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ABSTRACT. Parallel 1/0 has become a necessity in the face of performance improvements in
other areas of computing systems. Studies have shown that peak performance is infrequently
realized, and work in parallel 1/O optimization strives to achieve peak performance for appli-
cations. In this paper we revisit one area of performance optimization in parallel 1/0, that

of server-side scheduling of service. With the wide variety of systems and workloads seen to-
day, multiple server-side scheduling algorithms are necessary to match potential workloads.
We show through experimentation that performance gains can be seen in practice through the
use of alternative scheduling algorithms, but that no single algorithm provides the best perfor-
mance across the board. Finally we discuss the potential for automatic matching of server-side
scheduling algorithms to workloads in real-time.
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1. Introduction

Performance improvements in computing technology have vastly out-paced im-
provements in storage technology. This trend has led to the adoption of parallel I/O
systems as a solution. By combining large numbers of storage devices and providing
the system software to utilize them in concert, parallel I/O has extended the range of
problems that may be solved on high performance computing platforms. However, it
is obvious from workload studies that peak performance is rarely attained from these
coordinated storage devices.

In order to address this, a collection of techniques for more efficiently utilizing
these resources has been researched and developed. The collection includes traditional
I/O enhancements such as prefetching and caching as well as novel approaches to
organizing storage access and data transfer in parallel systems. The majority of these
approaches were tailored for the environment in which they were originally applied,
that of commercial supercomputers. In commercial parallel machines the network
typically has much lower latency and much higher throughputthan the storage system,
and accounting for this disparity is the goal of much parallel I/O work.

More recently new parallel computing platforms have emerged, including PC clus-
ters such as Beowulf computers [RID 97]. Beowulfs are constructed from commaodity
components and commonly include fast ethernet networks and IDE disks. These com-
ponents are of roughly the same order of magnitude of performance. When coupled
with varying workloads it becomes even less obvious what resources, if any, will con-
sistently outperform the other components in the system. The widespread adoption of
clusters as a high performance computing platform has seen the same 1/O techniques
developed for commercial supercomputers applied again, but no work has thus far
examined the viability of these approaches in this new arena.

In this work we focus on the application of server-side scheduling algorithms in
parallel I/O workloads on cluster systems. First we cover previous work related to
scheduling of server operations. Second we describe the parallel file system in which
these algorithms will be implemented and tested. Third we describe the set of schedul-
ing algorithms we have implemented for the purpose of this study. Next we describe
the set of workloads used in our testing to provide a variety of access patterns and
resource demands. Finally we examine the results of our experiments. From these
experiments we note that the application of scheduling on the server side does have
noticeable effects on performance, and that a correlation between resource demand
and optimal algorithm choice can be seen. We go on to describe how the results of
this work might be used to implement a scheduling system that can dynamically apply
scheduling algorithms, in real-time, based on workload information.

2. Server-side scheduling

The networks in the machines in use during the majority of early parallel /O work
were of much higher performance than the the storage subsystems provided in these
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Figure 1. Data sieving example

systems. For example, the iPSC/860 system at NAS [NIT 92] had a total of ten I/O
nodes utilizing SCSI disks with a peak of 1 Mbyte/sec providing storage for the CFS
parallel file system. The hypercube-based network provided 2.8 Mbytes/sec connec-
tions between processors. At least in part because of this environment, early tech-
nigues for optimizing access tended to focus on optimizing disk performance. The
first four techniques covered in this section, data sieving, two-phase 1/O, disk-directed
I/O, and server-directed I/O, were all originally applied in or designed for these types
of systems. The last technique, stream-based 1/0, was designed instead with cluster
systems in mind. We will discuss each of these in turn.

2.1. Datasieving

Data sievingis a technique for efficiently accessing noncontiguous regions of
data in files when noncontiguous accesses are not provided as a file system primi-
tive [CHO 94]. Itis presented here because it is a building block for two-phase access,
which is discussed in the next section.

Workload studies on a number of platforms have shown that noncontiguous ac-
cesses are a common occurrence in parallel /0 workloads [KOT 95]. The naive ap-
proach to accessing noncontiguous regions is to utilize a separate /O call for each
contiguous region in the file. This results in a large number of 1/O operations, each of
which is often for a very small amount of data. The added network cost of performing
an I/O operation across the network, as in parallel I/O systems, is often high due to
latency. Thus this naive approach typically performs very poorly because of the over-
head of multiple operations. In the data sieving technique, a number of noncontiguous
regions are accessed by reading a block of data containing all of the regions includ-
ing the unwanted data between them (called “holes”). Figure 1 shows an example of
how data sieving might access a number of noncontiguous regions by reading a single
block. The regions of interest are then extracted from this large block by the client.
This has the advantage of a single I/O call, but additional data is read from the disk
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and passed across the network. The implementors found for their test system, an Intel
Touchstone Delta, that the reduction of operations outweighs the added data transfer
for a large percentage of accesses.

