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SUMMARY7

We de8ne a time-stepping procedure to integrate the equations of motion of sti+ multibody dynamics
with contact and friction. The friction and non-interpenetration constraints are modelled by complemen-9
tarity equations. Sti+ness is accommodated by a technique motivated by a linearly implicit Euler method.
We show that the main subproblem, a linear complementarity problem, is consistent for a su=ciently11
small time step h. In addition, we prove that for the most common type of sti+ forces encountered in
rigid body dynamics, where a damping or elastic force is applied between two points of the system,13
the method is well de8ned for any time step h. We show that the method is stable in the sti+ limit,
unconditionally with respect to the damping parameters, near the equilibrium points of the springs. The15
integration step approaches, in the sti+ limit, the integration step for a system where the sti+ forces have
been replaced by corresponding joint constraints. Simulations for one- and two-dimensional examples17
demonstrate the stable behaviour of the method. Published in 2002 by John Wiley & Sons, Ltd.

KEY WORDS: multibody dynamics; rigid bodies; Coulomb friction; sti+ methods; linear complemen-19
tarity problems; linearly implicitly methods

1. INTRODUCTION21

The dynamic rigid multibody contact problem is concerned with predicting the motion
of several rigid bodies in contact. Work in a number of research areas, robotics and virtual23
reality especially, has recently led to a strong interest in this problem. Friction is a fun-
damental phenomenon exhibited at the contact between two bodies, and its accurate mod-25
elling is important in various applications, such as a robot grasping a load [1]. Possibly, the
most accepted model of dry friction is the Coulomb friction model. The major obstacle in27
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incorporating the Coulomb friction model in multibody dynamics simulation is that the1
classical force–acceleration model with a corresponding Newton law is inconsistent: it does
not necessarily have a solution in the classical sense [2; 3].3

Several approaches have been designed to circumvent this inconsistency while simulating
the dynamics of several bodies with intermittent contact and stick–slip motion due to friction.5

• The simulation can be interpreted as a succession of di+erential algebraic equations7
(DAEs), and certain event functions (such as the distance between two bodies) are used
to decide when the DAE needs to be changed [4]. Unfortunately, there is no guarantee9
that the new DAE formulation will satisfy the frictional and geometric constraints.

• The acceleration equations, which constitute a linear complementarity problem, can be11
solved by Lemke’s algorithm [5]. The outcome of Lemke’s algorithm can be translated
either in a solution of the acceleration equation or in an unbounded ray that can be13
transformed in a kinematically but not necessarily dynamically feasible trajectory [2].

• The friction force can be estimated from previous history by using some quadrature15
or extrapolation rule, and one can solve for the remaining unknowns from the accel-
eration equations. The reduced problem is a convex problem that can be solved fairly17
e=ciently [6]. The resolution of the model under this approach is not always dynamically
correct, but it is usually acceptable.19

Recently, an alternative approach has been proposed. Recognizing that the nature of the
frictional constraint can induce discontinuous, impulsional behaviour of the bodies involved21
in the contact con8guration, the new approach considers impulses and velocities as the funda-
mental unknowns [7; 8]. This framework is based on a linear complementarity problem (LCP),23
but it is di+erent from previous approaches that attempt to 8nd the accelerations of the
bodies [9; 10]. Previous approaches solve for accelerations from the dynamics equations and25
then use the accelerations in an integration procedure. In the new framework, the integration
and dynamical resolution steps are combined. The main achievement of this approach is that27
it has solutions for any con8guration [7]. As the time-step tends to zero, a subsequence of
the numerical solutions approaches the solution of a di+erential inclusion [3].29

The approach of References [7; 8] uses Euler’s method as the fundamental integration
procedure. This is a major obstacle when handling sti+ systems with contact and friction.31
Such systems are interesting in the context of stabilized 8xtures, for example, Reference [11].
It is therefore important to modify this scheme to accommodate sti+ness in a manner that33
preserves its well-posedness.

1.1. The original semi-implicit time-stepping scheme for non-sti, systems35
We 8rst show that the impulse–velocity time-stepping scheme [7; 8] can be interpreted as
a semi-implicit Euler method applied to the appropriate di+erential complementarity problem37
(DCP). This will justify our treatment of sti+ness as a natural extension of the similar sti+
DAE approach.39

We 8rst describe the acceleration–force contact and friction model. An important part will
be played by complementarity constraints. Two vectors a and b are called complementary if41
they satisfy

a¿0; b¿0 and aTb= 043

Published in 2002 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:000–000
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where all the inequalities are understood componentwise. Alternatively, we may denote a1
complementarity relation by

a¿0⊥ b¿03

We assume that the state of the system of rigid bodies can be described by a generalized
position vector q and a generalized velocity vector v. The system is subject to several con-5
straints.
Equality constraints. The dynamics of the system must satisfy certain equality constraints,7

such as those generated by a revolute joint between two bodies [12]. Such constraints are
described by9

M(i)(q) = 0; i = 1; 2; : : : ; m (1)

Here, M(i)(q) are su=ciently smooth functions. We denote by �(i)(q) the gradient of the11
corresponding function, or

�(i)(q) =∇qM(i)(q); i = 1; 2; : : : ; m13

The force exerted by a joint on the system is c(i)
� �(i)(q), where c(i)

� is the appropriate Lagrange
multiplier [12].15
Non-interpenetration constraints. Two bodies cannot penetrate each other. We assume that

we can de8ne a continuous signed distance function between the two bodies N(q). Such a17
distance function classi8es the relative positions in the following manner:

• If N(q)¿0, then the bodies are separated.19
• If N(q) = 0, then the bodies are in contact.
• If N(q)¡0, then the bodies interpenetrate each other.21

In general, a continuous signed distance function N(q) cannot be determined for all possible
con8gurations of two bodies [13]. However, under certain weak assumptions about the shape23
of the bodies, such a function can be de8ned at least in a neighbourhood of all contact
con8gurations [13], which will be su=cient for our developments. If such a function N can25
be de8ned for every pair of bodies, then the non-interpenetration constraints become

N( j)(q)¿0; j = 1; 2; : : : ; p (2)27

During the dynamical evolution of the system, few bodies may actually get to be in contact,
so that p may be substantially smaller than the number of all possible choices of pairs of29
bodies.

The function N(q) is generally not di+erentiable, especially when the bodies have Oat sur-31
faces. This situation is generally remediable by considering di+erent geometric primitives [14].
For example, requiring that the distance between a rectangular body in two dimensions and a33
Oat tabletop be non-negative is equivalent to requiring that the signed distance between every
vertex of the rectangle and the tabletop be non-negative. It follows that the signed distance35
between a point and the tabletop is di+erentiable everywhere, whereas the distance between
the body and the tabletop is not.37

Since a general analysis of the modelling of the geometrical con8gurations and the repre-
sentation of the non-interpenetration constraints by di+erentiable functions is beyond the scope39
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of this work, we will simply assume that we can represent the non-interpenetration constraints1
between all bodies in the system by (2), for suitably chosen continuously di+erentiable
functions N( j)(q). For more details about the algebraic representation of non-interpenetration3
constraints, see Reference [14]. In the sequel, the function N( j) will be called contact (j).

An important object is the normal at a contact constraint,5

n( j)(q) =∇qN( j)(q); j = 1; 2; : : : ; p (3)

which is now de8ned, since we assume the functions to be di+erentiable.7
Contact constraints. If N( j)(q) = 0 for some index j, then a corresponding pair of bodies

is in exact contact. In this case, a ‘normal’ force c( j)
n n( j)(q) will act at the contact. The force9

can be only a compression force, which means that c( j)
n ¿0. The fact that the force acts only

when contact is present can be expressed by the complementarity constraint c( j)
n N( j)(q) = 0.11

The contact constraints thus become

N( j)(q)¿0; c( j)
n ¿0; N( j)(q)c( j)

n = 0; j = 1; 2; : : : ; p (4)13

Frictional constraints. For the frictional constraints treatment we adopt the description from
Reference [3]. The frictional constraints connect the tangential force, the normal force, and15
the velocity at some contact (j). In the following discussion we omit the superscript (j),
although all the quantities refer to the (j)th contact.17

We represent the set of possible friction forces through

FC0(q) = { QD(q) Q� | Q�∈Rd;  ( Q�)6�}19

The function  ( Q�) must be convex, positively homogeneous, and coercive. Here � is the
friction coe=cient, a non-negative quantity. This makes the total force at the contact to be21
inside the friction cone:

FC(q) = cn(n(q) + FC0(q)) = {cnn(q) + QD(q) Q� | Q�∈Rd;  ( Q�)6�cn}23

If QD(q) spans the friction plane and  ( Q�) = ‖�‖2, then FC(q) becomes the classical circular
friction cone [1]. The current representation, however, also covers the representation in global25
co-ordinates, where n(q) is not necessarily orthogonal to QD(q) [13].

