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Abstract

As Linux clusters have matured as platforms for low-
cost, high-performance parallel computing, software
packages to provide many key services have emerged,
especially in areas such as message passing and net-
working. One area devoid of support, however, has
been paralld file systems, which are critical for high-
performance /O on such clusters. We have developed a
parallel file system for Linux clusters, called the Parallel
Virtual File System (PVFS). PVFS is intended both as
a high-performance parallel file system that anyone can
download and use and as a tool for pursuing further re-
search in paralel 1/0 and paraléd file systems for Linux
clusters.

In this paper, we describe the design and implementa-
tion of PVFS and present performance results on the
Chiba City cluster at Argonne. We provide performance
results for a workload of concurrent reads and writes
for various numbers of compute nodes, 1/0 nodes, and
I/O request sizes. We also present performance results
for MPI-10 on PVFS, both for a concurrent read/write
workload and for the BTIO benchmark. We compare the
I/O performance when using a Myrinet network versus a
fast-ethernet network for 1/0O-related communication in
PV FS. We obtained read and write bandwidthsas high as
700 Mbytes/sec with Myrinet and 225 Mbytes/sec with
fast ethernet.
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ergy, under Contract W-31-109-Eng-38, and in part by the National
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1 Introduction

Cluster computing has recently emerged as a main-
stream method for parallel computing in many applica

tion domains, with Linux leading the pack as the most

popular operating system for clusters. As researchers
continue to push the limits of the capabilities of clus-

ters, new hardware and software have been developed to
meet cluster computing’sneeds. In particular, hardware
and software for message passing have matured a great
deal sincethe early days of Linux cluster computing; in-

deed, in many cases, cluster networksrival the networks
of commercial parallel machines. These advances have
broadened the range of problems that can be effectively
solved on clusters.

One area in which commercial parallel machines have
always maintained great advantage, however, is that
of parallel file systems. A production-quality high-
performance parallel file system has not been available
for Linux clusters, and without such afile system, Linux
clusters cannot be used for large 1/O-intensive parallel
applications. We have developed a parallel file system
for Linux clusters, called the Parallel Virtual File System
(PVFS) [33], that can potentidly fill thisvoid. PVFSis
being used at a number of sites, such as Argonne Na-
tional Laboratory, NASA Goddard Space Flight Center,
and Oak Ridge National Laboratory. Other researchers
are aso using PVFSin their studies[28].

We had two main objectives in developing PVFS. Firgt,
we needed a basic software platform for pursuing further
research in paralel 1/0 and parallel file systems in the
context of Linux clusters. For this purpose, we needed
a stable, full-featured parallel file system to begin with.
Our second objective was to meet the need for a paral-



lel file system for Linux clusters. Toward that end, we
designed PVFS with the following goalsin mind:

e It must provide high bandwidth for concurrent
read/write operations from multiple processes or
threads to a common file.

o |t must support multiple APIs: anative PVFS API,
the UNIX/POSIX /O API [15], as well as other
APIssuch as MPI-10[13, 18].

e Common UNIX shell commands, suchas| s, cp,
and r m must work with PVFSfiles.

o Applications developed with the UNIX 1/O API
must be able to access PVFS files without recom-
piling.

o It must be robust and scalable.

o It must be easy for othersto install and use.

In addition, we were (and are) firmly committed to dis-
tributing the software as open source.

In this paper we describe how we designed and imple-
mented PVFS to meet the above goals. We also present
performance results with PVFS on the Chiba City clus-
ter [7] at Argonne National Laboratory. We first present
the performance for a workload comprising concurrent
reads and writes using native PVFS calls. We then
present resultsfor the same workload, but by using MPI-
10 [13, 18] functionsinstead of native PVFS functions.
We also consider amore difficult access pattern, namely,
the BT1O benchmark [21]. We compare the performance
when using aMyrinet network versus afast-ethernet net-
work for all 1/0-related communication.

Therest of this paper is organized asfollows. In the next
section wediscuss related work inthe area of paralle file
systems. In Section 3 we describe the design and imple-
mentation of PVFS. Performance results are presented
and discussed in Section 4. In Section 5 we outline our
plans for future work.