This technique can in fact also benefit systems with high latency networks as well
in that it reduces the number of requests, for which there is often significant startup
time. However, the percentage of data transferred that is desired must be high for
this to pay off. A more appropriate technique for reducing the overhead of multiple
requests in network bound systems is the use of more descriptive requests. These allow
the 1/0O server to either perform noncontiguous accesses, if the capability is available,
or to perform this sieving on the server side, reducing network traffic. However, most
I/O systems only support contiguous accesses.

2.2. Two-phase1/O

The two-phase accesstrategy is described in [BOR 93]. This strategy attempts

to avoid the performance penalties often incurred when directly mapping from the
distribution of data on disks to the distributionin processor memories. Data s firstread
from disk, inthe arrangement itis stored in on disk, by a subset of processors. The data
is then redistributed to the processors in the final, processor-memory distribution. The
strategy was tested on the Intel Touchstone Delta using the Concurrent File System
(CFS). The 512 processor Delta has a limited number of I/0 nodes (32) and substantial
network bandwidth between processors, which are arranged in a mesh topology.

In the first phase of access, the number of processors involved is chosen to match
the I/O nodes. Each chosen processor typically requests all the needed data from a
single disk and uses data sieving to reduce the number of requests. In the second phase,
the processors who previously read data from the disks calculate the final destination
for each block of data and perform the necessary transfers. This takes advantage of
the additional bandwidth between compute processors to more quickly complete the
I/O process.

In order for this technique to be of use, compute processes must communicate
and organize the transfer, which means that collective I/O must be available. The
collective component of two-phase access can be implemented above the file system
layer (i.e. on top of a file system that does not support collective accesses). Possibly
the most popular implementation of two-phase I/O at this time is in the ROMIO MPI-

IO implementation [ROM], which implements two-phase accesses on top of a variety
of parallel file systems with only independent access primitives.

This technique indirectly affects the behavior of I/O servers by altering the request
pattern from many small accesses into single large accesses per server. This in effect
forces the server into a mode where it is sequentially accessing a single large region
(assuming the server returns the bytes from the request in order). It also constrains the
server to servicing requests for a single client, since only one client makes a request.
When disk is the bottleneck, this technique is often a win. Additionally it has been
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shown that some I/O systems perform best when the number of simultaneous accesses
is limited [KRY 93, NIT 92]. These systems in particular benefit from this approach.

2.3. Disk-directed 1/0

Disk-directed I/O (DDIO) is a combination of a number of other techniques for
data transfer in parallel I/O systems [KOT 97]. DDIO was developed after both the
data sieving and two-phase techniques, and it relies on both noncontiguous and col-
lective 1/O primitives in the file system. Additionally the I/O servers must be able to
map file locations into disk block positions and must be capable of reasonably predict-
ing the optimal disk access pattern. The disk-directed technique uses the information
passed to it about the data requested in the collective request to determine a list of
physical blocks to retrieve from the disk. It sorts these blocks into some optimal ac-
cess ordering and uses double-buffering to overlap disk and network I/O, sending data
directly to the final destination.

From the server scheduling point of view the disk-directed approach is superior to
two-phase in that it passes a great deal more information on the total access along to
the server. This allows the server to determine the access ordering utilizing both infor-
mation on what is being accessed and also information on where that data is located
on disk. Furthermore the disk-directed approach gives the server the opportunity to
schedule access across multiple network connections as well, as data is moved directly
from the server to the appropriate clients.

As far as contributionsto a well-rounded I/O transfer method, DDIO has a number
of things to offer. First, it makes use of noncontiguous requests, generally resulting
in fewer, larger packets. Second, it promotes the use of an ordering scheme for op-
timization on the server side. While it might not always make sense to optimize for
disk access, and a static scheme such as the one used in their examples might not
help in a complex system, it does make sense to have a system capable of determining
the cost of transferring particular packets and ordering transfers accordingly. Unfor-
tunately most parallel 1/0 systems do not meet the requirements for implementing
DDIO. Server-directed /O relaxes these requirements.

2.4. Server-directed |/O

A derivative of disk-directed I/O, called server-directed 1/O, was proposed and
implemented in the PANDA library [SEA 95]. This technique utilizes a high-level
multidimensional data set interface, performs array chunking, and uses disk-directed
techniques at the logical, or file, level. Instead of determining physical block locations,
they use logical file offsets to determine their optimal ordering. File data is stored on
underlying local file systems, and block arrangement information was unavailable.
The developers found that they were able to utilize almost the full capacity of the
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disk subsystems in their test system for a range of array sizes and numbers of nodes,
despite the lack of disk block layout information.

