The Process Management Component of a
Scalable Systems Software Environment*

Ralph Butler!, Narayan Desai?, Andrew Lusk?, and Ewing Lusk?

! Department of Computer Science
Middle Tennessee State University
Murfreesboro, TN
2 Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, 1L 60439, USA
rbutler@mntsu.edu
{desai,alusk,lusk}@mcs.anl.gov

Abstract. The systems software necessary to operate large-scale par-
allel computers presents a variety of research and development issues.
One approach is to consider systems software as a collection of inter-
acting components, with well-defined published interfaces. The Scalable
Systems software SciDAC project is currently exploring the feasibility of
architecting systems software this way. In this paper we present a pro-
totype process manager component for such a system. We describe the
component abstractly in terms of its functionality and the interface by
which its functionality may be invoked. We propose a precise syntax for
this interface and describe one implementation of the process manager
component, based on an existing scalable process management system
called MPD. We conclude with some experiences using this process man-
ager component in conjunction with other systems software components
on a medium-sized Linux cluster.

Keywords: Systems software, process management, parallel program-
ming, scalability, XML.

Corresponding Author: Ewing Lusk, lusk@mncs.anl.gov

1 Introduction

Large-scale parallel computers provide new challenges in the area of systems
software: that collection of programs that manage the system from configura-
tion and boot-up to the scheduling and running of parallel jobs. One approach
to the design of such software is to treat it as a collection of separate interacting
peer components with well-defined published interfaces. In this approach, there
is no single monolithic system software design, but rather a collection of compo-
nent specifications, from which a specific systems management solution can be

* This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research,
U.S. Department of Energy, under Contract W-31-109-Eng-38.

assembled by choosing from among multiple implementations of the specifica-
tions. The Scalable Systems Software Center [6] has been established to explore
the feasibility of this approach.

In this paper we present a proposed specification for the process manage-
ment component of such a system. We provide some background and motivation
for this component in Section 2. We define exactly what me mean by process
management and outline the functionality of the process management compo-
nent at an abstract level in Section 3, and make the definition concrete with
detailed XML interface examples in Section 4 (The full XML schemas are in
the Appendix). We describe a prototype process manager implementation in
Section 5, which illustrates how one might fit an existing process management
mechanism into this component framework. We are using this process manage-
ment component in conjunction with other components [4] being proposed as
part of the Scalable Systems Software Center on a medium sized (256 nodes)
Linux cluster [3], and we report on our experiences in Section 6.

2 Background

The work described here is motivated by the confluence of two research and
development directions. The first has arisen from the MPICH project [5], which
has had as its primary goal the development of a portable, open source, efficient
implementation of the MPI standard. That work has led to the development of a
standalone process management system called MPD [1, 2] for rapid and scalable
startup of parallel jobs such as MPI implementations, in particular MPICH.

The second thrust has been in the area of scalable systems software in gen-
eral. The Scalable Systems Software SciDAC project [6] is a collaboration among
U. S. national laboratories, universities, and computer vendors to develop a stan-
dardized component-based architecture for open source software for managing
and operating scalable parallel computers such as the large (greater than 1000
nodes) Linux clusters being installed at a number of institutions in the collabo-
ration.

These two thrusts come together in the definition and implementation of a
scalable process manager component. The definition consists concretely of the
specification of an interface to other components being defined and developed
as part of the Scalable Systems Software Project. Then multiple instantiations
of this interface can evolve over time, along with multiple instantiations of other
components, as long as the interfaces are adhered to. At the same time one
wants to present an implementation of the interface, both to test its suitability
and to actually provide part of a usable suite of software for managing clusters.
This paper presents an interface that has been proposed to the Scalable Systems
Software Project for adoption together with an implementation of it that is in
actual use on some medium-sized clusters. Figure 1 shows some of the principal
components of the project.