2 Reated Work

Related work in parallel and distributed file systems can
be divided roughly into three groups: commercia par-
allel file systems, distributed file systems, and research
paralel file systems.

The first group comprises commercia parallel file sys-
tems such as PFS for the Intel Paragon [11], PIOFS

and GPFS for the IBM SP [10], HFS for the HP Exem-
plar [2], and XFS for the SGI Origin2000 [35]. These
file systems provide high performance and functionality
desired for I/O-intensive applications but are available
only on the specific platforms on which the vendor has
implemented them. (SGI, however, hasrecently released
XFSfor Linux. SGI isaso developing aversion of XFS
for clusters, called CXFS, but, to our knowledge, CXFS
isnot yet available for Linux clusters.)

The second group comprises distributed file systems
such as NFS[27], AFS/Coda[3, 8], InterMezzo [4, 16],
XFS [1], and GFS [23]. These file systems are de-
signed to provide distributed access to files from mul-
tiple client machines, and their consistency semantics
and caching behavior are designed accordingly for such
access. The types of workloads resulting from large
parallel scientific applications usually do not mesh well
with file systems designed for distributed access; par-
ticularly, distributed file systems are not designed for
high-bandwidth concurrent writes that parallel applica-
tionstypically require.

A number of research projects exist inthe areas of paral-
lel 1/O and paralle file systems, such as PIOUS [19],
PPFS [14, 26], and Galley [22]. PIOUS focuses on
viewing 1/0O from the viewpoint of transactions [19],
PPFS research focuses on adaptive caching and prefetch-
ing [14, 26], and Galley looks at disk-access optimiza-
tion and alternative file organizations [22]. These file
systems may be freely available but are mostly research
prototypes, not intended for everyday use by others.

3 PVFSDesign and Implementation

Asaparalel file system, the primary goal of PVFSisto
provide high-speed access to file data for parallel appli-
cations. In addition, PVFS provides a clusterwide con-
sistent name space, enables user-controlled striping of
data across disks on different 1/0 nodes, and allows ex-
isting binaries to operate on PV FS files without the need
for recompiling.

Like many other file systems, PVFS is designed as a
client-server system with multiple servers, called 1/0
daemons. 1/O daemons typically run on separate nodes
in the cluster, caled I/0O nodes, which have disks at-
tached to them. Each PVFS file is striped across the
disks on the 1/0O nodes. Application processes interact
with PVFS via a client library. PVFS aso has a man-
ager daemon that handles only metadata operations such



as permission checking for file creation, open, close, and
remove operations. The manager does not participatein
read/write operations; the client library and the I/O dae-
mons handle al file I/O without the intervention of the
manager. The clients, 1/0 daemons, and the manager
need not be run on different machines. Running them
on different machines may result in higher performance,
however.

PVFES is primarily a user-level implementation; no ker-
nel modifications or modules are necessary to install or
operate the file system. We have, however, created a
Linux kernel module to make simple file manipulation
more convenient. This issue is touched upon in Sec-
tion 3.5. PVFS currently uses TCP for all internal com-
munication. As a result it is not dependent on any par-
ticular message-passing library.

3.1 PVFSManager and Metadata

A single manager daemon is responsible for the storage
of and access to all the metadata in the PV FS file system.
Metadata, in the context of afile system, refersto infor-
mation describing the characteristics of a file, such as
permissions, the owner and group, and, more important,
the physical distribution of the file data. In the case of
a parald file system, the distribution information must
include both file locations on disk and disk locationsin
the cluster. Unlike a traditional file system, where meta-
data and file data are all stored on the raw blocks of a
single device, paralel file systems must distribute this
data among many physical devices. In PVFS, for sim-
plicity, we chose to store both file data and metadata in
files on existing local file systems rather than directly on
raw devices.

PVFSfiles are striped across a set of 1/0 nodes in order
to facilitate parallel access. The specifics of a given file
distribution are described with three metadata parame-
ters. base 1/0 node number, number of 1/0O nodes, and
stripe size. These parameters, together with an ordering
of the I/O nodes for the file system, alow the file distri-
bution to be completely specified.