The maximal dissipation principle requires that we choose Q� so as to maximize the27
dissipation rate −vT QD(q) Q� over QD(q) Q�∈cnFC0(q). That is, Q� is the solution of the following
optimization problem:29

min
Q�∈Rd

vT QD(q) Q� subject to  ( Q�)6�cn (5)

However, for computational purposes, we work with a polyhedral approximation of the friction31
cone [3; 7; 8]. This approximation is generated by {n(q)+di(q); i = 1; 2; : : : ; mC}, where di(q)
is a collection of direction vectors in FC0(q). We write D(q) = [d1(q); d2(q); : : : ; dmC(q)]. The33
set of columns of D(q) is generally chosen to be balanced; that is for any i there is a j
such that dj(q) =−di(q) [8]. In this setup, one non-negative component �i is associated with35
every column di(q) of D(q), i = 1; 2; : : : ; mC. We denote the vector of tangential forces by
�= (�1; �2; : : : ; �mC)T. The total tangential force thus becomes D(q)� [7; 8].37

Published in 2002 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:000–000
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In terms of these variables, the frictional constraints, including the maximum dissipation1
principle (5), can be expressed in terms of the following complementarity conditions [3; 7; 8]:

D(q)Tv + �e¿ 0⊥�¿0

�cn − eT�¿ 0⊥ �¿0

Here e is a vector of ones of dimension mC, e= (1; 1; : : : ; 1)T. The additional variable � is3
approximately equal to the norm of the tangential velocity at the contact, if there is relative
motion at the contact, or ‖D(q)Tv‖ �= 0 [7; 8].5
The acceleration–force framework. If we combine the Newton equation of dynamics with

the joint, contact, and frictional constraints, we obtain the following DCP:7

M (q)
d2q
dt2
−

m∑
i=1

�(i)c(i)
� −

p∑
j=1

(n( j)(q)c( j)
n + D( j)(q)�( j)) = k

(
t; q;

dq
dt

)
M(i)(q) = 0; i = 1; 2; : : : ; m

N( j)(q) ¿0; ⊥ c( j)
n ¿0; j = 1; 2; : : : ; p

D( j)(q)Tv + �( j)e( j) ¿0 ⊥�( j)¿0

�( j)c( j)
n − e( j)T

�( j) ¿0; ⊥ �( j)¿0; j = 1; 2; : : : ; p

(6)

Here M (q) is the mass matrix, which we consider to be symmetric and uniformly positive9
de8nite. The quantity k(t; q; dq=dt) is the external force.

Unfortunately, a simple two-dimensional example demonstrates that such a set-up is not11
always well posed [2; 3]. Since in two dimensions the friction cone coincides with its polyhe-
dral approximation, this problem does not arise from the discretization of the Coulomb cone.13
It is simply an indication that the Coulomb friction model is inconsistent with the classical
equations of rigid body dynamics.15

We ignore for the time being the possible inconsistency of the acceleration–force approach,
and we investigate a particular numerical integration method applied to the equations of17
motion (6). We formulate all geometrical constraints at the velocity level. If we di+erentiate
the joint constraint (1) with respect to time, we obtain ∇qM(i)(q)Tv= �(i)(q)Tv= 0. Contact19
constraints cannot be replaced in the same manner by velocity formulations because N( j)(q)¿0
does not necessarily imply that (d=dt)N( j)(q)¿0. However, if the contact constraint is active,21
N( j)(q) = 0, then we must necessarily have (d=dt)N( j)(q) = n( j)(q)Tv¿0.

For practical reasons, it is useful to think about a larger active contact constraint set.23
During the integration procedure it is possible that while a contact constraint (j) should be
theoretically active, the value of N( j) will not be zero because of numerical error. Such a25
contact will be considered active. Also, some bodies may collide, generating additional active
constraints. In this work we will just assume that the active set A is provided, and we will27
not discuss the methods for updating the active set unless this has an immediate consequence
for the dynamics resolution problem. For the elements j of the active set A we replace the29
contact constraints N( j)(q)¿0 by n( j)(q)Tv¿0.

The semi-implicit time-stepping scheme. Finally, we need an integration procedure. From31
the positions and velocities q(l); v(l) at time t we need to obtain the positions and velocities

Published in 2002 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:000–000
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q(l+1); v(l+1) at time t + h. To do so, we apply the 8rst-order 8nite-di+erence approximation1
q(l+1) = q(l) + hv(l+1), as it is common in semi-implicit schemes [15]. The force is evaluated
at q(l); v(l) which makes the scheme equivalent to the semi-implicit Euler scheme for the case3
where there are no constraints. With these choices, our method can be written as

M (q(l))
v(l+1) − v(l)

h
−

m∑
i=1

�(i)c(i)
� −

∑
j∈A

(n( j)c( j)
n + D( j)�( j)) = k(t; q(l); v(l))

�(i)T
v(l+1) = 0; i = 1; 2; : : : ; m

�( j) = n( j)T
v(l+1) ¿0; ⊥ c( j)

n ¿0; j∈A
�( j) = �( j)e( j) + D( j)Tv(l+1) ¿0; ⊥�( j)¿0; j∈A

�( j) =�( j)c( j)
n − e( j)T

�( j) ¿0; ⊥ �( j)¿0; j∈A

To simplify notation, we have not explicitly shown dependence on the geometrical data of5
the problem, �(i), n( j), D( j), on q(l). Here and in all other formulations this data is evaluated
solely at q(l). The model constitutes a mixed linear complementarity problem (LCP) [5]. We7
now do the following relabellings: c(i)

� ← hc(i)
� ; i = 1; 2; : : : ; m, and c( j)

n ← hc( j)
n , �( j)← h�( j),

and �( j)← h�( j) for j∈A.9
Then, after multiplying the 8rst equation above by h, we 8nally obtain the following LCP:

M (q(l))v(l+1) −
m∑
i=1

�(i)c(i)
� −

∑
j∈A

(n( j)c( j)
n + D( j)�( j)) = hk(t; q(l); v(l)) + M (q(l))v(l)

�(i)T
v(l+1) = 0; i = 1; 2; : : : ; m

�( j) = n( j)T
v(l+1) ¿0; ⊥ c( j)

n ¿0; j∈A
�( j) = �( j)e( j) + D( j)Tv(l+1) ¿0; ⊥�( j)¿0; j∈A

�( j) =�( j)c( j)
n − e( j)T

�( j) ¿0; ⊥ �( j)¿0; j∈A

(7)

11

Note that the last three groups of equations of (7) have remained formally unchanged from
the acceleration–force formulation, because of their homogeneity.13

We can now interpret the 8rst equation as a relationship between velocities and impulses.
The major advantage of this new set-up is that the LCP has now a solution v(l+1) for any15
choices of the relevant parameters as soon as M (q(l)) is positive de8nite, although the orig-
inal continuous model does not necessarily have a solution [7]. Lemke’s algorithm [5] will17
determine a solution of this LCP in a 8nite number of steps [7]. If we denote the sequence
of positions and velocities produced by the scheme by q(l); h and v(l); h, then we can show19
that, as h→ 0, the respective sequences admit subsequences that satisfy the constraints and a
measure di+erential inclusion formulation of the dynamics equations [3]. Such a relaxation of21
the model is necessary because, as argued before, the classical model will not always have a
solution.23

The time-stepping scheme based on (7) will thus be consistent for all con8gurations. Since
the method is essentially equivalent to the semi-implicit Euler method when there are no25
constraints, it is likely that the method will perform poorly when sti+ forces are acting on

Published in 2002 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:000–000
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the system. A natural modi8cation, the use of an implicit Euler method, has the disadvantage1
of generating a nonlinear complementarity problem, which may be considerably harder to
solve. An important question that we address in the remainder of the paper is whether we3
can accommodate sti+ness while still solving linear complementarity problems.

2. A NEW LINEARLY IMPLICIT TIME-STEPPING SCHEME FOR STIFF SYSTEMS5

In this section we introduce a linearly implicit time-stepping scheme for sti+ systems with
contact and friction constraints. To justify our approach we will 8rst discuss the unconstrained7
case.

2.1. The linearly implicit approach for ordinary di,erential equations9

Take a generic di+erential equation

dy
dt

=f(t; y) (8)11

where y∈Rn, f :R×Rn→Rn. For this di+erential equation consider the linearly implicit Euler
method [13]13

(I − hJ)(yl+1 − yl) = hf (tl; yl)

where J =∇yf(tl; yl). This is an A-stable method whose major computational cost per15
iteration consists in solving a linear system with matrix I − hJ .

Now consider the case of the dynamics equations in the absence of constraints:17

dq
dt

= v; M (q)
dv
dt

= k(t; q; v) (9)

To apply the linearly implicit scheme (8)–(9), we would have to multiply the second equation19
through with M−1(q) and compute the derivatives of M−1(q) in setting up the Jacobian of
the nonlinear system that has to be solved at each integration step. However, since in most21
multibody systems the sti+ness is mainly due to k(q; v), we will consider the matrix M (q) to
be constant when setting up that Jacobian. Then, the linearly implicit scheme becomes23

q(l+1) = q(l) + hv(l+1)

M (q(l))
v(l+1) − v(l)

h
= k(q(l); v(l)) + h∇qk(t(l); q(l); v(l))v(l+1)

+∇vk(t(l); q(l); v(l))(v(l+1) − v(l))

or, after solving for v(l+1),

q(l+1) = q(l) + hv(l+1)

v(l+1) = [M (q(l))− h2∇qk(t(l); q(l); v(l))− h∇vk(t(l); q(l); v(l))]−1

×[M (q(l))v(l) + hk(t(l); q(l); v(l))− h∇vk(t(l); q(l); v(l))v(l)]25

Published in 2002 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:000–000
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By introducing the notations1

M̂ (l) = [M (q(l))− h2∇qk(t(l); q(l); v(l))− h∇vk(t(l); q(l); v(l))] (10)

k̂(l) = k(t(l); q(l); v(l))−∇vk(t(l); q(l); v(l))v(l) (11)

the linearly implicit Euler step becomes

q(l+1) = q(l) + hv(l+1)

M̂ (l)v(l+1) = M (q(l))v(l) + hk̂(l)

