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Abstract: We propose a new approach to robustly retrieve the exit wave of
an extended sample from its coherent diffraction pattern by exploiting spar-
sity of the sample’s edges. This approach enables imaging of an extended
sample with a single view, without ptychography. We introduce nonlinear
optimization methods that promote sparsity, and we derive update rules to
robustly recover the sample’s exit wave. We test these methods on simulated
samples by varying the sparsity of the edge-detected representation of the
exit wave. Our tests illustrate the strengths and limitations of the proposed
method in imaging extended samples.
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26. J. J. Moré and S. M. Wild, “Estimating derivatives of noisy simulations,” ACM Transactions on Mathematical
Software 38, 19:1–19:21 (2012).

27. X. Zhang, Y. Lu, and T. Chan, “A novel sparsity reconstruction method from Poisson data for 3D bioluminescence
tomography,” Journal of Scientific Computing 50, 519–535 (2011).

28. B. Dong and Y. Zhang, “An efficient algorithm for ℓ0 minimization in wavelet frame based image restoration,”
Journal of Scientific Computing 54, 350–368 (2012).

29. Y. Zhang, B. Dong, and Z. Lu, “ℓ0 minimization for wavelet frame based image restoration,” Math. Comput. 82,
995–1015 (2013).

30. A. Pein, S. Loock, G. Plonka, and T. Salditt, “Using sparsity information for iterative phase retrieval in x-ray
propagation imaging,” Opt. Express 24, 8332–8343 (2016).

31. R. Fan, Q. Wan, F. Wen, H. Chen, and Y. Liu, “Iterative projection approach for phase retrieval of semi-sparse
wave field,” EURASIP Journal on Advances in Signal Processing 2014, 1–13 (2014).

32. A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive
imaging,” Ultramicroscopy 109, 1256–1262 (2009).

33. J. N. Clark, C. T. Putkunz, M. A. Pfeifer, A. G. Peele, G. J. Williams, B. Chen, K. A. Nugent, C. Hall, W. Fullagar,
S. Kim, and I. McNulty, “Use of a complex constraint in coherent diffractive imaging,” Opt. Express 18, 1981–
1993 (2010).

34. L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D:
Nonlinear Phenomena 60, 259–268 (1992).

35. H. N. Chapman, A. Barty, S. Marchesini, A. Noy, S. P. Hau-Riege, C. Cui, M. R. Howells, R. Rosen, H. He,
J. C. H. Spence, U. Weierstall, T. Beetz, C. Jacobsen, and D. Shapiro, “High-resolution ab initio three-
dimensional x-ray diffraction microscopy,” J. Opt. Soc. Am. A 23, 1179–1200 (2006).

36. J. Steinbrener, J. Nelson, X. Huang, S. Marchesini, D. Shapiro, J. J. Turner, and C. Jacobsen, “Data preparation
and evaluation techniques for x-ray diffraction microscopy,” Opt. Express 18, 18598–18614 (2010).

37. D. Lazzaro and L. Montefusco, “Edge-preserving wavelet thresholding for image denoising,” Journal of Compu-
tational and Applied Mathematics 210, 222–231 (2007).

38. S. Yi, D. Labate, G. R. Easley, and H. Krim, “A shearlet approach to edge analysis and detection,” IEEE Trans-
actions on Image Processing 18, 929–941 (2009).

39. J.-L. Starck, E. J. Candés, and D. L. Donoho, “The curvelet transform for image denoising,” IEEE Transactions
on Image Processing 11, 670–684 (2002).

1. Introduction

Coherent diffractive imaging (CDI) is a technique in widespread use at x-ray synchrotrons to
image nanoscale materials. Traditional x-ray microscopy techniques, such as transmission x-ray
microscopy (TXM), rely on condensing and objective optics. In contrast, CDI uses nonlinear
optimization methods as a type of “numerical optic” to solve the phase problem, which arises
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Fig. 1. CDI experimental setup: a complex-valued exit wave ρ results in a real-valued data
D collected by the detector.

because of an x-ray detector’s inability to measure a full complex-valued wavefield.
Under the projection approximation [1], a (complex-valued1) exit wave ρ is formed when a

plane wave x-ray beam interacts with a sample. As shown in Fig. 1, when an area detector is
placed in the far field, the (real-valued) Fraunhofer diffraction intensity D is measured, where
D is proportional to the squared modulus of the two-dimensional Fourier transform of ρ . In this
paper, we study nonlinear optimization methods to recover the phase lost upon measurement.

An advantage of CDI over more traditional microscopy techniques is that the recovered im-
age’s spatial resolution is determined by the highest spatial frequencies measured. These spatial
frequencies are in turn determined primarily by incident x-ray fluence and the contrast in both
the phase and magnitude of the sample’s complex valued transmission function. Another ad-
vantage is that the full complex-valued transmission function (related to the complex-valued
index of refraction wherein all the interesting physics is located) is recovered. Methods such
as TXM can recover only the modulus of the sample’s transmission function. Furthermore, de-
velopment of phase retrieval algorithms for CDI has progressed to a point where high-quality
images are produced in real time and at the same speed with which one can obtain images in a
TXM (see, e.g., [2]).

Recovery of the phase typically starts with a guess ρ(0) for the exit wave; a nonlinear op-
timization algorithm then iteratively refines this guess using knowledge from the experiment
performed and the physics of the sample. This knowledge is typically used to define constraints
for a nonlinear, nonconvex optimization formulation of the phase retrieval problem. Examples
of such knowledge include the measured diffraction, as well as constraints on the sample such
as known compact support [3], sparsity [4], and ptychography [5, 6, 7].

Common CDI experimental configurations for collecting data include the small angle geom-
etry shown in Fig. 1, as well as reflection and Bragg geometries [8, 9]. With these configura-
tions, one can use an x-ray probe with a spatial area (or volume in the reflection and Bragg
cases) larger or smaller than the sample under investigation. When the x-ray probe is larger
than the sample, a single diffraction pattern from a single view can be used with known sup-

1In our figures, the phase and magnitude of complex-valued quantities are represented in an HSV colorspace, with
the hue and value/brightness denoting the phase and magnitude respectively, and with the saturation component set to
maximum for all image pixels.



port or sparsity [3, 4, 10, 11, 12]. This single-view approach is particularly advantageous when
the x-ray probe will damage the sample, such as with an x-ray free-electron laser source [13].
Improvements in single-view algorithms can also readily be incorporated into ptychographic
methods for more robust phase retrieval.