An example of some of the metadata fields for a file
/ pvfs/fooisgiveninTable 1. The pcount field spec-
ifies that the data is spread across three 1/O nodes, base
specifies that the first (or base) 1/0 node is node 2, and
ssize specifies that the stripe size—the unit by which the
fileis divided among the 1/O nodes—is 64 Kbytes. The
user can set these parameters when the file is created, or
PVFS will use a default set of values.

Table 1: Metadata example: File/ pvf s/ f oo.

inode | 1092157504
base 2

pcount | 3

ssize 65536

Application processes communicate directly with the
PVFS manager (via TCP) when performing operations
such as opening, creating, closing, and removing files.
When an application opens afile, the manager returnsto
the application the locations of the 1/0 nodes on which
file datais stored. This information allows applications
to communicate directly with I/O nodeswhen file datais
accessed. In other words, the manager is not contacted
during read/write operations.

One issue that we have wrestled with throughout the de-
velopment of PVFS is how to present a directory hier-
archy of PVFS files to application processes. At first
we did not implement directory-access functionsand in-
stead simply used NFS[27] to export the metadata direc-
tory to nodes on which applicationswould run. Thispro-
vided a global name space across al nodes, and appli-
cations could change directories and access files within
thisname space. The method had some drawbacks, how-
ever. Firg, it forced system administratorsto mount the
NFS file system across al nodes in the cluster, which
was a problem in large clusters because of limitations
with NFS scaling. Second, the default caching of NFS
caused problems with certain metadata operations.

These drawbacks forced us to reexamine our implemen-
tation strategy and eliminate the dependence on NFS for
metadata storage. We have done so in the latest version
of PVFS, and, as a result, NFS is no longer a require-
ment. We removed the dependence on NFS by trapping
system calls related to directory access. A mapping rou-
tine determines whether a PVFS directory is being ac-
cessed, and, if so, the operations are redirected to the
PV FS manager. Thistrapping mechanism, whichisused
extensively in the PVFS client library, is described in
Section 3.4.

3.2 1/0 Daemonsand Data Storage

At thetimethefile system isinstalled, the user specifies
which nodes in the cluster will serve as 1/O nodes. The
1/0 nodes need not be distinct from the compute nodes.
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Figure 1: File-striping example

An ordered set of PVFS 1/0O daemons runs on the I/O
nodes. The 1/O daemons are responsible for using the
local disk on the I/0O node for storing file data for PVFS
files.

Figure 1 shows how the example file / pvf s/ f oo is
distributed in PVFS based on the metadata in Table 1.
Note that although there are six 1/0O nodes in this ex-
ample, the file is striped across only three 1/0O nodes,
starting from node 2, because the metadata file specifies
such a striping. Each 1/0O daemon stores its portion of
the PVFSfilein afile on the local file system on the I/O
node. The name of thisfile is based on the inode num-
ber that the manager assigned to the PVFS file (in our
example, 1092157504).

As mentioned above, when application processes
(clients) open a PVFS file, the PVFS manager informs
them of the locations of the 1/O daemons. The clients
then establish connections with the 1/0 daemons di-
rectly. When a client wishesto access file data, the client
library sends a descriptor of the file region being ac-
cessed to the 1/0 daemons holding data in the region.
The daemons determine what portions of the requested
region they have locally and perform the necessary 1/O
and data transfers.

Figure 2 shows an example of how one of these regions,
in this case a regularly strided logical partition, might
be mapped to the data available on a single I/O node.
(Logical partitionsare discussed further in Section 3.3.)
The intersection of the two regions defines what we call
an 1/O stream. This stream of datais then transferred in

logical file order across the network connection. By re-
taining the ordering implicit in the request and allowing
the underlying stream protocol to handle packetization,
no additional overhead isincurred with control messages
at the application layer.
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Figure 2: 1/O stream example

3.3 Application Programming I nterfaces

PVFS can be used with multiple application program-
ming interfaces (APIS): anative API, the UNIX/POSIX
API [15], and MPI-1O [13, 18]. In all these APIs, the
communication with 1/0 daemons and the manager is
handled transparently within the APl implementation.