Service
Directory

Account
Manager

Node State
Manager

Job
Scheduler

Process
Manager

Queue
Manager

Fig. 1. Components of the Scalable Systems Software Project

3 Defining Process Management

In this section we define a process management component, describing its func-
tionality at an abstract level. The details of precisely how other components
interact with this component are given in Section 4.

3.1 Goals and Assumptions

We assume that the component belongs to a family of system software compo-
nents, with which it communicates using well-defined interfaces. We give one
example of what such an interface might look like in Section 4. Therefore the
process management component need not concern itself with monitoring hard-
ware or with assigning jobs to processors, since those tasks will be carried out by
other components. We assume further that security concerns other than those
internal to a specific instantiation of the process manager are handled by other
components. Thus we take a minimalist position on what a process manager
does. It should do a thorough and complete job of managing processes and leave
other tasks to other components.

It is useful to introduce the concept of rank as a way of distinguishing and
identifying the processes of a parallel job (at least the initial ones). We assume
that an n-process job initially has processes with ranks 0,... ,n—1. These need not
necessarily coincide with MPI ranks, since there is nothing MPI-specific about
job management, but the concept is the same. We will also need the concept of
pid, which stands for process identifier, an integer assigned to a process that is
unique on a particular host computer. Thus a single process in a job may be
identified by a (host, pid) pair, or more abstractly by a (job, rank) pair.

3.2 Not Included

The following functions are not included in the functionality of the process man-
ager.

Scheduling. We assume that another component is responsible for making
scheduling decisions. It will either specify which hosts various processes of the
parallel job will run on, or specifically leave the choice up to the process manager,
which 1is then free to make any decision it prefers.

Node monitoring. The state of a particular host is of interest to the scheduler,
which should be responsible for deciding whether a node is available for starting
a job. The scheduler can interact directory with a node monitor component to
determine the information it needs.

Process monitoring. CPU usage, memory footprint, etc., are characteristics of
the individual processes, and can be monitored by a separate component. The
process manager can aid monitoring processes by either starting them (see co-
processes below) or by providing information on the process identifiers and hosts
where particular processes of a job are running, in order to assist monitoring
components.

Checkpointing. The process manager can help with checkpointing by delivering
signals to the parallel job, but checkpointing itself is a separate function and
should be carried out by a separate component.

3.3 Included

We are thus left with the following functions. We compensate for the limited
number of functions described here by attempting to specify very flexible and
complete versions of the functions that are included.

Starting a parallel job. The process manager is responsible for starting a parallel
job, without restrictions. That is, the processes should be allowed to have sepa-
rate executables, separate command-line arguments, and separate environments.
Processes may even be run under different user names on different machines. Jobs
will be started with appropriate user 1d’s, group id’s, and group memberships.
It should be possible for the job submitter to assign a job identifier by which the
job can be referred to later. A job-start request will be answered by a message
confirming successful start or else a failure message with an error code. We allow
multiple options for how standard /0O is handled.

Starting coprocesses for a parallel job. An advanced functionality we intend to
explore is that of coprocesses, which we define to be separate processes started
at the same time as the application process for scalability’s sake, and passed the
process identifiers of the application processes started on that host, together with
other arguments. Our motivation is scalable startup of daemons for debugging
or monitoring a particular parallel job.

Signaling a parallel job. 1t is possible to deliver a signal to all processes of a
parallel job. Signals may be specified by either name (“STOP”, “CONT”, etc.)
or by number (“43”, “65”, etc.) for signals that have no name on a particular
operating system. The signals are delivered to all the processes of the job.

Killing a parallel job. Not only are all application processes killed, but also any
“helper” processes that may have been started along with the job, such as the
coprocesses. The idea is to clean the system of all processes associated with the
job.

Reporting details of a parallel job. In response to a query, the process manager
will report the hosts and process identifiers for each process rank.

Reporting events. If there is an event manager, the process manager will report
to it both job start and job termination events.