2.5. Stream-based |/O

Stream-based 1/0 (SBIO) attempts to address network bottlenecks in parallel /O
systems [LIG 96]. The SBIO technique was developed as part of the Parallel Virtual
File System (PVFS) project [LIG 96], which is described in Section 3. With SBIO,
this concept of combining small accesses into more efficient, large ones is applied to
data transfer over the network. Data being moved between clients and servers is con-
sidered to be a stream of bytes regardless of the location of data bytes within a file.
This is similar to a technique known as message coalescing in interprocessor commu-
nication. These streams are packetized by underlying network protocols (e.g. TCP)
for movement across the network. Control messages are placed only at the beginning
and end of the data stream in order to minimize their effects on packetization. This is
accomplished by calculating the stream data ordering on both client and server.

This is strictly a technique for optimizing network traffic. When coupled with a
server that focuses on the network (almost “network directed 1/0”), peak performance
can be maintained for a variety of workloads, particularly when network performance
lags behind disk performance or when most data on 1/O servers is cached.

3. PVFSdesign

One area in which commercial machines still maintain great advantage is that of
parallel file systems. A production-quality high-performance parallel file system has
not been available for Linux clusters, and without such a file system, Linux clusters
cannot be used for large I/O-intensive parallel applications. To fill this need, we have
developed a parallel file system for Linux clusters called the Parallel Virtual File Sys-
tem (PVFS). PVFS is being used by a number of groups, including ones at Argonne
National Laboratory and the NASA Goddard Space Flight Center. Other researchers
are using the PVFS system as a research tool [TAK 99].

Details on PVFS can be found in [CAR 00]. The rest of this section focuses on
the components of PVFS which are of importance to this study, namely how PVFS
manages data storage, how PVFS processes requests for data, and how this request
processing might be modified to study server-side scheduling algorithms.

3.1. PVFSmetadata
PVFS files are striped across a set of I/O nodes in round-robin fashion. The

specifics of a given file distribution are described with three metadata parameters:
starting I/O node numbebésg, number of I/O nodespcoun), and strip sizegsiz¢.
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Figure 2. Example metadata and file distribution

These parameters, together with an ordering of the 1/0 nodes for the file system, allow
the file distribution to be completely specified.

An example of some of the metadata fields for a filwfs/foo is given in Fig-
ure 2. Thepcountfield specifies that the data is spread across three /O nbéss,
specifies that the first (or base) I/O node is node 2, ssigkespecifies that the strip
size—the unit by which the file is divided among the I/O nodes—is 64 Kbytes. The
application can set these parameters when the file is created, or, if not specified, PVFS
will use a default set of values.

This file metadata, including locations of /0O nodes, is obtained by the application
from the PVFS system when a file is opened. This information allows applications to
communicate directly with I/O nodes when file data is accessed.

3.2. 1/0 daemons and data storage

An ordered set of /0O daemons (iods) run on the 1/0 nodes in the cluster. The
I/O nodes are specified by the administrator when the file system is installed. These
daemons are responsible for using the local disks on each 1/O node for storing data for
PVFS files, and they do so by using a local file system to store data. For each PVFS file
handled by the daemon, a local file is created on an existing local file system. These
files are accessed using standard UN&d (), write(), andmmap() operations.

This means that all data transfer occurs through the kernel block and page caches and
is scheduled by the kernel I/O subsystem.

Figure 2 shows how the example filevfs/foo is distributed in PVFS based on
the metadata. Note that although there are six I/0O nodes in this example, the file is
striped across only three 1/0O nodes, starting from node 2, because the metadata file
specifies such a distribution. Each 1/0O daemon stores its portion of the PVFS file in a
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Figure 3. 1/O stream example

file on the local file system on the 1/0O node. The name of this file is based on the inode
number that the PVFS system assigned to the file (in our example, 1092157504).

As mentioned above, when application tasks (clients) open a PVFS file they are
returned the locations of the I1/O daemons. The clients then establish connections with
the I/O daemons directly. These connections are used strictly for data requests. When
a client wishes to access file data, the client library sends a description of the file
region being accessed to the I/O daemons holding data in the region. The daemons
determine what portions of the requested region they have locally and perform the
necessary data transfers using TCP/IP.

Figure 3 shows an example of how one of these regions, in this case a simple-
strided region, might be mapped to the data available on a single 1/0 node. The
intersection of the two regions defines what we calll/@ stream This stream of
data is transferred in logical file order across the network connection. By retaining
the ordering implicit in the request and allowing the underlying stream protocol to
handle packetization, no additional overhead is incurred with control messages at the
application layer.