These concepts can naturally be included in the constrained framework. From the3
Euler LCP step (7) it follows that the natural substitution is M (q(l))v(l+1)← [M (q(l))vl+1

and k(t(l); q(l); v(l))← k̂(l). The linearly implicit Euler formulation then becomes q(l+1) = q(l) +5
hv(l+1), where v(l+1) is the solution of the following mixed LCP

M̂ (l)v(l+1) −
m∑
i=1

�(i)c(i)
� −

∑
j∈A

(n( j)c( j)
n + D( j)�( j)) = hk̂(l) + M (q(l))v(l) (12)

�(i)T
v(l+1) = 0; i = 1; 2; : : : ; m (13)

�( j) = n( j)T
v(l+1) ¿0; ⊥ c( j)

n ¿0; j∈A (14)

�( j) = �( j)e( j) + D( j)Tv(l+1) ¿0; ⊥�( j)¿0; j∈A (15)

�( j) =�( j)c( j)
n − e( j)T

�( j) ¿0; ⊥ �( j)¿0; j∈A (16)

In matrix form, this LCP can be written as7 

M̂ (l) −�̃ −ñ −D̃ 0

�̃T 0 0 0 0

ñT 0 0 0 0

D̃T 0 0 0 Ẽ

0 0 �̃ − ẼT 0





v(l+1)

c̃�
c̃n
�̃

�̃

+


−Mv(l) − hk̂(l)

0
0
0
0

=


0
0
�̃
�̃

�̃

 (17)

 c̃n
�̃

�̃


T �̃

�̃

�̃

= 0;

 c̃n
�̃

�̃

¿0;

 �̃
�̃

�̃

¿0 (18)

9

Here �̃= [�(1); �(2); : : : ; �(m)], c̃� = [c(1)
� ; c(2)

� ; : : : ; c(m)
� ]T, ñ= [n( j1); n( j1); : : : ; n( js)], c̃n = [c( j1)

n ; c( j2)
n ;

: : : ; c( js)
n ]T, �̃= [�( j1)T; �( j2)T; : : : ; �( js)T], D̃= [D( j1); D( j2); : : : ; D( js)], �̃= [�( j1); �( j2); : : : ; �( js)],11

�̃= diag(�( j1); �( j2); : : : ; �( js))T, and D̃= diag(e( j1); e( j2); : : : ; e( js)) are the lumped LCP data, and13

Published in 2002 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:000–000
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A= {j1; j2; : : : ; js} are the active contact constraints. The vector inequalities in (18) are to1
be understood componentwise.

An important question is whether the LCP (17)–(18) has a solution and, if so, what kind3
of algorithm can be used to compute it. If the matrix M̂ (l) (10) is symmetric and positive
de8nite, the answer is a=rmative [7]. However, for general forces k(t; q; v), symmetry is not5
expected. Hence, the matrix M̂ (l) is potentially non-symmetric for any value of the time step h.
The following result ensures that, even for a non-symmetric but positive de8nite matrix M̂ (l),7
the LCP (17)–(18) is still solvable by Lemke’s algorithm.

Theorem 2.19
Consider a (mixed) LCP of the form

0
0
s

=

 M −F −H
FT 0 0

HT 0 N


 x

y
�

+

−k0
b

 (19)

s¿0; �¿0; �Ts= 0 (20)

where M;N; F;H are given matrices and b; k are given vectors of the appropriate dimension.11
If M is a positive de8nite matrix, N a copositive matrix [5, De8nition 3.8.1], and b a

non-negative vector (in particular, all components of b can be 0), then the above LCP has13
a solution. Lemke’s algorithm, with precautions taken against cycling, will always 8nd a
solution (s; �) of the LCP obtained by eliminating x and y. Then a solution (x; y; s; �) of the15
original LCP can be recovered by solving for x and y in the 8rst two rows of (19).

Some fundamental notions from the theory of LCP. A matrix M is said to be positive17
(semi)de8nite if xTMx(¿)¿0 whenever x �= 0, which we also denote by M (¡)� 0. A matrix
M is said to be copositive if xTMx¿0 whenever x¿0, where the last inequality is understood19
componentwise. A matrix M with non-negative entries is clearly a copositive matrix. If M1

is a positive semi-de8nite matrix and M2 is a copositive matrix, then M1 +M2 is a copositive21
matrix. Let M be a copositive matrix, and denote by T(M; b) the solution set of the linear
complementarity problem23

s=Mx + b¿0 ⊥ x¿0

If for any z∈T(M; 0), we have that zTb¿0 then the solution set of the original LCP, T(M; b)25
is not empty, and an element of T(M; b) can be found by Lemke’s algorithm [5, Corol-
lary 4.4.12]. This result will be the key of the well-posedness of the time-stepping scheme27
(12)–(16). Lemke’s algorithm is a pivotal algorithm for LCP similar in philosophy to the
simplex algorithm of linear programming [5].29

Proof of Theorem 2.1.
We can assume without loss of generality that FT is full row rank. If not, we can consider31
just a maximal set of independent rows as being FT. The components of y corresponding to
the dependent variables can be set to 0, and � will be in the same linear space determined33
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by (19). After we solve for x in (19), the LCP becomes1

0 = FTM−1Fy + FTM−1H� + FTM−1k (21)

s = HTM−1Fy + HTM−1H� + N� + HTM−1k + b (22)

s¿0; �¿0; �Ts= 0 (23)3

Since F is full row rank, FTM−1F is non-singular. Therefore, we can solve for y from the
8rst equation to get the LCP:5

s= (G + N )� + g (24)

s¿0; �¿0; �Ts= 0 (25)7

where

G = HTM−1H −HTM−1F(FTM−1F)−1FTM−1H

g =−HTM−1F(FTM−1F)−1FTM−1k + HTM−1k + b

By construction G is the Schur complement of N in the big matrix of (19), if N = 09
[5, De8nition 2.3.4]. Since the matrix in (19) is positive semi-de8nite for N = 0, so is G
[5, Theorem 4.1.5]. Therefore, G + N is copositive, since N is copositive.11

It is convenient to denote the above LCP as LCP(G+N; g) and to call � its solution. Once
� is found, then s= (G+N )�+g. Let now z be a solution of LCP(G+N; 0). Then zTGz= 0,13
which also implies that zTGTz = 0. From the expression of G we have

GT =HTM−TH −HTM−TF(FTM−TF)−1FTM−TH15

where we use the traditional notation M−T = (M−1)T. Let now w =−(FTM−TF)−1FTM−THz,
which can also be rewritten as FTM−TFw=−FTM−THz. From the de8nition of w and of17
GT it follows that GTz =HTM−THz +HTM−TFw. Putting these relations in matrix form, we
obtain19 [

GTz

0

]
=

[
HTM−TH HTM−TF

FTM−TH FTM−TF

][
z
w

]
= [HF ]TM−T[HF ]

[
z
w

]
Left-multiplying this relation by [zT; wT], we obtain21

0 = zTGTz =
(

[HF ]
[
z
w

])T

M−T[HF ]
[
z
w

]
= (Hz + Fw)TM−T(Hz + Fw)

Since M is a positive de8nite matrix, so are M−1 and M−T. The last equation therefore implies23
that Hz + Fw= 0. Since z¿0 and b¿0, we deduce that zTg=wTFTM−1k + zTHTM−1k +
zTb= (Fw + Hz)TM−1k + zTb= zTb¿0.25

Therefore, we have proved that if z is a solution of LCP(G + N; 0), then gTz¿0. Con-
sequently, by Corollary 4.4.12 of Reference [5], Lemke’s algorithm, with precautions taken27
against degeneracy, will 8nd a solution s; � to LCP(G + N; g) and, by solving for x and y in
the 8rst two rows of (19), a solution (x; y; s; �) to the initial LCP.29
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Theorem 2.21
For any positive de8nite mass matrix M and non-negative friction coe=cients, the LCP
(2.17)–(2.18) has a solution that can be computed by Lemke’s algorithm.3

Proof
Let N be the matrix made of the last three sets of rows and columns of the matrix of the5
LCP (17)–(18). Since this matrix is the sum of a positive semi-de8nite matrix (having Ẽ and
−ẼT as its blocks) and a matrix with non-negative coe=cients (�̃), it follows that the matrix7
is copositive. If we de8ne H = [ñ D̃ 0], the conclusion follows by virtue of Theorem 2.1.

An important consequence of the Theorem 2.2 is that the time-stepping scheme de8ned by9
(12)–(16) will have a solution whenever the matrix M̂ (l) is positive de8nite.

When friction is involved, the uniqueness of solution cannot be guaranteed by this or any11
other approach [16].

2.2. Limits of consistency of the model13

If the mass matrix M (q) is positive de8nite, then according to (10), M̂ (l) is positive de8nite
for su=ciently small h. However, the reason for using a linearly implicit scheme is to obtain15
as large a time step as possible without encountering instability due to sti+ness. We would
therefore like to have a guarantee that the method will be allowed to take su=ciently large17
steps.

It is fairly clear that the method will behave well when there are no constraints, since the19
linearly implicit Euler method is A-stable [15] for classical di+erential equations. This means,
in particular, that the matrix M̂ (l) will have eigenvalues with positive real part for fairly large21
values of h, even for very sti+ systems, since its de8nition does not depend on the existence
of the constraints.23

The problem, however, is that a matrix whose eigenvalues have positive real part, though
non-singular, is not necessarily positive de8nite, as can be easily seen for the matrix25 [

1 100
0 1

]

Hence, we cannot necessarily apply Theorem 2.2 in this case for moderate or large values27
of h, although one could reasonably expect its conclusion to hold.