Handling stdio A number of different options for handling stdio are available.
These include

— collecting stdout and stderr into a file with rank labels,
— writing stdout and stderr locally,

— ignoring stdout and stderr,

— delivering stdin to process 0 (a common default),

— delivering stdin to another specific process,

— delivering stdin to all processes.

Servicing the parallel job. The parallel job is likely to require certain services.
We have begun exploring such services, especially in the MPI context, in [1].
Existing process managers tend to be part of resource management systems that
use sophisticated schedulers to allocate nodes to a job, but then only execute a
user script on one of the nodes, leaving to the user program the task of starting
up the other processes and setting up communication among them. If they allow
simultaneous startup of multiple processes, then all those processes must have
the same executable file and command-line arguments. The process manager
implementation we describe here provides services to a parallel job not normally
provided by other process managers, which allow 1t to start much faster. In the
long run, we expect to exploit this capability in writing parallel system utilities
in MPIL.

Registration with the service directory. If there is a service directory component,
the process manager will register itself, and deregister before exiting.

3.4 Summary of Process Manager Interactions with Other
Components

The Process Manager typically runs as root and interacts with other components
bing defined and implemented as part of the Scalable Systems Software Project.

These interactions are of two types: message exchanges initiated by the Process
Manger and message exchanges initiated by other components and responded to
by the Process Manager.

— Messages initiated by the Process Manager. These use the interfaces defined
and published by other components.

Registration/Deregistration The Process Manager registers itself with
the Service Directory so that other components in the system can connect
to it. Essentially, it registers the host it is running on, the port where
it is listening for connections, and the protocol that it uses for framing
messages.

Events The Process Manager communicates asynchronous events to other
components by sending them to the Event Manager. Other components
that have registered with the Event Manager for receipt of those events
will be notified. by the Event Manager. Two such events that the Process
Manager sends to the Event Manager are job start and job completion
events.

— Messages responded to by the Process Manager. These can come from any
authorized component. In the current suite of SSS components, the principal
originators of such messages are the Queue Manager and a number of small
utility components.

Start job This is the principal command that the Process Manager is re-
sponsible for. The command contains the complete specification of job
as described in Section 3.3.

Jobinfo This request returns details of a running job. It uses the flexi-
ble XML query syntax that is used by a number of components in the
project.

Signal job The Process Manager can deliver any signal to all the processes
of a job.

Kill job The Process Manager can be asked to kill and clean up after a
given job.

4 A Process Manager Interface

The Scalable Systems Software project early on settled on XML, communicated
over sockets, as the underlying inter-component communication mechanism. A
variety of wire protocols are supported, and a project-wide library (SSS1ib)
makes it relatively easy for components to register their own protocols, learn the
protocols of other components from the service directory, and exchange messages
with other components. Each component defines its own XML syntax for the
messages it responds to and publishes the schema. Currently these schemas,
initially defined independently by various groups as a way of getting started
quickly, have begun evolving toward a common style.

In this section we give some examples of the XML syntax used by the process
manager component. The precise schemas are given in the Appendix. Notable
aspects of the syntax we use are:

— There is sufficient power to express the requirements of Section 3.3. In partic-
ular, separate executables, command-line arguments, and environment vari-
ables can be specified for each process. This is not the case for most process
managers that are integrated into existing resource management systems.

— It contains a flexible yet compact query capability for requesting information
on a restricted set of objects and returning only the information requested.
The query language itself will be described elsewhere, although we use 1t in
an example below.

— The syntax is “scalable” in the sense that it is not necessary to provide a
separate XML entity for each process. Instead, the “range” attribute, an
attribute of most XML entities, can be used to describe an aspect of many
processes at once.

In the following subsections we present some examples of the messages that
are responded to by the Process Manager. The complete schemas are given in
the Appendix.

4.1 Creating a Parallel Job

This XML message requests that a set of processes, called a “process group” in
our syntax, be created on a specific set of hosts. Here we have asked that the
TotalView debug server be started on the same hosts and passed the process id
of the application process. Note that we pas different arguments to the master
and slave processes.