The native API for PVFS has functions anal ogous to the
UNIX/POSI X functionsfor contiguousreads and writes.
The native API aso includes a “partitioned-file inter-
face” that supports simple strided accesses in the file.
Partitioning allows for noncontiguous file regions to be
accessed withasinglefunction call. Thisconcept issim-
ilar tologicadl file partitioningin Vesta[9] and file views
in MPI-10[13, 18]. The user can specify afile partition
in PVFS by using a special i oct| call. Three param-
eters, offset, gsize, and stride, specify the partition, as
shown in Figure 3. The offset parameter defines how far
into the file the partition begins relative to the first byte
of thefile, the gsize parameter definesthe size of thesim-
ple strided regions of data to be accessed, and the stride
parameter defines the distance between the start of two
consecutive regions.

Figure 3: Partitioning parameters

We have al so implemented the MPI-10 interface [13, 18]
on top of PVFS by using the ROMIO implementation of
MPI-10 [24]. ROMIO is designed to be ported easily
to new file systems by implementing only a small set of
functions on the new file system [30, 32]. This feature
enabled us to have al of MPI-10 implemented on top
of PVFSin a short time. We used only the contiguous
read/write functions of PVFSin thisMPI-1O implemen-
tation because the partitioned-fileinterface of PV FS sup-
portsonly a subset of the noncontiguous access patterns
that are possiblein MPI-10. Noncontiguous MPI-10 ac-
cesses are implemented on top of contiguous read/write
functions by using a ROMIO optimization called data
sieving [31]. In this optimization, ROMIO makes large
contiguous I/0 requests and extracts the necessary data.
We are currently investigating how the PVFS partition-
ing interface can be made more general to support MPI-
|O’s nonconti guUOUS accesses.

PVFS also supports the regular UNIX 1/O functions,
such asread() and write(), and common UNIX
shell commands, such as|'s, cp, and rm (We note
that f cnt | file locks are not yet implemented.) Fur-
thermore, existing binaries that use the UNIX API can
access PVFS files without recompiling. The following
section describes how we implemented these features.

3.4 Trapping UNIX I/O Calls

System calls are low-level methods that applications can
use for interacting with the kernel (for example, for disk
and network 1/0). These calls are typically made by call-
ing wrapper functionsimplemented in the standard C li-
brary, which handle the details of passing parameters to
thekernel. A straightforward way to trap system callsis
to provide a separate library to which users relink their
code. Thisapproach isused, for example, inthe Condor
system [17] to help provide checkpointing in applice-
tions. This method, however, requires relinking of each
application that needs to use the new library.

When compiling applications, a common practice is to
use dynamic linking in order to reduce the size of the
executable and to use shared libraries of common func-
tions. A side effect of thistype of linking isthat the exe-
cutables can take advantage of new libraries supporting
the same functions without recompilation or relinking.
We use this method of linkingthe PVFS client library to
trap 1/0 system calls before they are passed to the ker-
nel. We provide alibrary of system-call wrappersthatis
loaded before the standard C library by using the Linux
environment variable LD_PRELOAD. As a result, exist-
ing binaries can access PVFS files without recompiling.

Figure 4a shows the organization of the system-call
mechanism before our library is loaded. Applications
call functions in the C library (I i bc), which in turn
call the system calls through wrapper functions imple-
mented in| i bc. These calls pass the appropriate val-
ues through to the kernel, which then performs the de-
sired operations. Figure 4b showsthe organization of the
system-call mechanism again, this time with the PVFS
client library in place. In this case the | i bc system-
call wrappers are replaced by PVFS wrappersthat deter-
mine the type of file on which the operationisto be per-
formed. If thefileisa PVFSfile, the PVFS I/O library
is used to handle the function. Otherwise the parameters
are passed on to the actual kernel call.

This method of trapping UNIX 1/O calls has limitations,
however. First, acall to exec() will destroy the state
that we save in user space, and the new process will
therefore not be able to use file descriptors that referred
to open PVFSfiles before theexec() was called. Sec-
ond, porting this feature to new architectures and oper-
ating systems is nontrivial. The appropriate system li-
brary calls must beidentified and includedin our library.
This process must a so be repeated when the APIs of sys-
tem libraries change. For example, the GNU C library
(gl i bc) API is constantly changing, and, as a resullt,
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Figure 4: Trapping system calls

we have had to constantly change our code!