There are, however, two important particular cases in which we can guarantee the positive29
de8niteness of the matrix M̂ (l). In the 8rst case, assume that the external force is of the form
k(q; v) =−∇U (q)−U(v), where U(v) satis8es ∇vU(v)¡ 0 (is a damping-type force) and U (q)31
is a potential function. If U (q) is a non-degenerate potential function, then we can expect
that, near an equilibrium point, ∇qqU (q)� 0. Inspection of (10) shows that the matrix M̂ (l)33
is positive de8nite for any choice of time-step h, and the results of Theorem 2.2 apply to
guarantee that the scheme (12)–(16) is well posed.35

The second case is possibly the most common case in rigid body dynamics: the case where
the sti+ forces originate in springs and dampers attached between two points of the multibody37
system.
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Let 0̂(q) be a mapping that de8nes the distance between two points in global coordinates.1
Then the total energy stored in the spring will be (1=2)(0̂(q)− 0̂0)

2, where 0̂0 is the distance
between the points at which the spring is in equilibrium, and 1 is the spring (elasticity)3
parameter. To simplify notation, we denote 0(q) = 0̂(q) − 0̂0. By applying the fundamental
principles of rational mechanics [12], we obtain that the force exerted by the spring on the5
system is equal to

−∇q 12(0(q))2 =−10(q)∇q0(q)7

Similarly, the force exerted by a damper attached between two points in the system will be

−2(∇q0T(q)v)∇q0(q)9

where v is the velocity of the system and 2 is the damping parameter.
For the general case where there are several springs and dampers between pairs of points11

of the system, in addition to a non-sti+ force, we obtain the following expression for the total
external force:13

k(t; q; v) =−
n1∑
i=1

1i0(i)(q)∇q0(i)(q)−
n2∑
j=1

2j∇q ( j)(q)(∇q (j)T(q)v)

−
n21∑
k=1

(Q1k Q0(k)(q) + Q2k(∇q
Q0(k)T

(q)v))∇q
Q0(k)(q)− kc(q; v; v) + k1(t; q; v) (26)

Here 1i, i = 1; 2; : : : ; n1 and Q1k , k = 1; 2; : : : ; n21, are spring (or elastic) parameters, and 2j,
j = 1; 2; : : : ; n2, Q2k , k = 1; 2; : : : ; n12, are the damping parameters. Here the functions 0(i)(q),15
 ( j)(q), and Q0(k)(q) are related to the distances between the points where the springs and the
dampers are attached (they can, for example, be distances o+set by some constant value). The17
functions Q0(k)(q), k = 1; 2; : : : ; n21, are associated with pairs of points between which there are
both springs and dampers. Although a distance function is generally not di+erentiable every-19
where, we will assume that the coordinates of the system will vary in a region where 0(i)(q)
and  ( j)(q) are di+erentiable. The distance can also be measured in angular co-ordinates, and21
our set-up could also accommodate a spring or a damper around the 8xed point of a revolute
joint, for example.23

The quantity −kc(q; v; v) denote the centrifugal and Coriolis forces, and is a bilinear form in
its last two variables. This quantity also depends on the mass tensor. However, that dependence25
will not inOuence our analysis, and we do not consider it explicitly here. Since the centrifugal
and Coriolis forces are not involved in the energy balance, they must satisfy kc(q; v; v)Tv= 0.27
As we will show with the Newton–Euler formulation in body co-ordinates, kc can be de8ned
in such a fashion that29

kc(q; v1; v2)Tv2 = 0; ∀q; v1; v2 (27)

Since the mapping kc(q; v1; v2) is linear in v2, we can associate to it the matrix Kc(q; v1), that31
satis8es

Kc(q; v1)v2 = kc(q; v1; v2) (28)33
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Relation (27) can be rephrased in terms of the matrix Kc(q; v1) as1

vT
2Kc(q; v1)Tv2 = 0; ∀q; v1; v2 (29)

which ensures that the matrix Kc(q; v1) is antisymmetric and thus positive semi-de8nite.3
The function k1(t; q; v) cumulates the rest of external forces, which we will assume to be

non-sti+, and will be thus treated in an explicit manner.5
When setting up the scheme corresponding to (12)–(16), we will work with approximations

of the derivatives ∇qk(q; v) and ∇vk(q; v). Approximate Jacobians are used in several linearly7
implicit or Rosenbrock methods [15]. In our case, to de8ne the matrices M̂ (l) (10) and k̂(l)

(11), we will use the following approximations:9

∇qk(t; q; v)≈−
n1∑
i=1

1i∇q0(i)(q)∇q0(i)T
(q)−

n21∑
k=1

Q1k∇q
Q0(k)(q)∇q

Q0(k)T
(q) (30)

∇vk(t; q; v)≈−
n2∑
i=1

2j∇q ( j)(q)∇q ( j)T
(q)−

n21∑
k=1

Q2k∇q
Q0(k)(q)∇q

Q0(k)T
(q) (31)

Note that the approximation of the gradient ∇vk(t; q; v) is exact except for the terms appearing
in k1(t; q; v).11

The term involving kc(q; v; v) will be treated in a semi-implicit fashion. At step (l) it will
enter our scheme as kc(q(l); v(l); v(l+1)) =Kc(q(l); v(l))v(l+1), the equality being based on (28).13
A choice of kc(q(l); v(l); v(l)) corresponds to an explicit Euler method, whereas kc(q(l+1); v(l+1);
v(l+1)) corresponds to a fully implicit Euler method (in the absence of all other constraints).15
As it is the case with explicit and fully implicit Euler choices, our choice does not modify
the order of the method.17

With the approximations (30) and (31) applied to (10), and (11) we obtain

M̂ (l) = M (q(l)) + hK c(q(l); v(l)) + h2
n1∑
i=1

1i∇q0(i)(q(l))∇q0(i)T
(q(l))

+ h
n2∑
j=1

2j∇q ( j)(q(l))∇q ( j)T
(q(l)) +

n21∑
k=1

(h Q2k + h2 Q1k)∇q
Q0(k)(q(l))∇q

Q0(k)T
(q(l)) (32)

and19

k̂(l) =−
n1∑
i=1

1i0(i)(q(l))∇q0(i)(q(l))−
n21∑
k=1

Q1k Q0(k)(q(l))∇q
Q0(k)(q(l)) + k1(t(l); q(l); v(l)) (33)

The linearly implicit Euler LCP for a sti+ force of the type (26) simply becomes (12)–(16),21
where the matrices M̂ (l) and k̂(l) are de8ned by (32) and (33), respectively. The important
feature of our setup is that the matrix M̂ (l) is clearly positive de8nite, since the mass matrix23
M (q(l)) is positive de8nite, since the matrix hKc(q(l); v(l)) is antisymmetric and thus positive
semi-de8nite, and since terms of the type aaT, where a is an arbitrary column vector, are25
positive semi-de8nite matrices.
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In this case Theorem 2.2 applies for any choice of the timestep h, showing that the scheme1
(12)–(16) with the matrix M̂ (l) above has a solution for any choice of the time-step.

2.3. Stability as sti,ness increases to in7nity3

One of the desirable properties of sti+ schemes is to remain stable as the sti+ness parameters
go to in8nity. This ensures that the scheme will behave well for any choice of the sti+ness5
parameters. We will discuss under what conditions our scheme has the same properties if the
sti+ force is of the form (26).7

2.3.1. The limit system. Intuitively, it is clear that as the sti+ness parameters approach
in8nity, the system should behave as if there were a link (distance constraint) between9
the points where the damper and=or spring is attached. Therefore, in addition to the original
constraints of the system, the system obtained in the sti+ limit includes the additional con-11
straints 0(i)(q) = 0, i = 1; 2; : : : ; n1,  ( j)(q) = 0, j = 1; 2; : : : ; n2, and Q0(k)(q) = 0, k = 1; 2; : : : ; n12.
When writing the time-stepping scheme, we replace the constraints with their linearized ver-13
sions. For example, 0(i)(q) = 0 is replaced by ∇q0(i)T

(q)v= 0, for i = 1; 2; : : : ; n1. Adding such
linear equality constraints corresponding to the limit case of the sti+ force (26) to (7), we15
obtain the following time-stepping LCP:

q(l+1) = q(l) + hQv(l+1)17

where Qv(l+1) is a solution of the mixed linear complementarity problem:

(M (q(l)) + hK c(q(l); v(l)))Qv(l+1) −
m∑
i=1

Q�(i) Qc(i)
� −

∑
j∈A

(n( j) Qc( j)
n + D( j) Q�( j))− QKs

= hk(t; q(l); v(l)) + M (q(l))v(l)

�(i)T
Qv(l+1) = 0; i = 1; 2; : : : ; m

∇q0(i)T
Qv(l+1) = 0; i = 1; 2; : : : ; n1

∇q ( j)T
Qv(l+1) = 0; j = 1; 2; : : : ; n2

∇q
Q0(k)T

Qv(l+1) = 0; k = 1; 2; : : : ; n21

Q�( j) = n( j)T
Qv(l+1) ¿ 0; ⊥ Qc( j)

n ¿0; j∈A
Q�( j) = Q�( j)e( j) + D( j)T Qv(l+1) ¿ 0; ⊥ Q�( j)¿0; j∈A

Q�( j) =�( j) Qc( j)
n − e( j)T Q�( j) ¿ 0; ⊥ Q�( j)¿0; j∈A

(34)

19

with

QKs =
n1∑
i=1

Qc(i)
1 ∇q0(i)(q) +

n2∑
j=1

Qc( j)
2 ∇q ( j)T

(q) +
n21∑
k=1

Qc(k)
21 ∇q

Q0(k)(q) (35)
21
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The linear complementarity problem (34)–(35) will always have a solution, as a result1
of Theorem 2.2 and positive de8niteness of the mass M (q(l)). We denote a solution of this
complementarity problem by3

U= (Qv(l+1); Q̃c�; Q̃cm; Q̃�; Q̃c1; Q̃c2; Q̃c21) (36)

As before, the symbol ˜ is used to denote aggregate quantities with the same base symbol,5
such as Q̃c1 = (Qc(1)

1 ; Qc(2)
1 ; : : : ; Qc(n1)

1 ).