<create-process—group
pgid=’job23’
submitter=’lusk’
totalprocs=’10’
output=’discard’
>
<process—spec
range='1’
exec=’cpi_master’
user=’ell’
cwd="/home/ell/rundir’
path='/home/ell/progs’
coprocess=’tvdebuggersrv’
>
<arg idx=’1’ val=’-loops’ />
<arg idx=’2’ val=’1000" />
<env name=’TV_LICENSE’ val=’23416784’ />
</process-spec>
<process—spec
range=’2-10’
exec=’cpi_slave’

user=’ell’
cwd=’/home/ell/rundir’
path='/home/ell/progs’
coprocess=’tvdebuggersrv’
>
<env name=’TV_LICENSE’ val=’23416784’ />
</process-spec>
<host-spec>
ccn-64
ccn-65
ccn-66
ccn-67
ccn-68
ccn-69
ccn-70
ccn-71
ccn-73
</host-spec>
<create-process—group\>

For multiple processes on one host, one can repeat the host name. An alter-
native is to use the ”squash” format in host names, e.g.

<hostspec name=’ccn-%d:64-73’ />
The response to this message will be something like
<process-group pgid=’1’/>

indicating the process manager’s identifier for the job. The originator can also
supply its own identifier.

4.2 Enquiring about a job

Any component can ask for details about a process group. The following example
retrieves the pgid’s of processes that were submitted by lusk or desai, and in
lusk’s case, only returns the process groups that have processes running on two
specific hosts. The restrictions are on the process groups; we always return all
the processes in a process group.

<get-process-groups>
<process—group submitter=’lusk’ pgid=’#*’ totalprocs=’*’ >
<process-group-restriction pid=’#*’ exec=’#’ host=’ccn-70’ \>
<process-group-restriction pid=’#*’ exec=’#’ host=’ccn-230’ \>
</process-group>
<process—-group submitter=’desai’ pgid=’'*’ >
</process-group>
</get-process-groups>

The message returned by such a query is a set of process groups, with details
on their processes filled in as requested by the query.

<process-groups>
<process—-group submitter=’lusk’ pgid=’4521’ totalprocs=’10’>
<process pid=’3456’ exec=’cpi_master’ host=’ccn-64’ />
<process pid=’1324’ exec=’cpi_slave’ host=’ccn-65’ />
<process pid=’7654’ exec=’cpi_slave’ host=’ccn-66’ />
<process pid=’6758’ exec=’cpi_slave’ host=’ccn-67’ />
<process pid=’9601’ exec=’cpi_slave’ host=’ccn-68’ />
<process pid=’5634’ exec=’cpi_slave’ host=’ccn-69°’ />
<process pid=’7865’ exec=’cpi_slave’ host=’ccn-70’ />
<process pid=’9876’ exec=’cpi_slave’ host=’ccn-71’ />
<process pid=’6524’ exec=’cpi_slave’ host=’ccn-72’ />
<process pid=’3452’ exec=’cpi_slave’ host=’ccn-73’ />
</process-group>
<process—-group submitter=’lusk’ pgid=’23’ totalprocs=’1’>
<process pid=’5554’ exec='mpd’ host=’230’ />
</process-group>
<process—-group submitter=’desai’ pgid=’244’ >
</process-group>
</process-groups>

4.3 Signaling or Killing a Job

The signal-process-group (deliver a specified signal to a process group) and kill-
process-group (completely clean up a process group) are extended to allow one
to describe the process groups being signalled or killed to be specified with the
same syntax as get-process-group, and they return the same format (jprocess-
groups;,, defined above, to indicate which processes they acted on. Signals can
be specified by either name or number.

The following command sends a signal 3 to all the processes of all jobs sub-
mitted by lusk, and returns the details of which processes groups they were.