Figure 4 shows in greater detail what happens when a client accesses data from
PVFS 1/0 daemons. In red (gray) we see the data that was requested, which corre-
sponds to the region described in Figure 3. In the two shades of blue (black and light
gray) we see the portions of this data that are stored on the two I/O nodes across which
this file is striped.

When this region is accessed, the /0O daemons each send back an 1/O stream con-
taining the requested data that they possess. These two streams are then merged into
the application data buffer on the client.
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Figure 4. File access example

3.3. PVFSreguest processing

The PVFS request processing mechanism is the component of PVFS that imple-
ments the scheduling policy. Here we provide a short overview of the PVFS request
processing implementation. First we cover how PVFS receives requests, how these
are processed, and the structure in which they are stored for service. Next we discuss
how the system handles multiple simultaneous requests. We concentrate on read op-
erations in this discussion, and we detail the actual system calls used by the iods to
perform local file system and socket accesses.

3.3.1. Receiving and queuing requests

Since all PVFS /O is currently performed over TCP, all PVFS communication is
through the UNIX sockets interface. PVFS 1/O servers maintain a set of open sockets
that are checked for activity in a loop. One of these sockets is an “accept” socket that
is used by clients to establish connections for service. The other two possible states
for an open socket are that it is connected but has no outstanding request, or that it is
in active use for servicing a request.

PVFS 1/O servers are single-threaded entities that rely ors¢hect () call to
identify connections that are ready for service. One of the sockets that the server
queries is the accept socket. When this socket (or any other open socket not involved
in a request) is ready for reading, the 1/0O server attempts to receive ardl@st
Requests are messages sent by application tasks (clients) asking that some operation
be performed on their behalf. The request is parsed after reception, and if the request
requires data transferjab is created to perform the necessary I/O. Figure 5 shows
the job data structure as it is being created to service a request. The job is associated
with a socket and file, and attached to the job is a listafessesAccesses are data
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transfers that must be performed to service the request. A job may have as many as
tens or hundreds of accesses.

First the 1/O server allocates the job structure and breaks the request into contigu-
ous accesses based on the intersection of the requested data and the data available
locally on the server. This is the process diagrammed in Figure 5. Following this an
acknowledgment is prepended to the access list for passing status information back to
the client (i.e. EOF reached). This job is then added to the collection of jobs that the
I/O server is processing.

Figure 6 shows multiple jobs in service simultaneously. As the I/O server pro-
cesses these jobs, accesses associated with the job are updated and removed when
completed. In this example, job 1 has already had its acknowledgment sent, so it is no
longer present on the access list.

3.3.2. Servicing requests

Typically each task in a parallel application will send a request to each 1/O server
when performing an 1/O operation, resulting in a job on each server. Itis easy to imag-
ine that for a large parallel application a large number of jobs might be in service on
an I/O server at one time. This large number of jobs, for which there are by definition
no inter-job dependencies, provide us with an opportunity to optimize by selecting the
order in which jobs will be serviced. I/O servers, when notidle, sitin a loop servicing
requests:

while (job list not empty) {
select a job to service
make progress on accesses for selected job

}

Selection of a job can be performed by any means we wish, including examining the
characteristics of the job such as size or next access type and position. This gives
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Figure 6. Jobs in service

us the flexibility to implement our scheduling algorithms. Our scheduling algorithms
will influence the system by choosing what jobs will be serviced and in what order.

Once ajobis selected the server can perform all or part of the sequence of accesses
for the selected job before selecting another job to service. Generally, however, the
server should not block waiting for any single job to complete when other jobs could
be serviced. Thus the server normally performs only the accesses or parts of acceses
for a selected job that will not cause the server to block.

The I/O server refers to the access list of the selected job in order to determine what
operation should be performed next. In the case of a read operation the I/O server first
usesmmap () to map the data region into its address space. This is performed on a
region of 128 Kbytes in the implementation tested, which through testing was found
to be a reasonable trade-off between mapping too large a region and performing too
many mapping operations on this particular system. Once the region is mapped into
memory,send () is used to send the data from the desired region to the remote host.
The 0_NONBLOCK flag is set on the socket usifignt1 () prior to sending data so that
the server will not block on the socket. When a new region of the file is needed by this
connection for I/O, the old region is unmapped witthmap () before the new region
is mapped.

3.4. Limitations

While PVFS is the most complete open-source parallel file system available and
our best option for experimentation, its architecture does place some limitations on
our ability to make scheduling decisions and to implement previous schemes.

First and foremost PVFS servers operate at the user level. This means that all
scheduling actions are in some sense indirect; we can put data into a socket buffer or
perform awrite() call to request that data be stored on disk, but in the end the kernel
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makes the final decision on when operations happen. This is particularly troublesome
in the case of writes; it is very difficult to force the Linux kernel to write data to disk.