In this paper, we explore the use of single-view phase retrieval methods for an extended sam-
ple, with a primary motivation being the ability to overcome difficulties encountered in pty-
chography when attempting to image samples that significantly change during the collection
of a ptychographic dataset, or when the long-term temporal and spatial experimental stability
requirements of ptychography are not met. Single-view phase retrieval methods for an extended
sample have had very limited success in the literature [14] when compared with methods for an
isolated sample. In Sec. 2, we identify the primary limitations of using a support defined from
the approximate spatial extent of the illumination function when imaging an extended sample
and in Sec. 3 we discuss sparsity in an edge-detected representation of the exit wave. We then
develop in Sec. 4 a phase retrieval algorithm that overcomes these limitations by performing
phase retrieval on the edge-detected representation of an exit wave and by using ideas from
compressive sensing [15]. The primary idea is to recover the sparsest possible edge-detected
representation of the exit wave consistent with the diffraction measurement. This process is col-
loquially known as “shrinkwrap” in the experimental phase retrieval community [4] and more
broadly known as “compressive phase retrieval” [11, 12]. The numerical tests in Sec. 5 on a
range of simulated samples illustrate the benefits and limitations of the proposed methods. We
test these methods on various simulated samples by varying the sparsity of the edge-detected
representation of the exit wave. Our results demonstrate that our method can reliably recover
the phase of extended samples in many cases, cases where standard, single-view phase retrieval
methods fail. Nontrivial noise in the measured diffraction, however, requires use of an appro-
priate spatial frequency filtering procedure, and this is also discussed. In Sec. 6, we discuss
further prospects and extensions of the proposed methodology.

2. Support Defined from the Illuminated Area on the Sample

In single-view phase retrieval of an extended sample, one obvious choice of sample constraint
is to use the approximate illuminated area on the sample as the support on the exit wave we
wish to recover. As an example, in Fig. 2a we simulate an x-ray probe by solving the Fres-
nel integral with a circular pinhole aperture as input. This type of probe is typical in small
angle transmission geometry x-ray synchrotron experiments, where sample-to-circular-pinhole
distances of between a millimeter and a centimeter are used. With this probe and a simulated
sample transmission function defined by generating a periodic Voronoi pattern (not shown), the
exit wave ρtrue under the projection approximation [1] is shown in Fig. 2b (the red dashed line
will be discussed shortly). The primary difficulty arising when attempting to use the approxi-
mate illuminated area on the sample as a support constraint is that the x-ray probe photon area
density smoothly decays as one moves away from the center of the probe function. This smooth
decay makes defining an effective support boundary ambiguous.

As an example, we use a support dynamically generated using the shrinkwrap method [4] as a
constraint on the exit wave and the Fourier modulus measurement

√
D as the measurement con-

straint. We denote the current iterate of the exit wave as ρ(k), where k denotes the iteration index
and the problem size is M×N = 512×512. We run 4,900 iterations of Fienup’s hybrid input-
output method (HIO), then 100 iterations of error reduction (ER), and then a shrinkwrap update
of the binary support mask, denoted by the symbol I(k)S . This sequence of HIO+ER+shrinkwrap
is repeated 20 times. When updating the binary support mask in shrinkwrap, we Gaussian blur
(using σsw = 0.01

√
MN as the standard deviation of the Gaussian low-pass filter in Fourier

space) the current iterate of |ρ(k)| to get the quantity ρ(k)
blur. We then enforce a sparsity ratio of



κ = 1
MN ‖ρ(k)

blur‖0 = 0.15 on ρ(k)
blur to define the binary support mask. The sparsity ratio is the

fraction of nonzeros since
‖a‖0 = ∑

r
I{a 6=0}(r), (1)

where the indicator function used is defined as

I{a 6=0}(r) =

{
1 if a(r) 6= 0
0 if a(r) = 0,

(2)

for some a ∈CM×N , and we index the spatial coordinate system of the sample by r ∈ {(rn,rm) :
n = 0, . . . ,N − 1, m = 0, . . . ,M − 1}. To define the binary support mask with a particular en-
forced sparsity ratio κ , we determine the ⌊MNκ⌋th largest value of ρ(k)

blur. The binary support

mask is then created when we set to zero the elements of ρ(k)
blur below this value and set to one

the elements above or equal to this value. A typical result for the support boundary using this
recipe is shown by the dashed red line around the ground truth exit wave ρtrue in Fig. 2b. A line-
cut of the ground truth exit wave ρtrue through the main diagonal is shown in Fig. 2d, with the
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Fig. 2. Simulation results when using the approximate diameter of the probe as the sup-
port for the exit wave ρ . (a) The probe function generated by solving the Fresnel integral
using a simulated circular pinhole as input. (b) The ground truth exit wave ρtrue generated
by using the projection approximation with the probe shown in (a) and a simulated sam-
ple transmission function (not shown) defined as a Voronoi pattern. A typical boundary,
where inside (outside) the red dotted line the support I(k)

S takes on values of 1 (0), of the
binary support mask IS generated by using shrinkwrap is shown as the red dotted line.
(c) The unsuccessfully recovered exit wave ρ(k) after k = 105 iterations of combined HIO,
ER, and shrinkwrap. (d) A linecut of the exit wave ρtrue through the main diagonal. The
boundary of the support (red dotted line) in (b) is shown here also as the red dotted lines.
The support boundary shown potentially can zero out features of |ρtrue| below approxi-
mately 0.05|ρtrue|max. (e) The measurement metric Eq. (3) versus iteration number during
the HIO+ER+shrinkwrap sequence.



support boundary again shown as the dotted red lines. The support boundary shown in Fig. 2d
potentially can zero out features of |ρtrue| below approximately 0.05|ρtrue|max.

The results for the recovered exit wave ρ(k) for k = 105 are shown in Fig. 2c. The support
generated using shrinkwrap is not constraining enough to accurately recover the ground truth
exit wave shown in Fig. 2b. The value of the standard error metric

ε2
M(ρ(k)) = ∑

q

∣∣∣
∣∣ρ̃(k)(q)

∣∣−
√

D(q)
∣∣∣
2
, (3)

used to measure solution quality, as a function of iteration number k is shown in Fig. 2e.
There, we use the notation ρ̃ = F [ρ ] = |ρ̃| ⊙ eiφ̃ , where F [·] is the two-dimensional dis-
crete Fourier transform, ⊙ is the (componentwise) Hadamard product, and we index the
Fourier space coordinate system of the measurement by q, so that ρ̃(q) = |ρ̃(q)| ⊙ eiφ̃(q) for
q ∈ {(qn,qm) : n = 0, . . . ,N − 1, m = 0, . . . ,M − 1}. If we enforce smaller sparsity ratios (i.e.,
κ < 0.15), the support generated is “too tight” [16], and the recovered ρ(k) is similarly unsat-
isfactory when compared with the ground truth exit wave in Fig. 2b. Enforcing larger sparsity
ratios (i.e., κ > 0.15) causes prompt algorithmic stagnation when monitoring Eq. (3), indicat-
ing convergence to a poor local solution [17] and again showing unsatisfactory results when
compared with the ground truth exit wave in Fig. 2b.

3. Sparse Exit Wave Representations for Phase Retrieval

Mathematical transformations can be applied to represent a group of variables in a more mean-
ingful and useful way. An example is the wavelet transformation of an image, where many
images have only a few dominant wavelet components. Ignoring the nondominant components
yields lossy compression of the image into a potentially small fraction of the original number of
information bytes the image comprised. The information content of the image is sparse in the
wavelet domain. The technique of “compressive sensing” attempts to incorporate and exploit
properties of this inherent sparsity. The basic idea is that by formulating optimization problems
in terms of a simplified representation instead of the original representation and solving for an
optimal sparse, simplified representation, one might obtain more robust results.