2.3.2. Pointedness of the friction cone. To analyze the limit behaviour of (12)–(16), as we7
let the sti+ness parameters from (26) go to in8nity, we will assume a certain regular behaviour
of the friction cone of the limit system. Anticipating that, we denote by U the aggregate vector9
of sti+ness parameters:

U = (11; 12; : : : ; 1n1 ; 21; 22; : : : ; 2n2 ; Q11; Q12; : : : ; Q1n12 ;
Q21; Q22; : : : ; Q2n12) (37)11

Inspecting the time-stepping LCP (34), we obtain the following expression for the total friction
cone of the limit problem:13

F̂C(q) =

{
f

∣∣∣∣∣f =
m∑
i=1

Q�(i) Qc(i)
� +

∑
j∈A

(n( j) Qc( j)
n + D( j) Q�( j)) +

n1∑
i=1

Qc(i)
1 ∇q0(i)(q) +

n2∑
j=1

Qc( j)
2 ∇q ( j)T

(q)

+
n21∑
k=1

Qc(k)
21 ∇q

Q0(k)(q)

∣∣∣∣∣ Qc( j)
n ¿0; Q�( j)¿0; �( j) Qc( j)

n − e( j)T Q�( j)¿0; j∈A
}

(38)

Indeed, the friction cone subsumes contributions from all the constraint forces. It is evident
that the cone [FC(q) has a 8nite number of generators and, as such, is polyhedral and closed.15

We say that a cone K is pointed if it does not contain a proper vector space, or
K∩ −K= {0} [3; 17]. Therefore, the point 0 will be a vertex of the cone, since no line17
containing 0 will be entirely contained in a pointed cone K .

Assumption19
We assume that the total friction cone [FC(q) (38) is pointed.

This assumption is essential in ensuring that the limit sequence of solutions, as h→ 0,21
converges to the solution of a measure di+erential inclusion [3; 18]. As it can be immediately
checked, such a condition implies that at least all of the gradients of the equality constraints23
must be linearly independent.

If the friction cone is pointed, then it follows immediately, from a duality argument [18]25
and using the notations in (38) and (36), that there exists a constant cFC¿0 such that

f∈ F̂C(q) ⇒ ‖( Q̃c�; Q̃cn; Q̃�; Q̃c1; Q̃c2; Q̃c21)‖6cFC‖f‖ (39)27

Therefore the pointedness of the friction cone ensures that a 8nite total reaction impulse can
be generated only by 8nite impulses at the constraints: joints, contacts, or friction.29

2.3.3. Energy inequalities for the sti, system. To demonstrate the limit behaviour, we 8rst
8nd a bound on the system velocity at the new step, v(l+1). Again, the sti+ force under31
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discussion is de8ned in (26), and the time-stepping procedure is de8ned by (12)–(16), where1
the matrices M̂ (l) and k̂(l) are given by (32) and (33).

We start with the following lemma.3

Lemma 2.3
Assume that u; v∈Rn, w1; w2; : : : ; wm∈R, r1; r2; : : : ; rm∈R and �1; �2; : : : ; �m∈R+ satisfy the5
inequality

‖u‖2 +
m∑
i=1

�iw2
i 6uTv−

m∑
i=1

�iwiri7

Then

‖u‖2 +
m∑
i=1

�i(wi + ri)26‖v‖2 +
m∑
i=1

�ir2
i9

Proof
Manipulating the assumed inequality and using the identity11

a2 + ab= a(a + b) = (a + b)2 − b(a + b)

we deduce that the variables in the statement of the lemma satisfy the inequality13

‖u‖2 +
m∑
i=1

�i(wi + ri)26uTv +
m∑
i=1

�iri(wi + ri) (40)

The Cauchy Schwarz inequality implies that15

‖u‖2 + ‖v‖2 +
m∑
i=1

�i((wi + ri)2 + r2
i )¿2uTv + 2

m∑
i=1

�iri(wi + ri)

and by using the inequality (40) we get17

06−
(
‖u‖2 +

m∑
i=1

�i(wi + ri)2
)

+ uTv +
m∑
i=1

�i(wi + ri)ri

6−
(
uTv +

m∑
i=1

�i(wi + ri)ri

)
+ ‖v‖2 +

m∑
i=1

�ir2
i

After manipulating the last inequalities, we obtain

‖u‖2 +
m∑
i=1

�i(wi + ri)26uTv +
m∑
i=1

�i(wi + ri)ri6‖v‖2 +
m∑
i=1

�ir2
i19

which proves the claim.

We now prove our main energy inequality.21

Theorem 2.4
Consider the time-stepping linearly implicit Euler scheme (12)–(16), where the23
matrices M̂ (l) and k̂(l) are de8ned by (32) and (33). The velocity solution of (12)–(16)25
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satis8es1

v(l+1)T
M (q(l))v(l+1)T

+
n1∑
i=1

1i(0(i)(q(l)) + h∇q0(i)T
(q(l))v(l+1))2

+
n21∑
k=1

Q1k( Q0(k)(q(l)) + h∇q
Q0(k)T

(q(l))v(l+1))26ŵTM (q(l))ŵ

+
n1∑
i=1

1i(0(i)(q(l)))2 +
n21∑
k=1

Q1k( Q0(k)(q(l)))2

where ŵ = (v(l) + khM(q(l))−1k1(t(l); q(l); v(l)))T.

Proof3
Left multiplying (12) by v(l+1)T

we get that

v(l+1)T
M̂ (l)v(l+1) =

m∑
i=1

(�(i)T
v(l+1))c(i)

� +
∑

j∈A

(n( j)T
v(l+1))c( j)

n + D( j)T
v(l+1)�( j)

+ hk̂(l)Tv(l+1) + v(l+1)T
M (q(l))v(l) (41)

Using (13), we deduce that �(i)T
v(l+1) = 0, i = 1; 2; : : : ; m. Also, using the contact constraints5

(14), we obtain n( j)T
v(l+1)c( j)

n = 0, j∈A. Finally, from the frictional constraints (15) and (16)
we get that7

D( j)T
v(l+1)�( j) =−�( j)�( j)T

e( j) =−�( j)c( j)
n �( j)60; ∀j∈A

Then (41) implies9

v(l+1)T
M̂ (l)vl+16hk̂(l)Tv(l+1) + v(l+1)T

M (q(l))v(l) (42)

We now use the de8nitions (32) of M̂ (l) and (33) of k̂(l), as well as the fact that v(l+1)T
Kc(q(l);11

v(l))v(l+1) = 0 from (29), to obtain that

v(l+1)T
M̂ (l)v(l+1) = v(l+1)T

M (q(l))v(l+1) + h2
n1∑
i=1

1i(∇q0(i)T
(q(l))v(l+1))2

+h
n2∑
j=1

2j(∇q ( j)T
(q(l))v(l+1))2 +

n21∑
k=1

(h Q2k + h2 Q1k)(∇q
Q0(k)T

(q(l))v(l+1))2

¿ v(l+1)T
M (q(l))v(l+1) + h2

n1∑
i=1

1i(∇q0(i)T
(q(l))v(l+1))2

+
n21∑
k=1

h2 Q1k(∇q
Q0(k)T

(q(l))v(l+1))2 (43)
13
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and, respectively,1

hv(l+1)T

k̂(l) =−
n1∑
i=1

1i0(i)(q(l))(h∇q0(i)(q(l))Tv(l+1))

−
n21∑
k=1

Q1k Q0(k)(q(l))(h∇q
Q0(k)(q(l))Tv(l+1)) + hk1(t(l); q(l); v(l))Tv(l+1) (44)

Denoting u=M (q(l))1=2v(l+1) and w =M (q(l))1=2v(l+1) + hM(q(l))−1=2k1(t(l); q(l); v(l)), and
using the inequalities (43) and (44) in (42), we obtain3

uTu +
n1∑
i=1

1i(h∇q0(i)T
(q(l))v(l+1))2 +

n21∑
k=1

Q1k(h∇q
Q0(k)T

(q(l))v(l+1))2

¿uTw −
n1∑
i=1

1i0(i)(q(l))(h∇q0(i)(q(l))Tv(l+1))−
n21∑
k=1

Q1k Q0(k)(q(l))(h∇q
Q0(k)(q(l))Tv(l+1))

We now use Lemma 2.3 to get

uTu +
n1∑
i=1

1i(0(i)T
(q(l)) + h∇q0(i)T

(q(l))v(l+1))2 +
n21∑
k=1

Q1k( Q0(k)T
(q(l)) + h∇q

Q0(k)T
(q(l))v(l+1))2

¿wTw +
n1∑
i=1

1i(0(i)(q(l)))2 +
n21∑
k=1

Q1k( Q0(k)(q(l)))2

By replacing the de8nitions of u and w we obtain the claim, since uTu= v(l+1)T
M (q(l))v(l+1)T

5
and wTw = (v(l) + khM(q(l))−1k1(t(l); q(l); v(l)))TM (q(l))(v(l) + khM(q(l))−1k1(t(l); q(l); v(l)))T.