<signal-process—group signal=’3’>
<process—-group submitter=’lusk’ pgid=’*’
</signal-process-group>

The following command kills all process groups with processes running on
ccn-b6, and returns their submitters, so that they can be told the sad news.

<kill-process-group>
<process—group submitter=’*’>
<process-group-restriction host=’ccn-56’ >
</process-group>
</kill-process-group>

5 Implementing a Process Manager Component

In order to provide a prototype implementation of the process manager com-
ponent, we began by re-implementing the MPD system described in [2]. A new
implementation was necessary because the original MPD system could not sup-
port the requirements imposed by the Scalable Systems Software Project, in
particular the ability to provide separate specifications for each process. The re-
lationship between the MPD system and the Scalable System Software process
manager component is shown in Figure 2.

Service Event

Directory ager
Queue Process
Manager Manager
A

job submission simplg scripts
language using $SS XML

% % interactive

Official SSS ;/ MPD-based
side / implementation
/ side

Application
processes

(MPI Standard args)

Fig. 2. Relationship of MPD to SSS components.

The process management component itself is written in Python, and uses
Python’s XML module for parsing. It invokes the mpdrun process startup com-
mand of the new MPD system. MPD is a ring of pre-existing and pre-connected
daemons, running as root or as a user, which implements all the necessary re-
quirements. The most notable one is that it provides an implementation of the
process manager interface (PMI) used by MPICH to provide rapid startup of
MPI programs and support for MPI-2 dynamic process functionality.

6 Experiments and Experiences

We have demonstrated the use of this process manager component in conjunction
with other components of the Scalable Systems Software component collection.
In this configuration, jobs are submitted to a Queue Manager, which forwards
the request to a scheduler. The scheduler assigns nodes to the ;job based on
the results of node-monitoring components and returns the job to the Queue
Manager, which sends it to the Process Manager to start. At any time the Queue

10

Manager (or any other authorized component) can enquire about the details of
the job. If the job has not finished within its alloted time, the Queue Manager
sends a kill-job request to the Process Manager.

Of course, once the interface has been published, the Process Manager can be
used in other ways as well. Since MPD will serve as a primitive scheduler itself if
it is not instructed to start processes on specific hosts, the system administrator,
for example, can execute maintenance jobs through the Process Manager without
going through the Queue Manager or Scheduler components.

Our primary testbed has been the Chiba City testbed [3] at Argonne Na-
tional Laboratory. Some experiments on starting both MPI and non-MPI jobs
follow, to illustrate the scalability of the MPD-based implementation of the Pro-
cess Manager. These tests were carried out on Chiba City.

6.1 Testing the MPD ring

The first test is just of the MPD ring’s ability to forward messages around the
ring. Here the ring had 206 hosts in it. We simulated larger rings by sending a
message around multiple times.

times around ring time in seconds
1 .13
10 .89
100 8.93
1000 89.44

This is linear, as we would expect from a ring. However, it is so fast, because
the MPD daemons are pre-connected, that the time to get a message around
the ring is not significant. The second line of the above table represents more
than 2000 hops in less than a second. Therefore the ring does not need to be
replaced by a more scalable structure such as a broadcast tree. We prefer the
ring structure since it is symmetric (no single point of failure) and can be made
more fault tolerant.

6.2 Starting Non-MPI jobs

We ran hostname on each node and collected the output through MPD’s tree of
connections for stdout. Times were as follows:

number of hosts time in seconds

1 .83

4 .86

8 .92

16 1.06

32 1.33

64 1.80
128 2.71
192 3.78
200 3.85

11

This is quite sublinear, indicating that the MPD daemons are benefitting from
being able to get the startup message quickly (see Section 6.1) and then start
the processes largely in parallel.