Here, we explore the use of edge detection as a sparsifying transformation of an exit wave ρ .
This idea was originally explored in [11] for use in phase retrieval. For edge detection, we take
the forward-difference arrays (each of size M×N = 512×512)

Ex =




1 −1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


 , Ey = ET

x =




1 0 · · · 0
−1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0



, (4)

and convolve ρ with Ex and Ey. Since this edge detection uses forward differences, we refer to
the resulting quantities as spatial derivatives and use the notation ∂xρ = Ex ∗ρ , ∂yρ = Ey ∗ρ .
The convolution theorem shows

∂ jρ = E j ∗ρ = F−1 [F [E j]⊙F [ρ ]] = F−1
[
Ẽ j ⊙ ρ̃

]
, (5)

for j = x,y and with Ẽ j = F [E j].
Figures 3a, 3c, and 3e show the ground truth exit wave ρtrue used in Fig. 2b and its respective

edge-detected representations. In Fig. 3b we again show the binary support mask IS generated
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Fig. 3. (a) The ground truth exit wave ρtrue. (b) A support IS generated by hard thresholding
|ρtrue| by 2% of the maximum value of |ρtrue|, with ∑r IS (r)/MN = 0.15 being the resulting
sparsity ratio and IS (r) defined in Eq. (6). In (c,e), ∂xρtrue and ∂yρtrue, respectively, the x
and y components of the forward-difference gradient of ρtrue, are shown. Shown in (d,f)
are the supports ISx and ISy generated by hard thresholding 2% of the maximum value of
|∂xρtrue| and |∂yρtrue|, respectively; 1

MN ‖ISy‖0 = 0.0141 and 1
MN ‖ISy‖0 = 0.0133 are the

respective sparsity ratios.

by using shrinkwrap in Sec. 2 to define a support corresponding to the approximate illuminated
area on the sample. In Figs. 3d and 3f, we show the supports ISx ,ISy that result from thresh-
olding the modulus of the respective quantities in Figs. 3c and 3e to zero whenever they fall
below 2% of the maximum value of the modulus:

IS j (r) =

{
1 if |∂ jρ |> 0.02|∂ jρ |max

0 if |∂ jρ | ≤ 0.02|∂ jρ |max,
for j = x,y. (6)

From Fig. 3, we can clearly see that the ∂xρ and ∂yρ quantities have far sparser supports when
compared with ρtrue. We explore this property in the remainder of this paper and show that by
performing phase retrieval to solve for the quantities ∂xρ and ∂yρ with relatively sparse supports
in place of solving for the exit wave ρ with a nonsparse support, we can robustly recover the
exit wave for extended samples in many cases.

4. Solving for the Sparse Representation of the Exit Wave

The alternating direction method of multipliers (ADMM) attempts to solve optimization prob-
lems by breaking them into smaller, more manageable subproblems [18]. It has the advantages
that the objective function used in the optimization problem need not be differentiable and the
method is simple to implement and parallelize. The convergence properties of this method are
difficult to analyze for nonconvex problems, however, and more specialized algorithms can



outperform it. We begin a derivation of ADMM update rules for obtaining the sparse represen-
tations ∂ jρ of the exit wave ρ by considering the constrained, nonconvex optimization problem

min
ux,uy,ρ

‖ux‖ℓ +‖uy‖ℓ

subject to ux = ∂xρ
uy = ∂yρ
ρ ∈M,

(7)

where ℓ ∈ {0,1} and we define the Fourier modulus measurement constraint set

M =
{

ρ : ρ = F−1[√D⊙ eiφ̃ ]}
(8)

and its associated projection operator ΠM

ΠM
[
ρ
]
= F−1[√D⊙ eiφ̃ ]

, (9)

with ρ̃ = F [ρ ] = |ρ̃| ⊙ eiφ̃ . The ‖ · ‖0 norm is defined in Eq. (1), and for any a ∈ CM×N we
define the ‖ · ‖1 norm by

‖a‖1 = ∑
r
|a(r)|. (10)

The ℓ ∈ {0,1} norms are well-known sparsity-inducing norms, with the ‖ · ‖1 norm frequently
used as a convex and continuous relaxation of the ‖ · ‖0 norm [19]. The optimization problem
in (7) seeks the ρ satisfying the Fourier modulus measurement with sparsest possible ∂ jρ .

The constrained augmented Lagrangian function for Eq. (7) is

L(ux,uy,ρ ,λx,λy,τx,τy, ℓ) = ∑
j∈{x,y}

L j(u j,ρ ,λ j,τ j, ℓ)

= ∑
j∈{x,y}

[
τ j‖u j‖ℓ +‖u j −∂ jρ‖2

F +2Re
[
∑
r

λ ∗
j ⊙ (u j −∂ jρ)

]]

= ∑
j∈{x,y}

[
τ j‖u j‖ℓ +‖u j −∂ jρ +λ j‖2

F −‖λ j‖2
F

]
(11a)

= ∑
j∈{x,y}

[
τ j‖u j‖ℓ +‖ũ j − Ẽ j ⊙ ρ̃ + λ̃ j‖2

F −‖λ j‖2
F

]
, (11b)

where τ j ≥ 0 are parameters that control the competition between the constraints u j = ∂ jρ and
ρ ∈M and finding the sparsest possible u j. The λ j ∈CM×N are Lagrange multipliers (with λ ∗

j

denoting the complex conjugate), ũ j = F [u j], λ̃ j = F [λ j], and ρ̃ = F [ρ ]. We use Plancherel’s
theorem for the discrete Fourier transform when going from Eq. (11a) to Eq. (11b) on the
Frobenius norm

‖a‖2
F = ∑

r
|a(r)|2 = ∑

q
|ã(q)|2, (12)

for any a ∈ CM×N and with ã(q) = F [a(r)].
Provided that ℓ ∈ {0,1} is fixed and given initializations for ρ(0), u(0)

j = ∂ jρ(0), and λ (0)
j for



j ∈ {x,y}, the kth iteration of the ADMM-based method can be written as

τ(k+1)
j = arg min

τ j
ψ j(u

(k)
j ,ρ(k),λ (k)

j ,τ j, ℓ) for j ∈ {x,y} (13a)

u(k+1)
j = arg min

u j
L j(u j,ρ(k),λ (k)

j ,τ(k+1)
j , ℓ) for j ∈ {x,y} (13b)

ρ(k+1) = arg min
ρ∈M

L(u (k+1)
x ,u (k+1)

y ,ρ ,λ (k)
x ,λ (k)

y ,τ(k+1)
x ,τ(k+1)

y , ℓ) (13c)

λ (k+1)
j = λ (k)

j +β j
(
u(k+1)

j −∂ jρ(k+1)
)

for j ∈ {x,y} (13d)

with β j being a damping term for the multiplier updates (typically we set β j = 1 for both
j ∈ {x,y}). The update rules for u(k+1)

j and ρ(k+1) are derived in Secs. 4.1 and 4.2, respectively.
The function ψ j(·) is defined in Sec. 4.3 and allows for effective iterative determination of the
parameters τ j. Note that we cannot minimize Eq. (11) to update the τ j because (τx,τy) = (0,0) is
the global minimizer of Eq. (11) when holding the other quantities constant, which is not useful
for our purposes. Thus, we introduce the additional auxiliary function ψ j(·) for determining the
optimal values of the parameters τ j.