When all the springs start from the rest position, we have a special case of this result.7

Corollary 2.5
Assume that q(l) is a point where the springs in the sti+ force (26) are at equilibrium, or9
0(i)(q) = 0, i = 1; 2; : : : ; n1, Q0(k)(q) = 0, k = 1; 2; : : : ; n21. Then the velocity at the new step v(l+1)

is bounded uniformly with respect to the sti+ness parameters, and the kinetic energy satis8es11
the inequality

v(l+1)T
M (q(l))v(l+1)T

6ŵM (q(l))ŵ13

where ŵ = (v(l) + khM(q(l))−1k1(t(l); q(l); v(l)))T.

Proof15
The proof follows immediately by replacing 0(i)(q) = 0, i = 1; 2; : : : ; n1, Q0(k)(q) = 0, k = 1; 2; : : : ;
n21 in the conclusion of Theorem 2.4.17

The conclusions of Theorem 2.4 and Lemma 2.5 are particularly helpful in the situation
where the sti+ness in (26) originates in damping-type forces or where the elastic forces19
are small and can be included in the non-sti+ part k(t; q; l). This point can be immediately
seen because none of the velocity and kinetic energy bounds depend on the damping21
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parameters 2j, i = 1; 2; : : : ; n2 and Q2k , k = 1; 2; : : : ; n12. The lack of an immediate similar ex-1
tension for large elastic forces is to be expected, because if we increase the values of the
elasticity parameters, then the total energy will increase. Therefore, we cannot expect that the3
kinetic energy will stay bounded if we increase the elastic parameter when the spring is not
at equilibrium.5

However, under the following assumptions an even stronger result can be obtained:

• The mass matrix M (q(l)) is constant. This is true for the case where the system is7
parameterized in the Newton–Euler body co-ordinates [11].

• The mappings 0(i)(q), i = 1; 2; : : : ; n1, Q0( j)(q), j = 1; 2; : : : ; n21, are linear.9

In that case, the left-hand side of the inequality from the conclusion of Theorem 2.4 rep-
resents twice the total energy at (q(l+1); v(l+1)). Therefore Theorem 2.4 can be applied in11
conjunction with Theorem 5.1 in Reference [7] to show that the total energy remains uni-
formly bounded with respect to the time step h for any 8xed time interval as soon as the13
function k1(t; q; v) is bounded.

In spite of the fact that few mechanical systems satisfy the second requirement, our analysis15
and conclusions are consistent with the general set-up of stability analysis, where stability of
sti+ systems is evaluated on the linearized system [15].17

Although Corollary 2.5 applies to a very particular case, it does suggest that the method will
be likely to behave well even for very large values of the elasticity parameters in a neighbour-19
hood of the equilibrium position of the springs. However, we cannot guarantee that the total
energy of the system will remain within a bound that depends only on its initial value and the21
size of the non-sti+ force k1. In general, this can be ensured essentially only for symplectic
methods [15]. Because of friction, our system is not Hamiltonian; and as such, the symplec-23
ticity concept does not apply, even if we were willing to solve a nonlinear equation for v(l+1).

2.3.4. Controlling the energy behaviour and constraint infeasibility by projection. Consider25
again the time-stepping linearly implicit Euler scheme q(l+1) = q(l) + hv(l+1), where v(l+1) is a
solution of (12)–(16), with the matrices M̂ (l) and k̂(l) are de8ned by (32) and (33).27

Owing to the fact that the joint (1) and non-interpenetration constraints (2)

M(i)(q) = 0; i = 1; 2; : : : ; m; N( j)(q)¿0; j = 1; 2; : : : ; p (45)29

are generally nonlinear mappings, q(l+1) will not satisfy these constraint exactly. Nevertheless,
due to the semi-implicit nature of our time-stepping scheme, the velocities satisfy the linearized31
geometrical constraints exactly. It has been shown that, for most numerical schemes that solve
di+erential algebraic equations, this property is su=cient to ensure constraint stability for fairly33
long simulation intervals [15, Section VII.2].

If, however, the error in satisfying the constraints (45), is too large to be tolerated, then35
one can apply a projection towards the feasible set of (45). In the presence of sti+ness due
to large spring parameters in the sti+ force (26), such a projection may interfere with our37
energy bound from Theorem 2.4.

To accommodate this problem, we may use the following constraint stabilization strategy,39
whenever constraint violation is deemed to be excessive:

(1) q̃(l+1) = q(l) + hv(l+1), where v(l+1) is a solution of (12)–(16), with the matrices M̂ (l)41
and k̂(l) are de8ned by (32) and (33).
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(2) Determine the next position vector q(l+1), the solution of the following nonlinear pro-1
jection problem:

min
q

‖q− q̃(l+1)‖2

such that M(i)(q) = 0; i = 1; 2; : : : ; m

N( j)(q)¿0; j = 1; 2; : : : ; p

0(i1)(q) =0(i1)(q(l)) + h∇q0(i1)T
(q(l))v(l+1); i1 = 1; 2; : : : ; n1

Q0(k)(q) = Q0(k)(q(l)) + h∇q
Q0(k)T

(q(l))v(l+1); k = 1; 2; : : : ; n21

(46)

3

Under the assumption that the friction cone of the limit system as the sti+ness goes to
in8nity is pointed, which is detailed in SubSection 2.4, it can be immediately shown that the5
nonlinear program (46) satis8es the Mangasarian–Fromovitz constraint quali8cation (the set
de8ned by replacing the constraints in (46) by their linearization has a non-empty interior rel-7
ative to the inequality constraints, [19]). This q(l+1) can be obtained by a sequential quadratic
programming algorithm [23]. Under the same conditions it can be also shown that the solution9
set of (46) is Lipschitz continuous with respect to perturbations [19]. If the infeasibility in the
constraints (45) does not exceed O(h2), then it can be shown that ‖q(l+1) − q̃(l+1)‖=O(h2) if11
the velocity v(l+1) is bounded. Therefore the projection does not alter the order of the method.
Under the stronger assumption that the gradients of the equality constraints and potentially13
active inequality constraints in (46) are linearly independent, we can replace the inequality
constraints by N( j)(q) = 0; j∈A, where A is the set of indices of constraints that are cur-15
rently active. However, such assumptions are too strong for some simple con8gurations, such
as a rectangular block on a tabletop [13].17

After the position vector is projected onto the feasible set thus obtaining the new position
q(l+1), the velocities need not be readapted since our semi-implicit formulation ensures velocity19
consistency when computing q̃(l+2).

After the use of a projection, we can write the following energy bound, using that q(l+1)21
satis8es the constraints of (46) and the conclusion of Theorem 2.4, which now applies to
q̃(l+1):23

v(l+1)T
M (q(l))v(l+1)T

+
n1∑
i=1

1i(0(i)(q(l+1)))2 +
n21∑
k=1

Q1k( Q0(k)(q(l+1)))2

¿ŵTM (q(l))ŵ +
n1∑
i=1

1i(0(i)(q(l)))2 +
n21∑
k=1

Q1k( Q0(k)(q(l)))2 (47)

Here ŵ is de8ned in Theorem 2.4, and we have ŵ = v(l) if the external non-sti+ force
k1(t; q; v) = 0. It can thus be seen that, if M (q(l)) is constant, as it is the case for the25
Newton–Euler equations in body co-ordinates and if the external non-sti+ force is 0 then
the total energy is decreasing. If M (q(l)) is constant, and the outside sti+ force is uniformly27
bounded, then the technique from [7] can be applied to show that the total energy can-
not increase faster than linearly in time for su=ciently small time step h (same as it hap-29
pens if a ball is dropped under the e+ect of gravity before colliding). Therefore the scheme
preserves its good energy properties if a projection of the type (46) is used for constraint31
stabilization.
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E,ect of projection when only damping forces act between bodies: In this situation, the use1
of a projection does not, in e+ect, alter the energy bound from Theorem 2.4, since velocities
are una+ected by the position projection. In that case the nonlinear program describing the3
projection (46) does not include the last two sets of constraints that appear only when springs
are attached and it reduces to the usual projection procedure.5

2.3.5. The Newton–Euler equations in body co-ordinates. For one body in a three-dimen-
sional space, the Newton–Euler equations in body co-ordinates are [1]:7 [

mI 0

0 I

][
v̇b

!̇b

]
+

[
−mvb×!b

!b×I!b

]
=Fb (48)

Here vb and !b are the translational and, respectively, the rotational velocity in body co-9
ordinates, m is the mass of the object, I is the inertia matrix which is positive de8nite and
constant, and may even be diagonal for the appropriate choice of rotational co-ordinates. Also,11
Fb is the external force acting on the body. The second vector in the left-hand side of (48)
has as components the centrifugal and Coriolis force, respectively.13

The generalized velocity becomes v= [(vb)T(!b)T]T. We de8ne the following mapping:

kc(q; v1; v2) =

[
−mvb

2×!b
1

!b
2×I!b

1

]
15

where vi = [(vb
i )T(!b

i )
T]T, for i = 1; 2. It is immediate from its de8nition that kc(q; v1; v2) is a

bilinear map in its last two arguments and that, from the properties of the cross product, it17
satis8es vT

2kc(q; v1; v2) = 0, ∀q; v1; v2 (it actually does not depend on q in this formulation).
From (48) it can also be seen that the inertial and Coriolis forces can be now expressed19
as −kc(q; v; v). This shows that our assumptions concerning the inertial and Coriolis forces
leading to Equations (27), (28) and (29) are justi8ed in the Newton–Euler body co-ordinates21
setup.