3.5 Linux Kerne VFSModule

While the trapping technique described above does pro-
vide the necessary functionality for using existing appli-
cations on PVFS files, the shortcomings of this method
and the effort required to keep up with changes in the
C library encouraged us to seek an alternative solu-
tion. The Linux kernel provides the necessary hooks
for adding new file-system support via loadable mod-
ules without recompiling the kernel. Accordingly, we
have implemented a module that allows PVFS file sys-
tems to be mounted in a manner similar to NFS [27].
Once mounted, the PVFS file system can be traversed
and accessed with existing binariesjust as any other file
system. We note that, for the performance experiments
reported in this paper, we used the PVFSlibrary and not
the kernel module.

4 Performance Results

We present performance results using PVFS on the
Chiba City [7] cluster at Argonne National Laboratory.
The cluster was configured as follows at the time of our
experiments. There were 256 nodes, each with two 500-
MHz Pentium 111 processors, 512 Mbytes of RAM, a9
Gbyte Quantum Atlas IV SCSI disk, a 100 Mbits/sec In-
tel EtherExpress Pro fast-ethernet network card operat-
ing in full-duplex mode, and a 64-bit Myrinet card (Re-
vision 3). The nodes were running Linux 2.2.15pre4.
There weretwo MPI implementations: MPICH 1.2.0 for

fast ethernet and MPICH-GM 1.1.2 for Myrinet. The
kernel was compiled for a single processor; therefore,
one processor on each machine was unused during our
experiments. Out of the 256 nodes, only 60 nodes were
available at atimefor our experiments. We used some of
those 60 nodes as compute nodes and some as |/O nodes
for PVFS.

The Quantum Atlas IV 9 Gbyte disk has an advertised
sustained transfer rate of 13.5-21.5 Mbytes/sec. The
performance of the disk measured using the bonni e
file-system benchmark [5] showed a write bandwidth of
22 Mbytes/sec and a read bandwidth of 15 Mbytes/sec
when accessing a 512 Mbyte file in a sequential manner.
The write performance measured by bonni e isdlightly
higher than the advertised sustained rates, perhaps be-
cause the test accessed the file sequentialy, thereby al-
lowingfile-system caching, read ahead, and write behind
to better organize disk accesses.

Since PVFS currently uses TCP for all communication,
we measured the performance of TCP on the two net-
works on the cluster. For this purpose, we used the
tt cp test, version 1.1 [29]. We tried three buffer sizes,
8 Kbytes, 64 Kbytes, and 256 Kbytes, and for al three,
t t cp reported a bandwidth of around 10.2 Mbytes/sec
on fast ethernet and 37.7 Mbytes/sec on Myrinet.

To measure PVFS performance, we performed experi-
ments that can be grouped into three categories. con-
current reads and writes with native PVFS calls, con-
current reads and writes with MPI-10, and the BTIO
benchmark. We varied the number of 1/0 nodes, com-
pute nodes, and 1/0 size and measured performance with
both fast ethernet and Myrinet. We used the default file-
stripe size of 16 Kbytesin all experiments.



4.1 Concurrent Read/Write Performance

Our first test programisaparallel MPI program inwhich
all processes perform the following operations using the
native PVFS interface. open a new PVFS file that is
common to all processes, concurrently write data blocks
to digoint regions of thefile, close thefile, reopen it, si-
multaneously read the same data blocks back from the
file, and then close the file. Application tasks synchro-
nize before and after each 1/0 operation. We recorded
the time for the read/write operations on each node and,
for calculating the bandwidth, used the maximum of
the time taken on all processes. In all tests, each com-
pute node wrote and read a single contiguous region of
size 2N Mbytes, N being the number of 1/0 nodes in
use. For example, for the case where 26 application pro-
cesses accessed 8 1/0 nodes, each application task wrote
16 Mbytes, resulting in a total file size of 416 Mbytes.
Each test was repeated five times, and the lowest and
highest values were discarded. The average of the re-
maining three testsis the value reported.