4.1. u(k+1)
j Update

The least-squares optimization subproblem with the sparsity-promoting ℓ ∈ {0,1}-norm regu-
larization is

u(k+1)
j = arg min

u j
τ j‖u j‖ℓ +‖u j −b‖2

F , (14)

which is equivalent to minimizing L j in Eq. (11a) over u j when we set b = ∂ jρ − λ j and
we drop the ‖λ j‖F constant. The solution to Eq. (14) can be expressed in terms of proximal
mappings [20, 21, 22, 23, 24, 25]. If using ℓ = 1, this mapping is the soft-thresholding operator

T1(τ ,b) = sgn(b)⊙ (|b|− τ)⊙ I{|b|>τ}, (15)

where we use the notation of the complex signum function sgn(b) = eiγ for b = |b|⊙ eiγ when
b 6= 0 and sgn(0) = 0 with γ ∈ RM×N . If using ℓ = 0, this mapping is the hard-thresholding
operator

T0(τ ,b) = b⊙ I{|b|>√
τ}. (16)

In both cases, we have an indicator function of the form

I{|b|>µ}(r) =

{
1 if |b(r)|> µ
0 if |b(r)| ≤ µ

(17)

for a specified µ ≥ 0. We thus use the update rule

u(k+1)
j = arg min

u j
τ(k)

j ‖u j‖ℓ +‖u j −∂ jρ(k) +λ (k)
j ‖2

F

= Tℓ(τ
(k)
j ,∂ jρ(k) −λ (k)

j ), for j ∈ {x,y} (18)

in Eq. (13b). In addition to balancing the competition between fitting the measurement and
promoting sparsity, we can interpret τ j as thresholding parameters.



4.2. ρ(k+1) Update

An update for ρ(k+1) can be found by taking the Wirtinger (complex-valued) derivative of the
ρ̃-dependent term in Eq. (11b) with respect to ρ̃ and setting it to zero:

∂
∂ ρ̃ ∑

j∈{x,y}
‖ũ (k+1)

j − Ẽ j ⊙ ρ̃ + λ̃ (k)
j ‖2

F = 0. (19)

Solving for ρ̃ , we obtain

ρ̃ =
Ẽ∗

x ⊙ ũ (k+1)
x + Ẽ∗

x ⊙ λ̃ (k)
x + Ẽ∗

y ⊙ ũ (k+1)
y + Ẽ∗

y ⊙ λ̃ (k)
y

|Ẽy|2 + |Ẽx|2
, (20)

where the division by |Ẽy|2 + |Ẽx|2 is componentwise. To satisfy the constraint in Eq. (13c) that
ρ ∈M, we then project Eq. (20) onto the constraint set M:

ρ(k+1) = ΠM

[
F−1

[
Ẽ∗

x ⊙ ũ (k+1)
x + Ẽ∗

x ⊙ λ̃ (k)
x + Ẽ∗

y ⊙ ũ (k+1)
y + Ẽ∗

y ⊙ λ̃ (k)
y

|Ẽy|2 + |Ẽx|2

]]
, (21)

which we use for the update in Eq. (13c).

4.3. τ(k+1)
j Update

The choice of thresholding parameters (τx,τy) is critical to the success of our method. We
determine τ j parameters by solving Eq. (13a), where we introduce the cost function

ψ j(u
(k)
j ,ρ(k),λ (k)

j ,τ j, ℓ) =
∥∥∣∣Ẽ j

∣∣⊙
√

D−
∣∣F

[
z(k)(τ j)

]∣∣∥∥2
F +w(k)

j

∥∥z(k)(τ j)
∥∥
ℓ
, (22)

with z(k)(τ j) = Tℓ(τ j,∂ jρ(k) −λ (k)
j ). The two spatial terms are then combined to define

ψ(k)(τx,τy) = ∑
j∈{x,y}

ψ j(u
(k)
j ,ρ(k),λ (k)

j ,τ j, ℓ). (23)

The weighting parameter w(k)
j ≥ 0 controls the relative scaling of the first term in Eq. (22) with

the second and is defined as

w(k)
j = ς

∥∥∣∣Ẽ j
∣∣⊙

√
D−

∣∣F
[
u(k)

j

]∣∣∥∥2
F∥∥u(k)

j

∥∥
ℓ

, (24)

where ς ≥ 0 is a parameter balancing the sparsity of the solution with its Fourier modulus
measurement agreement. If ς is too large, then the sparsity-inducing term can dominate in
Eq. (22), resulting in a solution that has a large mismatch with the |Ẽ j|⊙

√
D term. If ς is too

small, we are allowing nonsparse solutions, which can quickly cause convergence to a poor
local solution similar to that seen in Sec. 2 when using the probe diameter as a support region.
The choice of ς values for our numerical experiments is discussed in Sec. 5.

We can numerically evaluate Eq. (23) as a function of (τx,τy) to gain intuition on what is
necessary for finding a minimizer of Eq. (23). An example is shown in Fig. 4, where ℓ = 0 is
used; similar results are obtained if ℓ= 1 is used. At first glance, the metric ψ(k)(τx,τy) appears
to have a well-behaved landscape with a single global minimum, as seen in Fig. 4a. By zooming
in on a smaller field of view in Fig. 4b (which is enclosed by the boundaries of the red box in



τy

0.
01

7.
23
2

0.01
7.168

0.
05
5

2.
17
6

0.1
0.884

0.0775
1.321

0.055
2.196

0.
03
25

4.
27
8

0.0325
4.225

κy

0.
1

0.
88
2

0.
07
75

1.
31
8

0.052
2.437

0.056
2.128

0.055
2.196

0.054
2.269

0.053
2.342

0.
05
1

2.
52
4

0.
05
3

2.
33
7

0.
05
2

2.
42
3

0.
05
5

2.
17
6

0.
05
4

2.
25
6

105.25

105.3

105.5

104

105.35

105.45

105.215

105.2152

105.216

105.2156

105.2154

105.2158

τ xκ
x

τ xκ
x

a b

Fig. 4. At an illustrative iteration k: (a) Numerical evaluation of ψ(k)(τx,τy) over the box de-
fined by (τx,τy) = (0.882,0.884) to (7.232,7.168), which corresponds to the sparsity ratio
box (κx,κy) = (0.01,0.01) to (0.1,0.1). At this scale in (τx,τy), ψ(k) looks well behaved. A
single global minimum is indicated by the magenta × marker; the black arrows denote the
gradient (rescaled to be a unit vector) of ψ(k)(τx,τy) with respect to (τx,τy). (b) Evaluation
of ψ(k)(τx,τy) in the red box subregion shown in (a). At this scale in (τx,τy), multiple local
minima and discontinuity of the derivatives become apparent.

Fig. 4a), however, we begin to see multiple local minima. This discontinuous and nonsmooth
behavior of the derivatives of ψ(k)(τx,τy) is due to the nonsmooth nature of the thresholding
operators in Eq. (15) and Eq. (16).