The mass matrix in these coordinates,23

M (q(l)) =

[
mI 0

0 I

]

does not depend on q(l) and it can be therefore considered constant during time-stepping. For25
multiple bodies M (q(l)) is a block diagonal matrix whose blocks are the mass matrices for one
body. Similarly the mapping kc(q; v1; v2) is constructed by adjoining the kc maps corresponding27
to one body. It is immediate that all properties relevant to the discussion in this subsection
are preserved.29

Our treatment of centrifugal and Coriolis forces is important only in three dimensions. In
one and two dimensions, the mass matrix is diagonal and constant in other coordinates as31
well [1].
Stability of the numerical scheme with respect to mass parameters: Although our main33

concern is spring and damper or similar type of sti+ness, a legitimate question is what happens
when some of the mass parameters involved in the con8guration are much larger than others,35
which induces another type of sti+ness.
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Inspecting the bound (47) we observe that, if the projection proposed in the previous1
section is used, for the Newton–Euler set-up in body co-ordinates we can guarantee exact
decrease of the total energy, independent of the values of the mass matrix. If no elastic forces3
act between bodies, then even without the projection the same conclusion can be inferred
from Theorem 2.4. This shows that under these assumptions the algorithm is stable with5
respect to mass sti+ness, since the mass parameters cannot alter the energy decrease if the
Newton–Euler body set-up is used. The energy bounds show that heavy bodies will move7
slowly during the simulation if the total energy is small in the beginning.

2.4. A stability result9

We now analyse the accumulation points of the solution of (12)–(16) as we keep the step-
size h constant and as we increase the sti+ness parameters to in8nity. We will show that11
under conditions that ensure that our energy results from the preceding subsection apply,
such accumulation points will be solutions U of (34)–(35). In other words, in the limit, our13
linearly implicit LCP scheme will behave as would a similar scheme applied to a system with
additional joint constraints in place of the dampers and springs.15

Theorem 2.6
Assume that the total friction cone F̂C(q) (38) of the limit LCP integration step (34) is17
pointed. Let q(l) be a position vector point where 0(i)(q) = 0, i = 1; 2; : : : ; n1, and 0(k)(q) = 0,
k = 1; 2; : : : ; n21. Let UU = (v(l+1)TU

; c̃U
� ; c̃

U
n ; �̃

U; �̃U) be a solution of (17)–(18) where the external19
force is de8ned by (26) and the matrices M̂ (l) and k̂ l are de8ned by (32) and (33), for a
particular choice of the sti+ness parameters U (37). Let Un be a sequence of sti+ness parameters21
such that, as n→∞, all its components increase toward in8nity. Then the sequence UUn is
uniformly bounded, and any limit point, together with appropriate multipliers for the additional23
joint constraints, is a solution of (34).

Proof25
Because we assume that springs are at equilibrium, we obtain from immediate inspection of
(33) that k̂(l) = k(t(l); q(l); v(l)).27

We introduce the following notations:

c̃U
1 = h2(11∇q0(1)T

(q(l))v(l+1)U
; 12∇q0(2)T

(q(l))v(l+1)U
; : : : ; 1n1∇q0(n1)T

(q(l))v(l+1)U
)

c̃U
2 = h(21∇q (1)T

(q(l))v(l+1)U
; 12∇q (2)T

(q(l))v(l+1)U
; : : : ; 2n2∇q (n2)T

(q(l))v(l+1)U
)

c̃U
21 = h((Q11 + h Q21)∇q

Q0(1)T
(q(l))v(l+1)U

; (Q12 + h Q22)∇q
Q0(2)T

(q(l))v(l+1)U
; : : : ;

(Q1n21 + h Q2n21)∇q0(n21)
T
(q(l))v(l+1)U

)

�̃1 = (∇q0(1)(q(l));∇q0(2)(q(l)); : : : ;∇q0(n1)(q(l)))

�̃2 = (∇q (1)(q(l));∇q (2)(q(l)); : : : ;∇q (n2)(q(l)))

�̃12 = (∇q
Q0(1)(q(l));∇q

Q0(2)(q(l)); : : : ;∇q
Q0(n12)(q(l)))
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Using the fact that UU satis8es (17), the assumption of the theorem, the de8nitions (32), and1
the above observation for k̂(l), we obtain

M (ql)v(l+1)U − �̃c̃U
� − ñc̃U

n − D̃�̃U − �̃1c̃U
1 − �̃2c̃U

2 − �̃12c̃U
12 =M (q(l))v(l) + hk1(t(l); q(l); v(l))3

UU is a solution of (12)–(16), and thus satis8es (15) and (16). Hence, from the de8nition
of the friction cone, F̂C(q(l)) (38), we deduce that5

M (q(l))v(l+1)U −M (q(l))v(l) − hk1(t(l); q(l); v(l))∈ F̂C(q(l))

Corollary 2.5 implies that v(l+1)U is bounded uniformly with respect to U, and thus there exists7
a constant KFC independent of U such that

‖M (ql)v(l+1)U −M (q(l))v(l) − hk1(t(l); q(l); v(l))‖6KFC9

Using now the characterization (39) of the pointed cone F̂C(q(l)), we obtain that, for all U,

‖(c̃U
� ; c̃

U
n ; �̃

U; c̃U
1 ; c̃

U
2 ; c̃

U
12)‖6cFCKFC (49)11

Now take the sequence Un. From the previous inequality we deduce that the sequence

Wn = (v(l+1)Un
; c̃Un

� ; c̃Un
n ; �̃Un ; c̃Un

1 ; c̃Un
2 ; c̃Un

12)13

is uniformly bounded with respect to the sequence Un. Also, following the de8nition of
c̃U
1 ; c̃

U
2 ; c̃

U
12, and (49), we obtain15

h21ni | ∇q0(i)(q(l)T
)v(l+1)Un

)|6 cFCKFC; i = 1; 2; : : : ; n1

h2n
j | ∇q ( j)(q(l)T

)v(l+1)Un
)|6 cFCKFC; j = 1; 2; : : : ; n2

h(Q1nk + h Q2n
k) | ∇q Q0(k)(q(l)T

)v(l+1)Un
)|6 cFCKFC; k = 1; 2; : : : ; n12

(50)

Since the sequence Wn is uniformly bounded with respect to n, it will have an accumulation17
point. Let

QW= (Qv(l+1); Q̃c�; Q̃cn; Q̃�; Q̃c1; Q̃c2; Q̃c12)19

be such an accumulation point. For purposes of this proof we will assume, without loss
of generality that limn→∞ Wn = QW. In particular, we must have that limn→∞ v(l+1)n = Qv(l+1).21
From our assumptions, all components of Un increase to in8nity. Dividing (50) with the
components of Un and taking the limit as n→∞, we obtain that23

∇q0(i)(q(l)T
)Qv(l+1) = 0; i = 1; 2; : : : ; n1

∇q ( j)(q(l)T
)Qv(l+1) = 0; j = 1; 2; : : : ; n2

∇q
Q0(k)(q(l)T

)Qv(l+1) = 0; k = 1; 2; : : : ; n12

(51)

Since Wn satis8es all inequalities and complementarity relations of (17)–(18), which are25
homogeneous, so will QW. Since, in addition, Qv(l+1) satis8es (51), we infer that QW is indeed
a solution of (34), which proves the claim.27
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3. NUMERICAL SIMULATIONS1

To validate the above concepts, we have implemented a Matlab version of the time-stepping
procedures described in this work. An important part of any such implementation is to de-3
sign an appropriate collision resolution strategy. In Reference [7] we presented a method to
accommodate a partially elastic collision approach. In the case of rigid bodies, collisions are5
instantaneous events, where the velocity generally exhibits a discontinuity. The time-stepping
procedure must be stopped at the edge of an interpenetration con8guration, and a new feasible7
velocity is found by a collision resolution consistent with the dynamics and geometry of the
problem. Since in this work we are interested in simulating very sti+ mechanical systems for9
moderate and relatively large values of the time-step h, sti+ness treatment is irrelevant during
collision.11

To simplify the presentation, we assume that all the collisions are purely inelastic [3; 7],
although partially elastic collisions can also be easily accommodated by a compression–de-13
compression scheme [7]. The inelastic collisions can be incorporated in our approach without
any major changes, by taking h= 0 in (17)–(18), after t(l); q(l); and v(l) have been deter-15
mined as the collision data [7; 8]. In that case v(l+1) simply becomes the postcollision velocity,
and the scheme is started at that point. Our previous point is also validated, since for h= 017
(17)–(18) and (7) are identical LCPs.

As mentioned in Section 2.3.4 we use a projection approach to ensure that the joint con-19
straints and the theoretically active constraints are exactly satis8ed. Since in the following
examples we investigate only high sti+ness due to damping, then, as argued in the end of21
Section 2.3.4, the projection will not alter the energy bounds provided by Theorem 2.4. The
con8gurations analyzed here are su=ciently regular that the projection procedure can be de-23
8ned to involve only equality constraints. In the cases where elastic sti+ness is present one
can use the projection procedure (46) which was not implemented for our examples.25

While a contact is clearly added to the active set A if a collision is detected, we remove
a contact from the contact list only when the normal velocity at the contact is positive after27
solving (17)–(18). In e+ect, more sophisticated techniques need to be used to avoid potential
conOicts between the geometrical constraints and the dynamical resolution [14]. However, for29
this work we have implemented only the simple active contact removal rule speci8ed above.