Similarly, since iods store data in files, it is more natural to make spatial locality
decisions based on file offsets. It is possible that blocks in the file are not placed
sequentially, but previous work has shown this technique to be effective [SEA 95]. In
our experiments we perform all operations on a single file in order to make the most of
file offset information. The use afmap () for reading data andrite() for writing
data prevents servers from truly knowing when they will block. They instead rely on
the kernel buffering of data to help provide overlap between disk and network I/O.

At the time these tests were performed, PVFS did not support generalized non-
contiguous requests. Thus we were unable to utilize noncontiguous requests for our
random access workload. Instead multiple contiguous requests were used, and this
limits the ability of the server to organize the data movement. Finally, the stream-
based data transfer method implemented in PVFS constrains the order in which data
may be returned to the client. This places an additional constraint on the server.

These characteristics do inhibit our ability to extract the highest performance from
the underlying components. However, our goal here is not to show the highest possible
performance but instead to show that matching scheduling algorithm to workload can
provide a performance win. This list of limitations then serves as a starting point for
further improvement of the PVFS system.

4. Scheduling algorithms

For our experiments we have implmented four scheduling algorithms that work
with PVFS. We will designate these algorith@pt 1 - 4 The first algorithm is the
default algorithm for PVFS and is optimized for network access. The other three
are increasingly disk-oriented, focusing on reducing disk access time. As previously
mentioned, PVFS cannot send data out of order for a given job, but it can control the
order that multiple jobs are serviced, and these different algorithms reflect this.

Opt 1is the PVFS default stream-based algorithm. Using this algorithm, the 1/O
server first checks to see which network connections are ready for service using a
select () call and then services each ready socket in FCFS order until the connection
is no longer ready for service. When all ready sockets have been serviced this process
is repeated. Due to limited buffering in the network subsystem, this algorithm tends
to do a pretty good job of load balancing service to the various jobs. It does not
consider disk access order at all, and may result in significant disk head movement
when servicing multiple request®pt 1 has the advantage of being the only algorithm
that does not need to sort the jobs, making its processing phase the fastest of the four
algorithms.

Opt 2is a modification ofOpt 1 As in Opt 1, first the server selects all sockets
ready for service, then it sorts the sockets based on the offset of the next access from
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Round| Jg J1 Jo Js3  Js | Schedule(in order
To 100 400 300 Jl, Jz, J4
1 900 500 200 Jo, Jz, J3
9 1000 300 400 Jo, Jl, J4

Table 1. Example ofOpt 1scheduling

Round| Jg J1 Jo Js3  Js | Schedule(in order
To 100 400 300 Jl, J4, Jz
1 900 500 200 Jz, J3, Jo
9 1000 300 400 Jo, Jl, J4

Table 2. Example ofOpt 2scheduling, starting witl® ;=100

the start of the file. Sorting starts at the last offset accessed for th&filg ), contin-

ues to the largest offset for a ready job, and then continues with the jobs whose offsets
are smaller than the last offset. In our experiments, all requests are accessing the same
file, and if the operating system does a reasonable job of clustering file data on the
disk, access to disk should be in a more efficient order th&@npiriL

Opt 3 further modifiesOpt 2 by removing some jobs that are ready for network
service because their file offset differs too much from the other jobs. Under this option,
a logical window is defined that spans file offsets in a range around last offset accessed.
The center of the window is defined to be the last offset accessed, so for a given
window sizelV,, and last offse©;,;:, values in the range @b;,;: + WZ are inside
the window. The value ofV,, is selectable at compile time. With this optimization
all requests that are “close” together are serviced, while requests that would access a
distant part of the file are not. In the event that no requests fall into this window, the

closest request is serviced instead.

Opt 3is based on a window scan scheduling algorithm (WSCAN) and tends to
allow the system to more effectively use spatial locality and caching, especially when
the operating system is prefetching based on file offset. On the other hand this al-
gorithm might not load balance as well @pt 1 or Opt 2 because some jobs that
are ready for service might not get serviced for some time. In addition, one has to
consider the potential for starvation when a job is specifically excluded from service.
Starvation is possible with this algorithm; however, this algorithm will never wait on
a job thatis not ready as long as a ready job is available.

Opt 4is the only algorithm that does not consider whether a job is ready for net-
work service. This algorithm sorts all of the jobs based on the offset of the next access,
starting from the offset of the last access and services the jobs in that order, waiting
for a network connection to become ready when neccessary. This is an implemen-
tation of the shortest seek time first (SSTF) algorithm [DEN 67]. This algorithm is
extremely likely to starve some jobs, and we will see the results of this when we later
discuss fairness. The purpose of includigt 4in our study is to ascertain the max-
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Round| Jg J1 Jo Js3  Js | Schedule(in order
To 100 400 300 Jl, J4, Jz

71 900 500 200 J3, Ja

T3 900 300 400 J1,Ja

s 900 Jo

T4 1000 Jo

Table 3. Example ofOpt 3scheduling with1';, =600, starting withO ;=100

Round| Jg J1 Jo Js3  Js | Schedule(in order
70 100 400 300 J1

71 900 400 200 300 J3

r9 900 300 400 300 J1, Ja

s 900 400 400 Jz, J4

Ta 900 500 Jz

s 900 Jo

e 1000 Jo

Table 4. Example ofOpt 4scheduling, starting witl® ;=100

imum possible benefit we can obtain from disk-oriented scheduling within the PVFS
system.