As a result of this nonsmooth topology with multiple local minima, if we attempt to use a
gradient descent method, we can expect to quickly become stuck in one of these local solu-
tions. One way around this problem is to use finite differences to approximate the derivatives
with respect to (τx,τy) and ensure that the finite-difference steps are large enough to smooth
over these spurious local solutions [26]. The larger the finite-difference steps, however, the less
accurate is the approximate global minimizer that can be obtained. Consequently, instead of
using a gradient descent method, we use a “polling step”-like method whereby we simply test
some thresholding parameter trial values around the vicinity of the current τ(k)

j in the objective
function ψ(k)(τx,τy):

h(k)
x = arg min

hx∈{0, h±1x, h±2x, ...}
ψ(k)(τ(k)

x +hx,τ
(k)
y ) (25a)

h(k)
y = arg min

hy∈{0, h±1y, h±2y, ...}
ψ(k)(τ(k+1)

x ,τ(k)
y +hy), (25b)

where any ties are broken lexicographically (i.e., the first tied index in the order in which the
trial values of h j are tested). The h±n j, for j ∈ {x,y} and n ∈ Z+, can be chosen by picking a
range of sparsity ratios (e.g., κ(k+1)

j ∈ {κ(k)
j ,κ(k)

j ±0.005,κ(k)
j ±0.01,κ(k)

j ±0.015,κ(k)
j ±0.02},



with 0< κ(k+1)
j ≤ 1). We then can compute2 the thresholding parameters corresponding to these

allowable changes in sparsity ratios to get the h±n j values, and we solve Eq. (25) by direct
evaluation of Eq. (23) using these h±n j.

We found by experience that we need not update the thresholding parameters τ j with the
same frequency at which u j, ρ , and λ j are updated. If we attempt to update τ j as frequently as
the main iterates, we usually find that a polling step of h j = 0 is the minimizer of ψ(k)(τx,τy)
in both x and y. Therefore we introduce a parameter L that controls the frequency at which τ j
is updated to arrive at the update rule:

τ(k+1)
j =

{
τ(k)

j +h(k)
j if k mod L = 0

τ(k)
j if k mod L 6= 0

for j ∈ {x,y}, (26)

with the h(k)
j value computed in Eq. (25).

5. Benchmarking

Given initializations for ρ(0), u(0)
j = ∂ jρ(0), λ (0), and τ(0)

j , our complete algorithm to find the
sparsest possible u j = ∂ jρ subject to the constraint ρ ∈M is

τ(k+1)
j =

{
τ(k)

j +h(k)
j if k mod L = 0

τ(k)
j if k mod L 6= 0

for j ∈ {x,y} (27a)

u(k+1)
j = Tℓ(τ

(k+1)
j ,∂ jρ(k) −λ (k)

j ) for j ∈ {x,y} (27b)

ρ(k+1) = ΠM

[
F−1

[
Ẽ∗

x ⊙ ũ (k+1)
x + Ẽ∗

x ⊙ λ̃ (k)
x + Ẽ∗

y ⊙ ũ (k+1)
y + Ẽ∗

y ⊙ λ̃ (k)
y

|Ẽy|2 + |Ẽx|2

]]
(27c)

λ (k+1)
j = λ (k)

j +β j
(
u(k+1)

j −∂ jρ(k+1)
)

for j ∈ {x,y}. (27d)

We test this algorithm on 14 problems with varying sparsity ratios for the supports IS j (as
defined in Eq. (6)) of the edge-detected representations ∂ jρ , with j ∈ {x,y}. The test problems
have sparsity ratios for the (assumed unknown) IS j ranging from approximately 0.005 to 0.037,
as shown in Fig. 5a; some representative IS j are shown in Fig. 5b, 5c, and 5d. The simulated
ground truth exit waves corresponding to these sparsity ratios for the various IS j are defined
by using the probe function seen in Fig. 2a and from a set of sample transmission functions
generated by using periodic Voronoi patterns with varying polygon centroid density in a M ×
N = 512× 512 array size. The contrast of the modulus of the sample transmission functions
is allowed to range between 0.1 and 0.9, while the phase can range between ±π . Examples of
these exit waves corresponding to the supports in Fig. 5e, 5f, and 5g, respectively, are shown
in Fig. 5b, 5c, and 5d. By defining synthetic test problems in this way, we can systematically
control the sparsity ratios for the IS j in order to test performance.

The choice of ℓ ∈ {0,1} is application, problem, and algorithm dependent. Therefore, in
Sec. 5.1 we discuss our choice of preferred ℓ. Then in Sec. 5.2 we provide numerical results
from the benchmark problems with ℓ = 0. Section 5.3 discusses the effects of noise in the
diffraction on our method.

5.1. Use of ℓ = 0 vs. ℓ = 1

We examine the differences in performance of our ADMM method (Eq. (27)) when faced with
choosing between ℓ= 0 or ℓ= 1 as sparsity-inducing metrics. The ℓ= 1 regularization choice is

2By sorting the MN values in |∂ jρ(k) −λ (k)
j | and setting τ j to be the ⌊MNκ j⌋th largest value.
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Fig. 5. (a) Sparsity ratios for the sparse representation ∂ jρ for j ∈ {x,y} of the test problems
we benchmark to evaluate performance of Eq. (27). To illustrate what is changing in (a), the
exit wave ρtrue for the polygon densities 16

MN , 3072
MN , and 12288

MN are shown in (b), (c), and (d),
respectively. The supports on the sparse representation ∂xρtrue (i.e., ISx ) for each of these
respective cases are shown in (e), (f), and (g). The probe function used to generate the exit
waves is the same used in Fig. 2a, and for all the transmission functions corresponding to
these exit waves the modulus contrast varies between 0.1 and 0.9, while the phase contrast
varies between ±π .

widely used as a stand-in for ℓ = 0 regularization because using ℓ = 0 introduces difficulties in
analyzing convergence of algorithms derived from its use. Some studies [27, 28, 29], however,
have noted difficulties when using ℓ = 1 with sparse image restoration and recovery. To look
at the performance of the update rules given in Eqs. (27b–27d), we attempt to recover the
simulated exit wave shown in Fig. 3a by sampling over a mesh of fixed sparsity ratios (κx,κy)
for some number of total iterations K and to determine the final error by using the metric
in Eq. (3). We do this procedure for both ℓ = 0 and ℓ = 1, meaning we use either the soft-
thresholding operator given in Eq. (15) or the hard-thresholding operator given in Eq. (16) to
update the u j in Eq. (27b).