6.3 Old MPI Startup vs. New MPI Startup

In earlier versions of MPICH, run under previous process managers, the first
MPI process had to start the others in order to exchange information with them
that allowed for later MPI connections to be made. This mechanism was not
scalable. Now that the process manager provides a route for contact information
to be exchanged, this process is much faster. Times below are for starting a short
MPT job (the classical cpi example from the MPICH distribution), which does
need to establish MPI communication among many of its processes, in order to
carry out an MPI_Broadcast and MPI Reduce. Times are in seconds.

number of processes old startup time new startup time

1 .4 .63

5.6 .67

8 14.4 .73

16 30.9 .86

32 96.9 1.01

64 1.90

128 3.50

Note that the improvement is quite significant, and that startup time is nearly
constant for jobs of size up to 32. We are exploring improvements in the MPD
implementation to increase scalability further, but it already has had a large
impact on the starting of MPI jobs, particularly interactive ones.

7 Conclusion

Our primary conclusion is that the component idea for scalable system software
architecture can be a useful approach. We have described how defining process
management abstractly led to a capable process management interface and we
have provided a prototype implementation that scales well.

References

1. R. Butler, W. Gropp, and E. Lusk. A scalable process-management environment
for parallel programs. In Jack Dongarra, Peter Kacsuk, and Norbert Podhorszki,
editors, Recent Advances in Parallel Virutal Machine and Message Passing Inter-
face, number 1908 in Springer Lecture Notes in Computer Science, pages 168-175,
September 2000.

2. R. Butler, W. Gropp, and E. Lusk. Components and interfaces of a process man-
agement system for parallel programs. Parallel Computing, 27:1417-1429, 2001.

3. Chiba City home page. http://www.mcs.anl.gov/chiba.

12

4. Narayan Desai, Andrew Lusk, Ewing Lusk, and John-Paul Navarro. The configu-
ration manager and other infrastructure components of a scalable systems software
environment. Technical Report ANL/MCS-P988-0802, Argonne National Labora-
tory, 2002.

5. Wiliam Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-
performance, portable implementation of the MPI Message-Passing Interface stan-
dard. Parallel Computing, 22(6):789-828, 1996.

6. Scalable systems software center home page. http://wuw.scidac.org/scalablesystens

Appendix: XML Schemas

The XML schema for messages to the Process Manager is as follows:

<xsd:schema xmlns:xsd="http://wuw.w3.org/2001/XMLSchema" xml:lang="en">
<xsd:annotation>
<xsd:documentation>
Process Manager component inbound schema
SciDAC SSS project, 2002 Andrew Lusk alusk@mcs.anl.gov
</xsd:documentation>
</xsd:annotation>

<xsd:include schemalocation="pm-types.xsd'"/>

<xsd:complexType name="createpgType'">
<xsd:choice minOccurs="1" maxOccurs="unbounded">
<xsd:element name="process-spec" type='"pg-spec"/>
<xsd:element name="host-spec" type='"xsd:string"/>
</xsd:choice>
<xsd:attribute name="submitter" type='"xsd:string" use="required"/>
<xsd:attribute name="totalprocs" type="xsd:string" use="required"/>
<xsd:attribute name="output" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:element name='create-process—group" type='"createpgType'"/>

<xsd:element name='"get-process-group-info">
<xsd:complexType>
<xsd:choice minOccurs="1" max0Occurs="unbounded">
<xsd:element name="process-group" type="pgRestrictionType"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>

<xsd:element name="del-process-group-info">
<xsd:complexType>
<xsd:choice minOccurs="1" max0Occurs="unbounded">
<xsd:element name="process-group" type="pgRestrictionType"/>
</xsd:choice>
</xsd:complexType>

13

</xsd:element>

<xsd:element name="signal-process-group'>
<xsd:complexType>
<xsd:choice minOccurs="1" max0Occurs="unbounded">
<xsd:element name="process-group" type="pgRestrictionType"/>
</xsd:choice>
<xsd:attribute name="signal" type="xsd:string" use="required"/>
</xsd:complexType>
</xsd:element>

<xsd:element name="kill-process-group">
<xsd:complexType>
<xsd:choice minOccurs="1" maxOccurs="unbounded'">
<xsd:element name="process-group" type="pgRestrictionType"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>