Consider the following example. Assume there are 5 jobs, each accessing the same
file. Assume that the last access was at file position 100. In each row, if a number is
present, then the socket for that job is ready for service, and the number indicates
the file offset being accessed. The schedule shows the jobs that will be serviced, in
order. Note that the rounds shown are notintended to represent a fixed amount of time,
thus the number of rows does not imply that the resulting schedule neccessarily takes
longer to complete. Rather, this shows the different scheduling rounds corresponding
to passes through the jobs.

UnderOpt 1, the ready jobs are scheduled FCFS in each round (Table 1). Under
Opt 2 the ready jobs are scheduled in offset order in each round (Table 2). The
schedule foOpt 3(Table 3) bears some explanation. In the first round all three ready
jobs fall within the window, so all they are scheduled in offset order. In the second
round, Jobs 2 and 3 are within the window , but Job 0 is not. These jobs are serviced
in file offset order. In the third round Jobs 1 and 4 are within the window and are
scheduled for service. In the fourth round no jobs are within the window, so the
closest (and only) job, Job 0, is serviced. In the fifth round Job 0 is still within the
window and service is completed. Finally, un@gpt 4(Table 4), the job with the next
offset larger than the previous is scheduled, even if that job isn’'t ready yet. Thus all
blocks are processed in order unless a job arrives after processing has already passed
its first offset.
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a) Contiguous b) Strided ¢) Random

Figure 7. Test workloads

5. Workloads

In Section 3 we covered PVFS, the parallel file system used in our experiments.
In this section we will discuss the workloads we examined in order to ascertain the
effectiveness of our scheduling algorithms at servicing three different test patterns:

— single block accesses
— strided accesses
— random block accesses

Three test applications were used in this workload study. These workloads rep-
resent a number of access patterns seen in some traditional applications, particularly
ones operating on dense multidimensional matrices. We include both single contigu-
ous block access, strided access, and multiple random block access workloads in order
to cover a wide range of possible workloads. Figure 7 shows the general pattern of
access for these workloads shown as row-major two-dimensional structures.

In all cases a MPI application was used to create a set of application tasks that
independently access a PVFS file system using the native PVFS libraries. In all tests
a single PVFS file was used to store data.

In the single block access tests, contiguous regions of the data file were simultane-
ously accessed by each task. The tasks synchronize before the access, and the times to
complete access were recorded. We consider the longest service time of any one task
to be the application service time, as this is the time the application as a whole would
have to wait if operations were collective. We also calculate the mean service time
for all tasks and the variance of task service time. Patterns such as these are seen in
applications accessing dense matrices in a block manner, in checkpoint applications,
and in some out of core applications.

In the strided access tests, multiple noncontiguous regions of the data file were
simultaneously accessed by each task using a single, simple-strided, operation. Again
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the tasks synchronize before the access, and the times to complete the operation were
recorded. As before we consider the longest task service time to be the application
service time, and we also calculate mean service time and the variance. Strided ac-
cesses are often seen as a result of row cyclic distribution of data sets and access to
portions of records of a fixed size.

The purpose of the random block access tests is to observe the system serving an
application with an irregular access pattern. The file is logically divided into a number
of blocks, and these blocks are randomly assigned to the tasks in the application such
that each task will access an equal number of blocks. Tasks are synchronized before
any accesses begins, and tasks access all blocks in random order using a native PVFS
operation to access each block, one block at a time. The time to access all blocks is
recorded for each task, the largest of these total times is considered the application
service time, and mean service time and variance are also calculated. This pattern
might be created by an application accessing pieces of a multidimensional data set or
reading arbitrary records from a large database.

In all cases, our goal is to analyze the effects of the four scheduling algorithms on
the performance of the system, using three metrics: application service time, mean
task service time, and task service time variance. All of these metrics are important
in one situation or another. For a system serving single parallel applications, applica-
tion service time might be the most appropriate metric. For a system running multiple
parallel applications or many serial ones, mean task service time might be a more
appropriate metric. Task service time variance is the variance observed between the
service times of tasks concurrently accessing the system. This value is an indicator of
fairness; a low value indicates that service is distributed fairly between jobs, while a
high variance often indicates that starvation is occurring. This is of particular impor-
tance in real-time applications.