In Fig. 6, we show the resulting final error using the updates in Eqs. (27b–27d) for both
ℓ = 0 and ℓ = 1 over a fixed mesh for (κx,κy). For both, a 21× 21 (equally spaced in both
parameters) box is used, ranging from (κx,κy) = (0.005,0.005) to (0.255,0.255) for ℓ= 0 (hard
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Fig. 6. (a-b) Fourier modulus measurement metric Eq. (3) vs a mesh of fixed sparsity ra-
tios (κx,κy). (a) Use of hard thresholding and the ADMM updates over the box of fixed
sparsity ratios from (0.005,0.005) to (0.255,0.255). In this case, a minimum (located by
the magenta circle) is clearly defined at a small highly constraining sparsity ratio pair al-
lowing prompt convergence to the ground truth exit wave ρtrue. (b) Use of soft threshold-
ing and the ADMM updates over the box of fixed sparsity ratios from (0.005,0.005) to
(0.505,0.505). (c) Recovered exit wave using hard thresholding corresponding to the min-
imum (red circle/cross) in (a) at sparsity ratio pair (κx,κy) = (0.0175,0.03). (d) Recovered
exit wave using soft thresholding corresponding to the minimum (blue circle/cross) in (a)
at sparsity ratio pair (κx,κy) = (0.105,0.105) (e) Recovered exit wave using soft thresh-
olding corresponding to the minimum (magenta circle/cross) in (a) at sparsity ratio pair
(κx,κy) = (0.505,0.505).

thresholding) and from (κx,κy) = (0.005,0.005) to (0.505,0.505) for ℓ= 1 (soft thresholding).
For each of the 441 (κx,κy) pairs, K = 4× 104 such iterations are performed. After these K
iterations, we start from the prescribed (κx,κy) values and linearly ramp up (κx,κy) over the
next 104 iterations to a final sparsity ratio3 of (κx,κy)final = (0.255,0.255) (hard thresholding)
or (κx,κy)final = (0.505,0.505) (soft thresholding). The purpose of this ramping up of sparsity
ratios is to allow the binary-valued support regions, generated by the thresholding operations on
the u j, to grow larger and larger (less sparse), which enables the ADMM method to converge to
the nearest stationary point defined by Eq. (11). In our experience, we observed that the solution
quality, when compared with the measurement

√
D, as well as the ground truth exit wave ρtrue,

is worse if the ramping is not performed; that is, a larger value is obtained when using the error
metric given by Eq. (3) as well as when using the metric ‖ρtrue − ρ‖2

F , after subpixel image

3For the extreme values of this box in both cases, no ramping is performed.



registration and global phase offset correction on ρ are performed.
Figures 6a and 6b show that the use of hard thresholding is much more effective (has much

smaller residual error) compared with the use of soft thresholding in the ADMM method in
Eqs. (27b–27d). In Fig. 6a the minimum indicated by a red circle and cross corresponds to a
sparsity ratio pair of (κx,κy) = (0.0175,0.03). The recovered exit wave after ramping up to
(κx,κy)final = (0.255,0.255) is shown in Fig. 6c and is—apart from 180◦ rotation symmetry,
complex conjugation, and global phase offset on ρ—closely matched to the ground truth exit
wave ρtrue shown in Fig. 3a. A typical exit wave reconstruction using soft thresholding is shown
in Fig. 6d, which corresponds to the blue circle/cross at (κx,κy) = (0.105,0.105); here the use
of soft thresholding appears to cause the exit wave to be dominated by relatively few image
pixels, which have much larger moduli values than all other image pixels. Similar effects have
been reported in wavelet-based image restoration for other highly ill-posed problems when
using ℓ = 1 sparsity-inducing regularization [27]. Other studies have shown that using ℓ = 0
regularization leads to better edge preservation in image restoration (exactly the features we
want to take advantage of) when compared with ℓ= 1 regularization [28, 29]. The minimum of
Fig. 6b is located at the magenta circle/cross at (κx,κy) = (0.505,0.505), and the corresponding
exit wave reconstruction is shown in Fig. 6e; here the sparsity ratio appears to be too large (too
weakly constraining), causing quick stagnation to a local solution in a fashion similar to that
seen when using the approximate beam diameter as a support in Sec. 2.

As a result of this clear superiority of hard thresholding when used with Eq. (27b) compared
with the use of soft thresholding, for the remainder of this paper we will consider the use only
of hard thresholding. We note that other algorithms exist that successfully use soft thresholding
to promote sparsity [30, 25, 31]. We further note as a reminder that the use of soft thresholding
comes from ℓ = 1 regularization as a sparsity-inducing term and that its use is as a convex and
continuous relaxation of ℓ = 0 regularization in order to make the problem simpler to analyze;
both regularization terms are effective at promoting sparsity to varying degrees depending on
the particulars of the phase retrieval algorithm used and type of sparsifying transformation. We
believe that the use of weighted ℓ = 1 regularization methods [19] should be explored; these
methods use prior iterations of the exit wave ρ and a modified ℓ= 1 regularization term that can
closely approximate the ℓ= 0 regularization term. These weighted ℓ= 1 regularization methods
also retain the ease of analytic computations, continuity, and convexity. To address the use of
ℓ= 0 versus ℓ= 1 regularization to promote sparsity in the phase retrieval problem, researchers
need to carry out further systematic benchmarking and comparison of these methods in order to
compare relative effectiveness at successfully recovering the exit wave and their sparse edge-
detected representations, but these activities are beyond the scope of this paper.

5.2. Benchmark Results for ℓ = 0

We now provide full benchmark results on our test problem with ℓ = 0. We use ς ≃ 0.1 when
using Eq. (24). Its value was determined by numerical experimentation and works well with
the test problems we consider in this section. For other synthetic test problems or if attempt-
ing phase retrieval on experimental data, other values for ς may perform better, and further
exploratory tuning of this parameter should by performed.

We run 50 independent trials, each with a different M × N complex-valued uniform ran-
dom number array for ρ(0) for each of the 14 synthetic test problems with varying poly-
gon density. We initialize λ (0) to be the M × N array of zeros, and we use as initial spar-
sity ratios (κ(0)

x ,κ(0)
y ) = (0.05,0.05), with initial thresholding parameters (τ(0)

x ,τ(0)
y ) com-

puted from the initial (κ(0)
x ,κ(0)

y ) and ∂ jρ(0). We update the thresholding parameters τ j ev-
ery L = 50 iterations and use 5 polling steps in both x and y with allowable sparsity ratio
changes of κ(k+1)

j ∈ {κ(k)
j ,κ(k)

j ± 0.005,κ(k)
j ± 0.01}. We allow K0 = 2 × 104 iterations of



Eq. (27) to be performed, after which we cease using Eq. (27a) to update the thresholding
parameters τ j. Beginning from the current (κ(K0)

x ,κ(K0)
y ), we ramp up the sparsity ratios to final

values of (κ(K f )
x ,κ(K f )

y ) = (0.25,0.25) in the same manner as that discussed in Sec. 5.1, with
K f = 2.5×104. results are shown in Fig. 7a, where for each of the 50 trials for each test problem
polygon density, we sort the final values of the metric ε2

true = ‖ρtrue − ρ(K f )‖2
F in descending

order. We have also corrected the recovered ρ(K f ) for subpixel shift and global phase offsets
when compared with ρtrue when computing ε2

true.
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Fig. 7. (a) Sorted ε2
true = ‖ρtrue −ρ(k)‖2

F values vs different sparsity ratios in ∂ jρ for j ∈
{x,y} after k = 2.5× 104 iterations and using 50 independent trials with different starting
random exit waves. For 16

MN , (b) the ρtrue, (c) ρ(k) with lowest ε2
true value, and (d) ρ(k) with

largest ε2
true value. For 128

MN , (e) the ρtrue and (f) ρ(k) with lowest ε2
true value, and (g) ρ(k)

with largest ε2
true value.