Figure 5 showsthe read and write performance with fast
ethernet. For reads, the bandwidth increased at a rate
of approximately 11 Mbytes/sec per compute node, up
to 46 Mbytes/sec with 4 1/0 nodes, 90 Mbytes/sec with
8 1/0 nodes, and 177 Mbytes/sec with 16 1/O nodes.
For these three cases, the performance remained at this
level until approximately 25 compute nodes were used,
after which performance began to tail off and became
more erratic. With 24 1/0 nodes, the performance in-
creased up to 222 Mbytes/sec (with 24 compute nodes)
and then began to drop. With 32 /O nodes, the perfor-
mance increased less quickly, attained approximately the
same peak read performance as with 24 1/0 nodes, and
dropped off in a similar manner. This indicates that we
reached the limit of our scalability with fast ethernet.

The performance was similar for writes with fast eth-
ernet. The bandwidth increased at a rate of approxi-
mately 10 Mbytes/sec per compute node for the 4, 8,
and 16 1/0O-node cases, reaching peaks of 42 Mbytes/sec,
83 Mbytes/sec, and 166 Mbytes/sec, respectively, again
utilizing almost 100% of the available TCP bandwidth.
These cases also began to tail off at approximately 24
compute nodes. Similarly, with 24 1/O nodes, the per-
formance increased to a peak of 226 Mbytes/sec before
leveling out, and with 32 1/0 nodes, we obtained no bet-
ter performance. The slower rate of increase in band-
width indicates that we exceeded the maximum number
of sockets across which it is efficient to service requests
on the client side.

We observed significant performance improvements by
running the same PVFS code (using TCP) on Myrinet
instead of fast ethernet. Figure 6 shows the re-
sults. The read bandwidth increased at 31 Mbytes/sec
per compute process and leveled out at approximately
138 Mbytes/sec with 4 /O nodes, 255 Mbytes/sec
with 8 /O nodes, 450 Mbytes/sec with 16 I/O nodes,
and 650 Mbytes/sec with 24 /O nodes. With 32 I/O
nodes, the bandwidth reached 687 Mbytes/sec for 28
compute nodes, our maximum tested size. For writ-
ing, the bandwidth increased at a rate of approximately
42 Mbytes/sec, higher than the rate we measured with
tt cp. While we do not know the exact cause of this,
it is likely that some small implementation difference
resulted in PVFS utilizing a dlightly higher fraction
of the true Myrinet bandwidth than tt cp. The per-
formance levelled at 93 Mbytes/sec with 4 1/0 nodes,
180 Mbytes/sec with 8 1/0 nodes, 325 Mbytes/sec with
16 1/0 nodes, 460 Mbytes/sec with 24 1/O nodes, and
670 Mbytes/sec with 32 1/0O nodes.

In contrast to the fast-ethernet results, the performance
with Myrinet maintained consistency as the number of
compute nodes was increased beyond the number of 1/0
nodes, and, in the case of 4 /O nodes, as many as 45
compute nodes (the largest number tested) could be effi-
ciently serviced.

4.2 MPI-10 Performance

We modified the same test program to use MPI-10 calls
rather than native PVFS calls. The number of I/O nodes
was fixed at 32, and the number of compute nodes was
varied. Figure 7 shows the performance of the MPI-IO
and native PVFS versions of the program. The perfor-
mance of the two versions was comparable: MPI-IO
added a small overhead of at most 7—8% on top of native
PVFS. We believe this overhead can be reduced further
with careful tuning.

4.3 BTIO Benchmark

The BTIO benchmark [21] from NASA Ames Research
Center simulates the 1/O required by a time-stepping
flow solver that periodically writes its solution matrix.
The solution matrix is distributed among processes by
using a multipartition distribution [6] in which each
process is responsible for several digjoint subblocks of
points (cells) of the grid. The solution matrix is stored
on each process as C' three-dimensional arrays, where
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C' is the number of cells on each process. (The arrays
are actually four dimensional, but the first dimension has
only five elements and is not distributed.) Data is stored
in the file in an order corresponding to a column-major
ordering of the global solution matrix.

The access pattern in BTIO is noncontiguous in mem-
ory and in the file and is therefore difficult to handle
efficiently with the UNIX/POSIX I/O interface. We
used the“full MPI-10" version of thisbenchmark, which
uses MPI derived datatypes to describe noncontiguity in
memory and file and uses a single collective 1/0 func-
tion to perform the entire [/0. The ROMIO implementa-
tion of MPI-10 optimizes such a request by merging the
accesses of different processes and making large, well-
formed requests to the file system [31].