6. Experimental results

The Beowulf machine on which this work was performed is a 17-node cluster at
Clemson University. The cluster was configured as follows. Each node has a single
Pentium 150 MHz CPU, 64 Mbytes EDO DRAM, 64 Mbytes local swap space, a
2.1 GByte IDE disk, and Tulip-based 100 Mbit Fast Ethernet card. The nodes are
connected by an Intel Fast Ethernet switch in full-duplex mode.

One node runs the PVFS manager daemon and handles interactive connections
while the other nodes are used as compute nodes, 1/0 nodes, or both. Each node
runs Linux v2.2.13 with tulip driver v0.89H. The IDE disks provide approximately
4.5 Mbytes/sec with sustained writes and 4.2 Mbytes/sec with sustained reads, as re-
ported by Bonnie, a popular UNIX file system performance benchmark [BRA ]. When
idle, approximately 8 Mbytes of memory are used on each node by the kernel and var-
ious system processes, including PVFS, leaving approximately 56 Mbytes of space
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that could be used by the system for I/O buffers. The window size for testOpitB
was set to 56 Mbytes. Our test applications were compiled with MPICH v1.2.0.

For these tests two nodes were used as I/0O nodes, and 14 nodes were used for
computation. This combination allowed us to separate the I/0O nodes from the compute
ones, to provide a number of simultaneous jobs that the 1/0 nodes can schedule, and
to ensure that no single-disk optimizations are used on the 1/0 nodes (mapping PVFS
file locations to local file ones is simpler in the single-disk case).

Varying scheduling algorithms for write workloads showed only limited benefit,
so this data is not presented here. Interested readers are directed to [ROS 00] for this
data. For read tests, before each run a local data file larger than the size of a node’s
memory was read in its entirety on each 1/0O node to remove all PVFS file data from
cache. A separate run of read tests was additionally performed in which we allowed
file data to remain in cache (i.e. did not read a local data file between runs). These
results are compared to small accesses without cache in the following sections as well.

We first discuss the application and task service time metric for each of the tests,
presenting output for all four of the algorithms described earlier in this work. The
total data accessed on a single 1/0 node is shown on the X axis, and service time is
provided on the Y axis. The data presented is the average of three test runs. Following
this discussion we cover the issue of fairness with respect to our algorithms and the
tested workloads.

6.1. Singleblock accesses

The results for single block accesses are shown in Figure 8. When data is uncached
we see thaOpt 4 provides by far the lowest average task service time, beating the
worst performers by as much as 28%. Recall @pt4is our algorithm most similar
to disk-directed 1/O; only the request closest to the last accessed file position will be
serviced. Itis apparent that we are more effectively utilizing disk resourceQpith
4in this case. Application service times are consistent across all algorithms.

When file data is cached we see ttgt 4still results in the best task service time
(beating the worst performer by 30$); however, this comes at the cost of a substantially
higher application service time than the other algorithms. In this Cge& seems to
be a more appropriate overall choice in this case. RecallQpaBrelaxes the strict
ordering of requests, allowing for jobs within a window to be serviced and always
allowing the nearest ready job to be serviced. When cached data is avaibgbla,
provides a better application service time while also resulting in a competitive mean
task service time.

When examining the small, cached service time graphs one can see a uniform
change in performance at approximately the 56 Mbyte point. This is the point at
which we begin to exceed our cache size and start hitting disk. This trend will be seen
throughout all the test results.
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6.2. Strided accesses

Results are shown for strided accesses in Figure 9. For our strided access pattern
we arbitrarily chose to access 16 disjoint regions with each task access. The size of
the disjoint regions was varied throughout the tests.

When servicing uncached strided read requests we se®fitat provides the
lowest mean task service time by as much as 14%, most likely due to the fact that
file data is interleaved between the application tasks, resultif@pinl performing
similarly to Opt 4, but without its ordering restrictions. When data does reside in
cache we see less benefit from us@pt 1 over other algorithms, although it does
appear to still be the best choice. All algorithms result in approximately the same
application read service times over the wide range of access sizes.

The file byte ordering limitation imposed by PVFS is particularly inhibiting for
disk-oriented algorithms servicing this type of workload. Since in practice all jobs
are not started simultaneously, it is likely that the first job to arrive will be partially
serviced before others are started. These new jobs might have data located near the
data accessed for the first job, but those portions of the new jobs may not be serviced
until their point in the byte ordering is reached.