Following is a sketch of the algorithm. Aside from the geometrical and dynamical data of31
the problem, we need to input the intended 8nal time T and timestep h.

v= v0, q= q0; time = 0;
while (time¡T )

Find (vnew; c̃�; c̃n; �̃; �̃), a solution of (17–18)
if (no collision detected between time and time + h)

time = time + h, q= qnew, v= vnew;
else

Estimate the collision time timenew, collision
position and velocity qnew and v−;

Find (v+; c̃+
� ; c̃

+
n ; �̃

+; ˜�+), a solution of (17)–(18) with q(l) = qnew and h= 0.
time = timenew, v= v+, q= qnew.

end if
end while
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Choosing the time step: For the examples described below we observed the exact same1
behaviour for the linearly implicit algorithm proposed in this work for a large range of time
steps. However, we have not implemented a procedure to adapt the time step at this time.3
Such a procedure can be easily devised between collisions or stick–slip transitions, where the
system behaves like a di+erential algebraic equations and we can, for example, extrapolate to5
adapt the time step. However, this will not work well if many such collisions or transitions
occur in a short period of time, which can happen for several con8gurations.7

In general, one cannot make statements about convergence in a classical sense when high
friction is present [3]. Even worse, certain con8gurations may have multiple solutions which9
can be quite random in nature (as it happens in a slider-crank with a tight slider with fric-
tion [13]). The impossibility of deriving a general rate of convergence theory for high friction11
prevents the construction of an e=cient time step adaptation procedure at this time. The prob-
lem of determining appropriate ranges for the time step will be the subject of future research.13

3.1. Solving the linear complementarity problem

The main e+ort in simulating one integration step is to solve the mixed LCP (12)–(16). As15
stated in Theorem 2.2, Lemke’s algorithm [5] will 8nd a solution of the LCP in a 8nite
number of steps. If the friction coe=cient � �= 0, then there is no guarantee that the problem17
will have a convex solution set. The potential lack of convexity is one of the reasons why
other classes of algorithms, such as interior-point algorithms, that perform so well in the case19
of linear programming, cannot be guaranteed to converge to a solution.

For the results that we report in the following section, we used a Matlab implementation21
of a variant of Lemke’s algorithm [20]. Before using the algorithm, we solved for v(l+1) and
c̃� from Equations (12)–(13) and substituted them in (14)–(16). This resulted in a standard23
LCP to which the algorithm was applied.

Recently, a hybrid between continuation methods and Lemke’s algorithm was proposed.25
This has resulted in the package PATH, which is specialized in medium scale LCP resolu-
tion [21; 22]. Additional information and software is available online at http://www.cs.wisc.27
edu/cpnet/. We used PATH for our simulations and we got the same results as with the
algorithm from [20].29

3.2. One-dimensional example

The 8rst example consists of two bodies of on a Oat tabletop, with initial distance between31
centres of 3. The friction coe=cient between the bodies and the tabletop is �= 0:4. An external
force of 20 cos(t) acts on the body on the left end. All numerical simulations are done with33
a constant timestep of 0:05 s for a total of 10 s. Between the two bodies is a damper whose
damping parameter will be assigned various values during simulation. The con8guration is35
depicted in Figure 1. For the one-dimensional case we have conducted the following numerical
experiments. In all cases we have depicted the positions of the bodies in the x direction with37
respect to time, as predicted by the numerical method.

(1) For a damping parameter 1= 20, the dynamics was solved both with the Euler LCP39
from [7] (7) and with the linearly implicit method proposed in this work, (17)–(18).
Both bodies have mass 1. The variation in time of the x positions of the two bodies41
is presented in Figure 3.
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Figure 1. One-dimensional example: two bodies separated by a damper.

Figure 2. Bidimensional example: two bars articulated at one end with a damper between their centres.

(2) The same experiment was repeated for a damping parameter 1= 100. The results are1
depicted in Figure 4.

(3) Only the linearly implicit LCP time-stepping scheme (17)–(18) was applied for 1=106.3
Again, both bodies have mass 1. In Figure 5 the results of the simulations are presented
together with a graph of the distance between the two bodies.5

(4) The linearly implicit LCP time-stepping scheme (17)–(18) was applied for the case
where the masses of the bodies were sharply di+erent. In the con8guration from7
Figure 1, the body on the left has mass 1, whereas the body on the right has mass 108.
Two cases were considered for the damping parameter: 1= 20 and 108. The behaviour9
of the positions of the two bodies is presented in Figure 6.

3.3. Two-dimensional example11

For a two-dimensional example, we consider two bars of equal length 2 articulated at one
end through a revolute joint. Both bars have mass 1 and inertia 1. A graphical con8guration13
of the system is presented in Figure 2. In all cases one of the bars is vertical in the initial
position, while the other is placed at an angle of 9=3 from the 8rst, at which point the system15
is left to fall toward the tabletop under the inOuence of gravity. The system falls with 0
initial velocity. There are both a damper and a spring between the centres of the two bars17
and friction between the bars and the tabletop. In this case we have depicted the successive
positions of the bars for various choices of the damping and friction parameters, so as to19
suggest their predicted trajectory. We have conducted the following experiments, each for a
constant time step h= 0:01, and simulation interval of 10 s.

21
(1) For the 8rst example, the trajectories are shown in Figure 7 for the articulated two-bar

mechanisms for a friction coe=cient �= 0:15, elasticity coe=cient of k = 100, and23
damping coe=cients 1 of 10, 1000, and 108.
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Figure 3. Linearly implicit method versus Euler method for the one dimensional problem with damping
coe=cient 20. The position of the two bodies (in metres) is plotted as a function of time in seconds.
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Figure 4. Linearly implicit method versus Euler method for the one-dimensional problem with damping
coe=cient 100. The position of the two bodies (in metres) is plotted as a function of time in seconds.
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Figure 5. Linear implicit method for damping coe=cient 106. The position of the two bodies (in metres)
is plotted as a function of time in seconds in the 8rst graph. Note the Oat regions in the graph that
denote the action of static friction. In the second graph, the variation of the distance between the two

bodies is plotted as a function of time.

(2) For the second example, whose trajectories are shown in Figure 8, we 8x the value1
of the damping coe=cient 1 at 20, the elasticity coe=cient at k = 100, and we choose
the friction coe=cient � successively to have the values 0.05, 0.2, and 0.5.3

3.4. Conclusions of the numerical simulations

The simulations validate the following points:
5

• For small values of the damping parameter it can be seen from Figure 3 that the output
of the linearly implicit scheme (17)–(18) is identical to the explicit one (7). However,7
even for moderate values of the damping parameter, such as 1= 100, it can be seen from
Figure 4 that the explicit scheme (7) results in a catastrophic drift from the solution.9
We therefore conclude that in order to achieve reasonably large steps, a stabilization
technique for sti, systems is necessary even when friction is present.11

• The linearly implicit scheme (17)–(18) performs very well even for huge values of the
damping parameters, such as 1= 106 in Figure 5, and 1= 108 in the last plot of Figure 7,13
as predicted by Theorem 2.6 and Corollary 2.5.
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Figure 6. Behaviour of linearly implicit method for large di+erences in masses
between objects (m1 = 1; m2 = 108). The position of the two bodies (in metres) is
plotted as a function of time in seconds in the 8rst graph. The Oat regions in the 8rst

graph again denote the e+ect of the static friction.

• From Figures 3–7, we observe that the behaviour of a sti+ system as predicted by the1
linearly implicit scheme (17)–(18) approaches the behaviour of the system when the
damper and spring are replaced with a rigid joint. This is again consistent with the result3
of Theorem 2.6, since in the case where the sti+ness does not originate in spring forces,
the initial position of the spring is not relevant for the theorem to apply.5

• We also demonstrate the e+ects of friction. For the one-dimensional case the e+ect of
static friction is immediately seen in Figure 5, for the duration where the graph of7
the x coordinates of the two bodies is Oat, indicating that the bodies do not move.
Figure 8 shows that increasing the friction coe=cient has the e+ect of stopping the9
two-bar mechanism earlier.

• We demonstrate that our method is stable in the presence of con8gurations with sharply11
di+erent masses, as seen in Figure 6. In the case with low damping, the motion of the
second body is imperceptible, due to its large mass, whereas the 8rst body is allowed13
to move due to the small damping 1= 20. In the high damping case, 1= 108, the large
damping parameter forces the damper to act as a rigid link, and the large mass of the15
second body thus forces both bodies to stay essentially unmoved. In Figure 6 we see
that the numerical scheme simulates exactly this type of behaviour. This validates our17
8ndings at the end of Section 2.3.5, that the numerical scheme is stable with respect to
large masses.19
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Figure 7. Simulations for the link with a damper between the centres of mass after
varying the damping coe=cients.

• We have observed an identically stable behaviour when increasing the elasticity param-1
eter, although we do not report the results here. This behaviour is consistent with our
observation concerning total energy from Lemma 2.4, though it is only partially explained3
by our observation. The theoretical analysis of this behaviour will be the subject of future
research.5

4. CONCLUSIONS

We present a time-stepping method for rigid multibody dynamics with contact, friction and7
sti+ external forces. We show that the method is well de8ned for su=ciently small time
step and is unconditionally consistent for the case where the sti+ force originates in springs9
and dampers attached between two points of the system. We also show that if the damping
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Figure 8. Simulations for the link with a damper between the centres of mass for
varying the friction coe=cients.

coe=cients go to in8nity, then the total energy stays bounded, and the behaviour of the system1
approaches the behaviour of a system with the dampers replaced by rigid links.

Our work extends previous consistency results for time-stepping velocity–impulse sche-3
mes [3; 7] for the case of sti+ external forces, while still requiring the resolution of linear
complementarity subproblems that can be solved with Lemke’s algorithm, for example.5

It is also clear that the new scheme (17)–(18) is asymptotically equivalent to the original
explicit scheme (7) for small h. Hence the convergence results as h→ 0 apply to show that the7
numerical solution approaches the solution of a measure di+erential inclusion under reasonable
assumptions.9
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