<xsd:element name="checkpoint-process-group'">
<xsd:complexType>
<xsd:choice minOccurs="1" maxOccurs="unbounded'">
<xsd:element name="process-group" type="pgRestrictionType"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>

</xsd:schema>
The XML schema for messages from the Process Manager is as follows:

<xsd:schema xmlns:xsd="http://wuw.w3.org/2001/XMLSchema" xml:lang="en">
<xsd:annotation>
<xsd:documentation>
Process Manager component outbound schema
SciDAC 888 project, 2002 Andrew Lusk alusk@mcs.anl.gov
</xsd:documentation>
</xsd:annotation>

<xsd:include schemalocation="pm-types.xsd"/>
<xsd:include schemalocation='"sss-error.xsd"/>

<xsd:element name='"process-groups">
<xsd:complexType>
<xsd:choice minOccurs=’0’ maxOccurs=’unbounded’>
<xsd:element name="process-group" type="pgType"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>

14

<xsd:element name="process-group" type="pgRestrictionType"/>
<xsd:element name="error" type="SSSError"/>
</xsd:schemna>
The above schemas use the following types:

<xsd:schema xmlns:xsd="http://wuw.w3.org/2001/XMLSchema" xml:lang="en">
<xsd:annotation>
<xsd:documentation>
Process Manager component schema
SciDAC S8S project, 2002 Andrew Lusk alusk@mcs.anl.gov
</xsd:documentation>
</xsd:annotation>

<xsd:complexType name="argType'">
<xsd:attribute name="idx" type='"xsd:string" use="required"/>
<xsd:attribute name="value" type='xsd:string" use="required"/>
</xsd:complexType>

<xsd:complexType name="envType">
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="value" type='xsd:string" use="required"/>
</xsd:complexType>

<xsd:complexType name="pg-spec'>
<xsd:choice minOccurs=’0’ maxOccurs=’unbounded’>
<xsd:element name="arg" type="argType"/>
<xsd:element name="env" type="envType"/>
</xsd:choice>
<xsd:attribute name="range" type='"xsd:string"/>
<xsd:attribute name="user" type="xsd:string"/>
<xsd:attribute name="co-process" type="xsd:string"/>
<xsd:attribute name="exec" type="xsd:string" use="required"/>
<xsd:attribute name="cwd" type='"xsd:string" use="required"/>
<xsd:attribute name="path" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:complexType name="procType">
<xsd:attribute name="host" type="xsd:string" use="required"/>
<xsd:attribute name="pid" type="xsd:string" use="required"/>
<xsd:attribute name="exec" type="xsd:string" use="required"/>
<xsd:attribute name="session" type='"xsd:string" use="required"/>
</xsd:complexType>

<xsd:complexType name="procRestrictionType">
<xsd:attribute name="host" type="xsd:string"/>
<xsd:attribute name="pid" type="xsd:string"/>
<xsd:attribute name="exec" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="pgType'>
<xsd:choice minOccurs="1" maxOccurs="unbounded">
<xsd:element name='"process'" type="procType"/>
</xsd:choice>
<xsd:choice minOccurs=’0’ maxOccurs=’1’>
<xsd:element name=’output’ type=’xsd:string’/>
</xsd:choice>
<xsd:attribute name="pgid" type="xsd:string" use="required"/>
<xsd:attribute name="submitter" type='"xsd:string" use="required"/>
<xsd:attribute name="totalprocs" type="xsd:string" use="required"/>
<xsd:attribute name="output" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:complexType name="pgRestrictionType'>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name='"process'" type='"procRestrictionType"/>
</xsd:choice>
<xsd:attribute name="pgid" type="xsd:string"/>
<xsd:attribute name="submitter" type='"xsd:string"/>
<xsd:attribute name="totalprocs" type="xsd:string"/>
</xsd:complexType>

</xsd:schema>

16