The results of these benchmarks give us some insight into the performance of Eq. (27) over a
range of synthetic test problems of varying sparsity upon the forward-difference edge detection
in Eq. (4). Fig. 7a shows three regions of notable and differing behavior in ε2

true. The first is
an “ambiguous” region, where results are inconclusive and are between success and failure
to varying degrees. The reason for the difficulty in this region lies in our attempt to use edge
detection to reconstruct very smoothly varying features (discussed further below). The second
and third regions correspond to where, for a clear majority of starting points, we unambiguously



recover or fail to adequately recover an exit wave quantitatively and qualitatively close to the
corresponding ρtrue. (The criteria used to determine what “adequate” means is discussed below.)

The “ambiguous” region, which we denote by RA, corresponds to polygon densities of p1
MN

for p1 ∈ {16,128,256,512} and where 105 . ε2
true . 105.5. For p1 = 16, the ground truth exit

wave is shown in Fig. 7b; a reconstruction with ε2
true ≃ 105.5 is shown in Fig. 7c. The recon-

struction clearly has recovered the locations of the edges correctly, albeit with some numerical
artifact degradation, but has not successfully recovered the smoothly varying regions on the
exit wave, which look like scaled and phase-shifted regions of the probe function (again shown
in Fig. 2a). For p1 = 128, the ground truth exit wave is shown in Fig. 7e, and a reconstruction
with ε2

true ≃ 105 is shown in Fig. 7f. We see that edges are again faithfully reconstructed and
that smoothly varying features of the exit wave, which look like scaled-down/phase-shifted re-
gions of the probe function, are again degraded. However, the degradation in these smoothly
varying regions in Fig. 7f is not nearly as severe when compared with the p1 = 16 case shown
in Fig. 7c, and only finer details of the probe are degraded.

We conclude that using forward differences is not a proper sparsifying transformation for the
smooth features encountered in the test problems in the “ambiguous” region RA, and the in-
ability of Eq. (27) to recover these smoothly varying features using edge detection is expected.
The reason is that the forward-difference edge-detected representation of the smoothly varying
regions gets set to zero in the thresholding step of Eq. (27b) as these regions will likely fall be-
low the current thresholding parameter values τ j, thereby destroying any information in these
regions. Likely what is needed to remove this inability to recover smoothly varying regions of
the exit wave far from the requisite edges, which the forward-difference edge-detection scheme
was designed to effectively recover, is to perform iterative separation of the sample transmis-
sion function and the probe, as is done in ptychography [6, 32], and to introduce additional
information (constraints) on the optimization problem. For example, we can constrain further
the sample transmission function using additional thresholding to promote sparsity in some
edge-detected representations of the sample transmission function (this can be in addition to
sparsity promotion by using forward differences of the exit wave used here), as well as using
index of refraction limits [33]. We can also further constrain the reconstruction for the probe
function using a white-field (sample-out) measurement, which is the modulus squared of the
probe function numerically propagated to the area detector. Other regularization schemes and
algorithmic modifications can be made as well, such as total variational denoising methods on
the ∂ jρ (using ∂ 2

j ρ , that is, curvature sparsity information), which promote smoothness in an
image while simultaneously maintaining edges [34].

The second region of interest, RS, corresponds to Voronoi polygon densities of p2
MN for

256 ≤ p2 ≤ 12288 and where ε2
true . 105. The “dark blueish to black” region RS corresponding

to ε2
true . 105 in Fig. 7a is a region where we consider the recovery of the exit wave successful

(example reconstructions not shown) and robust (in that virtually all starting points yield an
accurate solution). One qualitative criterion we can use to define success is the following: af-
ter subpixel image registration and global phase offset correction, for particular p2 values with
ε2

true . 105, the recovered exit waves and the known ground truth exit waves are virtually indis-
tinguishable upon visual inspection. A more quantitative criterion we use to determine success
here is computing the phase retrieval transfer function (PRTF; plots not shown). For a particular
p2, we compute a single averaged reconstruction from the multiple trial runs with ε2

true . 105

(to average out remnant numerical artifacts from a particular trial run). All PRTFs computed
in this way yield values between ≃ 0.7 and 1 for all spatial frequencies. In the literature, spa-
tial frequency regions of the PRTF falling below ≃ 0.5 are typically considered as unreliably
recovered spatial frequency content [35, 36]. Since for the cases mentioned we have PRTFs
well above this cutoff at all spatial frequencies, we can be confident these reconstructions are



successful.
The third region of interest, RF, in Fig. 7a corresponds to the exit waves that we consider

unsuccessfully recovered, using both criteria of simply comparing the reconstructions to the
ground truth exit waves using visual inspection and using PRTFs. These are Voronoi polygon
densities of p1

MN for p1 ∈ {16,128,256,512} with 105.5 . ε2
true and p3

MN for 4096 ≤ p3 with
106.4 . ε2

true. A result for p1 = 16 and with ε2
true ≃ 106.4, shown in Fig. 7d, indicates that the

construction has very roughly recovered the correct location of the edges but also appears to
suffer greatly from other numerical artifacts common to phase retrieval due to translational
Fourier transform symmetries [17], as well as failing to recover any smoothly varying features
of the probe function. A result for p1 = 128 and with ε2

true ≃ 105.8 is shown in Fig. 7g; hence,
edge locations are adequately if imperfectly recovered, but smoothly varying features are un-
acceptably degraded when compared with the ground truth exit wave in Fig. 7e as well as the
“borderline” successfully recovered exit wave in Fig. 7f.

The almost exclusively “dark reddish” region in Fig. 7a for the p3 values listed and with
106.4 . ε2

true forms a sharp boundary with the RS region discussed above, which is different
from the more gradual boundary that the RS region shares with the RA region. The RF region is
different from the unsuccessfully recovered p1 values in RA in that no recognizable edges are
recovered and the reconstructions look poor (similar to that seen in Fig. 2c). The reconstructions
corresponding to the RF region indicate that the support implicitly generated while evaluating
Eq. (27b) behaves as if it is no longer sparse enough, which was the cause of failure when
using the approximate probe function diameter as support (discussed in Sec. 2). Note, however,
that for the p3 values listed in the RF region, there remains some probability of a successful
reconstruction, ranging from 4% for p3 = 12288 all the way to 96% for p3 = 4096. The nature
of this boundary between “sparse enough” and “not sparse enough” determining probabilistic
reconstruction success using Eq. (27) is unclear, however, and requires further study.

5.3. Noise, Edge Detection, and Sparsity

We next discuss the effects of noise on sparsity and the edge detection methods used in this
paper. We define as before the noise-free diffraction intensity as D and the diffraction intensity
with Poisson noise as Dn. The noisy measurement set Mn and projection operator ΠMn are
defined as in Eq. (8) and Eq. (9), but using Dn in place of D. In Fig. 8a, we compute the
azimuthal average of the diffraction intensities using

〈F(qr,qθ )〉qθ
=

1
N(qr)

∑
q

F(qr,qθ )⊙A(qr,qθ ) (28)

for some F(q) = F(qn,qm) = F(qr,qθ ) ∈RM×N
+ , where (qr,qθ ) are spatial frequency polar co-

ordinates, qr =
√

q2
m +q2

n and qθ = tan−1 (qm/qn), A(qr,qθ ) is an M×N binary mask with ones
within the annulus of width one pixel at radius qr and zeros elsewhere, and N(qr) = ∑q A(qr,qθ )
is the number of pixels within the annulus defined by the constant radial spatial frequency qr,
which in the continuous limit is the circumference of the circle 2πqr. The azimuthal average of
the noise-free diffraction intensity D is shown in Fig. 8a as the black curve, while the azimuthal
average of the diffraction intensity with Poisson noise Dn is shown by the green curve; the sig-
nal at high spatial frequencies becomes lost in the noise at approximately qr ≃ 102∆qr, where
∆qr is the spatial frequency radial pixel size in units of inverse length.