6.3. Random block accesses

We chose to study random block access in addition to tests focusing on known
patterns. An interesting characteristic of these tests is that only a fraction of the total
data to be accessed is being requested by jobs in service at any one time because mul-
tiple operations are required to access the randomly distributed blocks (using native
PVFS calls). This is in contrast to the previous tests, where all data to be accessed is
requested in single calls. The result of this is that the total size of requests at any point
in time is no more thary;,: /Nuis, wheresS;,,; is the total amount of data that will
be accessed antl,x s is the number of blocks into which the data is split (per task).
Tests were run folV;; s values of 16 and 32. Results for both were similar, so only
the results from 32 blocks per task are presented here. Interested readers are directed
to [ROS 00] for this data.

Figure 10 presents the results for 32 blocks per task. This is the first set of tests
for which we see a significant difference in uncached application service times be-
tween algorithms. This is a clear indicator that we are reducing the amount of work
performed by the underlying I/O system using the disk-oriented algori®m8and
Opt 4 These two algorithms also outperform the others in task service time for large
accesses. When caching is in effect we again note Mpatl becomes extremely
competitive, outperformin@pt 4by as much as 10%.
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6.4. Fairness

For some applications it is highly desirable for service times to be predictable.
For these applications fairness is of extreme importance, as starvation will lead to
unpredictable service times. In Figure 11 we show the task service time variance for
our tests. We show the results for small, cached data and large accessses only; small
uncached results followed the trends of the large accesses.

When looking at the small, cached graphs we observe a uniform trend of spikes in
the variance graphs as we enter the 56-64 Mbyte range. This is to be expected as it is
at this point that accesses first begin to result in cache misses.

Additionally we see that in gener@Ipt 1andOpt 2provide better (lower) variance
thanOpt 3andOpt 4 We expected this, @pt 1andOpt 2both service all ready jobs
on each pass, whil®pt 3andOpt 4allow certain jobs to starveDpt 2also tends to
provide more predictable performance ttf@pt 1; this is undoubtedly due to its more
fair method of cycling through file locations.

The notable exception to this is large, strided access. In this@ps8andOpt 4
provide the most predictable performance. This is due to their more strict enforcement
of ordering; by ordering accesses by their file locations they enforce fair service when
job data happens to be organized in a strided manner.

As noted previouslyDpt 3andOpt 4 both introduce the possibility of starvation.
Particularly in the case @dpt 4workarounds to avoid this situation would need to be
added if the algorithm were to be used in a production system.Ofte8 algorithm
already implements a degree of starvation-avoidance, and based on this we believe
that the addition of such workarounds would have a minimal impact of performance
in common workloads.

7. Conclusionsand future work

As a whole we see that we are able to affect application service time in only a
small number of cases, and in general our scheduling changes had little effect on write
workloads. This is not completely surprising considering the limitations discussed in
Section 3.4.

However, we consistently see benefits to applying certain algorithms in read cases
with respect to task service time. In particular, for situations where uncached contigu-
ous regions are being servicgdpt 3and Opt 4 show the best performance. On the
other hand, for cases where significant fractions of data are cached we s@gtthat
performs the best. This is likely to be in part due to the algorithm itself and in part due
to the time it saves by not sorting jobs in service.

For our strided read workload we see tiggit 1 performs best as well. This is
partially due to the implicit interleaving in the requests. However, it is likely that our
predefined ordering of request data is also a factor. By this we mean that the order
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in which request data is returned to the requesting task by PVFS is always in order
of monotonically increasing file byte offset. This constrains the order in which we
can service the pieces that make up strided requests, which in turn limits the ability of
more disk-oriented algorithms to best access the disk.

If one is most concerned with “fair” servic@pt 2would be the best choice. It
provided the lowest variance for almost all the tested cases with little loss in applica-
tion or task service time. The only exception to this was the strided case with large
accesses, in whicbpt 3would be the best choice.

Overall we see that no single algorithm performs best over the range of workloads,
but instead that algorithms tend to be appropriate to a workloads fitting certain char-
acteristics. This indicates that rather than relying on a single algorithm, servers should
instead have a collection of algorithms at their disposal. These algorithms could be
selected by administrators based on expected usage, but a more effective approach
would be to automatically select algorithms in response to workload characteristics at
run-time.

Adaptive selection of policies for caching and prefetching have already been de-
veloped [MAD 96, MAD 97]. Our intention is to build a complementary system for
selecting scheduling algorithms. A behavioral model incorporating workload charac-
teristics such as the extent and size of requests in service and system effects such as
available cache would be coupled with heuristics for algorithm selection. One concern
with such a solution is that the overhead of performing the calculations at run-time
might outweigh the potential gains, but previous work in kernel-level scheduling on
similar machines indicates that performing additional calculations at run-time should
be feasible [GEI 97].

We have recently implemented noncontiguous requests for PVFS. This capability
extends the application’s ability to describe the overall desired I/O pattern to the server,
which should enable us to better schedule service. Additional studies are necessary to
validate this claim.
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