)2

= 1,

because it is the sum of probability of all outcomes of dropping three balls in three boxes.

Therefore, for large n,

Gp ≤
1

6 · 22p
· (2p)!

p!p!
· p!

3p(bp
3
c!)3

≈ c p−3/2,

where c is a constant and we have used Stirling’s formula (16). It follows that

Tn =
n∑
p=1

Gp ≈
n∑
p=1

c p−3/2 ∼ O(1).

This completes the proof.
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