To best understand the effect noise has on edge detection using the forward difference convo-
lution matrices in Eq. (4), we view edge detection as a spatial frequency filter in Fourier space.
In Fig. 8c we show |F

[
Ex
]
| = |Ẽx|; viewed in this way, forward-difference edge detection in

the x direction can be seen as spatial high-pass filtering preferentially emphasizing high spatial
frequencies in the x direction while attenuating spatial frequency content in the y direction. The
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Fig. 8. Effects of Poisson degraded diffraction intensity on the sparsity of the supports
for the sparse representations ∂ jρ . (a) Azimuthal average of diffraction patterns without
noise D (black curve) and with noise Dn (green curve). (b) Azimuthal average of the noisy
diffraction pattern filtered in Fourier space using the forward difference Ẽx (black curve)
and Sobel Ẽ ′

x (green curve) edge detection convolution matrices. (c) |Ẽx|, (d) |Ẽ ′
x|. (e) An

example noise-free support for |∂xρtrue|, (f) the support of |∂xΠMn [ρtrue] | using forward
difference edge detection, and (g) the |∂ ′

xΠMn [ρtrue] | using Sobel edge detection. For (e-
g), hard thresholding is used to generate the supports with an enforced sparsity ratio of
κx = 0.05.

azimuthal average of |F
[
∂xΠMn [ρ ]

]
| = |Ẽx|⊙

√
Dn is shown as the black curve in Fig. 8b. An

example of a support generated by hard thresholding using an enforced sparsity ratio of 5%
for the noise-free case is shown in Fig. 8e, while the support generated for the noisy case, also
using an enforced sparsity ratio of 5%, is shown in Fig. 8f. The noise-degraded regions at high



spatial frequencies (where the true diffraction intensity signal is essentially lost in the noise)
are being amplified, giving a highly noncompact support region that in turn looks noisy, with
image pixels in the support randomly distributed and inconsistent with the known ground truth
support shown in Fig. 8e.

To alleviate this amplification of noise-degraded regions at high spatial frequency, we can
use other types of edge detection besides forward differences. One well-known method of edge
detection that has some noise suppressing properties is a Sobel filter

E ′
x =

1
4




−1 0 1 0 · · · 0
−2 0 2 0 · · · 0
−1 0 1 0 · · · 0
0 0 0 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0



∈RM×N , (29)

where E ′
y = E ′T

x and ·T is the transpose. The behavior of E ′
x in Fourier space is shown in Fig. 8d,

where |F
[
E ′

x
]
| = |Ẽ ′

x|. The Sobel filter viewed in Fourier space acts as a band-pass filter, atten-
uating both low and high spatial frequencies (which are degraded from the noise) in the y direc-
tion. We also show the azimuthal average of |F

[
∂ ′

xΠMn [ρ ]
]
| = |Ẽ ′

x|⊙
√

Dn as the green curve
in Fig. 8b; the attenuation of the noise-degraded regions at high spatial frequencies qr ≥ 102∆qr
is apparent. An example of a support generated by hard thresholding using an enforced sparsity
ratio of 5% for the noisy case is shown in Fig. 8g. The support generated by using a Sobel filter
for edge detection appears much more compact and retains features of the known ground truth
in Fig. 8e better than when using forward differences.

We conclude that when noise is present in a diffraction measurement and significantly de-
grades particular spatial frequency content of the measurement, care must be taken to choose
an appropriate edge detection method to promote sparsity. The algorithm presented in Eq. (27)
can readily be modified to use thresholding on a sparse representation of the exit wave ρ using
any type of edge detection, for example, explicitly defined Fourier space filters like those dis-
cussed here, as well as more sophisticated methods that combine image denoising techniques
and wavelet [37], shearlet [38], or curvelets [39] transforms on the exit wave ρ . Further bench-
marking and study using these other edge detection methods, using sparsity promotion through
thresholding both on the modulus of the sparse representation of ρ and on the phase [30], should
be explored, but this work is beyond the scope of this paper.

6. Conclusions

Developing innovative imaging methods utilizing phase retrieval is especially crucial and
timely given the current planning and commissioning of high brightness coherent x-ray sources
across the world. Especially for x-ray free electron lasers, the experimental arrangement ex-
plored in this work will be highly convenient and natural to use. New methods such as those
presented here will help to unlock the full potential of these sources by allowing for robust
phase retrieval under experimental conditions currently thought to be infeasible and/or too dif-
ficult to work with.

We show a way forward for robust single-view CDI of extended samples probed with plane
wave illumination using phase retrieval. This case, which is particularly relevant to flash imag-
ing by x-ray free-electron laser sources and for study of materials and life sciences specimens
when scanning approaches (ptychography) are impractical, has previously been considered in-
tractable. Our method exploits edge detection to arrive at a sparse representation of the sample
exit wave (one with far fewer dominant pixels) and uses thresholding of the modulus of this



sparse representation to implicitly generate a sparse support. This sparse support is much more
highly constraining when compared to using a support on the original non-sparse exit wave,
which is the essence of the method: we use phase retrieval solve for the simpler, sparser repre-
sentation, not the original non-sparse exit wave.

We derive an algorithm based on ADMM to solve for the sparse edge-detected representa-
tions of the exit wave, and benchmark it on test problems with varying support sparsity (dom-
inant nonzero pixels) in the edge-detection representation. We discuss and identify character-
istics in the test problems where the method succeeds and fails, as well as a borderline region
where success is ambiguous. This ambiguous region corresponds to spatial exit wave features
where edges have been successfully recovered but other smoothly varying regions away from
edges are not. We then examine the effects of Poisson noise when performing edge detection
using the forward-differences approach and discuss how Poisson noise that is dominant at high
spatial frequencies adversely affects use of thresholding to define an effective support on the
edge-detected representations. We then discuss a simple example of noise suppressing edge
detection using a Sobel filter, as well as some other prospects to perform edge detection in the
presence of noise to generate sparse supports on the edge-detected representations.

The key insight of this work is that simple mathematical transformations can drastically sim-
plify how the relevant information content in an image is represented. We anticipate that this
general approach to constraining and regularizing the optimization problem can be extended by
using other types of sparsity-inducing transformations, such as wavelets, curvelets, and shear-
lets. In addition to enabling imaging extended samples by single-view CDI, we expect that
incorporation of this concept into multiple-view (e.g., ptychographic) algorithms will be bene-
ficial by supplementing ptychographic overlap constraints with a sparse support constraint on
the edge-detected representation of the current view.

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research under Contract No. DE-AC02-
06CH11357. The authors are grateful to Sven Leyffer for insightful discussions.



The submitted manuscript has been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy
Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said article to reproduce, prepare deriva-
tive works, distribute copies to the public, and perform publicly and display publicly,
by or on behalf of the Government.