The benchmark, as obtained from NASA Ames, per-
forms only writes. In order to measure the read band-
width for the same access pattern, we modified the
benchmark to also perform reads. We ran the Class C
problem size, whichusesa 162 x 162 x 162 element ar-
ray with atotal size of 162 Mbytes. The number of 1/0
nodes was fixed at 16, and tests were run using 16, 25,
and 36 compute nodes (the benchmark requires that the
number of compute nodes be a perfect square). Table 2
summarizes the results.

With fast ethernet, the maximum performance was
reached with 25 compute nodes. With more compute
nodes, the smaller granularity of each I/O access re-
sulted in lower performance. For this configuration, we
attained 49% of the peak concurrent-read performance
and 61% of the peak concurrent-write performance mea
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Figure 7: ROMIO versus native PV FS performance with
Myrinet and 32 1/0 nodes

Table 2: BT1O performance (Mbytes/sec), 16 1/0 nodes,
Class C problem size (162 x 162 x 162).

Compute | Fast Ethernet Myrinet
Nodes | read | write || read | write
16 83.8 79.1 || 156.7 | 157.3
25 88.4 | 101.3 || 197.3 | 192.0
36 66.3 | 61.1 || 232.3 | 230.7

sured in Section 4.1. The other time was spent in the
computation and communication required to merge the
accesses of different processes in ROMIQO's collective
[/0 implementation. Without this merging, however,
the performance woul d have been significantly lower be-
cause of the numerous small reads and writesin this ap-
plication.

With Myrinet, the maximum performance was reached
with 36 compute nodes. Here we again see the bene-
fit of a high-speed network in that even for the smaller
requests resulting from using more compute nodes, we
were able to attain higher performance. The perfor-
mance obtained was about 51% of the peak concurrent-
read performance and 70% of peak concurrent-write per-
formance measured in Section 4.1.

5 Conclusions and Future Work

PVFS brings high-performance paralldl file systems to
Linux clusters and, although more testing and tuning are
needed for production use, it is ready and available for

use now. Theinclusion of PVFS support in the ROMIO
MPI-10 implementation makes it easy for applications
written portably with the MPI-10 API to take advantage
of the available disk subsystems lying dormant in most
Linux clusters.

PVFS also serves as a tool that enables us to pursue fur-
ther research into various aspects of parallel 1/0 and par-
allel file systems for clusters. We outline some of our
plans below.

One limitation of PVFS, at present, is that it uses TCP
for al communication. As a result, even on fast giga-
bit networks, the communication performance is lim-
ited to that of TCP on those networks, which is usualy
unsatisfactory. We are therefore redesigning PVFS to
use TCP as well as faster communication mechanisms
(such as VIA [34], GM [20], and ST [25]) where avail-
able. We plan to design a small communication abstrac-
tion that captures PVFS's communication needs, imple-
ment PVFS on top of this abstraction, and implement
the abstraction separately on TCR, VIA, GM, and the
like. A similar approach, known as an abstract device
interface, has been used successfully in MPICH [12] and
ROMIO [32].

Some of the performance results in this paper, particu-
larly the cases on fast ethernet where performance drops
off, suggest that further tuning is needed. We plan to
instrument the PVFS code and obtain detailed perfor-
mance measurements. Based on this data, we planto in-
vestigate whether performance can be improved by tun-
ing some parameters in PVFS and TCP, either a priori
or dynamically at run time.

We also plan to design a more general file-partitioning
interface that can handle the noncontiguous accesses
supported in MPI-10, improve the client-server interface
to better fit the expectations of kernel interfaces, designa
new internal |/O-description format that is more flexible
than the existing partitioning scheme, investigate adding
redundancy support, and develop better scheduling al-
gorithms for use in the 1/O daemons in order to better
utilize 1/0 and networking resources.

6 Availability
Source code, compiled binaries, documenta
tion, and mailing-list information for PVFS

are available from the PVFS web site at
http://ww. parl.cl enmson. edu/ pvfs/.



Information and source code for
MPI-10

the ROMIO

implementation  are  available at

http://ww. nts. anl . gov/romni o/ .
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