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1 Introduction

Computational science and engineering concerns advancing the state of knowl-
edge across disciplines by means of modeling and simulation. This endeavor
relies to a large extent on advances in algorithms and software to meet the
underlying computational challenges. Recent trends include the development
of multi-algorithm and composite solution schemes that attempt to provide
faster solutions with greater reliability [6,7]. At the same time, the efficient
implementation of such methods and their use in large-scale applications is
becoming more feasible through recent advances in specifying component ar-
chitectures as well as sets of domain-specific abstract interfaces. In this paper,
we demonstrate that simulation times can be significantly reduced by develop-
ing composite solvers tailored to match application attributes, and, by readily
implementing them using advanced software systems that allow flexible com-
position of algorithms and their implementations.

Many fundamental problems in scientific computing tend to have several com-
peting solution methods. For example, PDE-based simulations frequently in-
volve the solution of linear systems, for which two broad classes of methods are
often considered, direct and iterative, with a variety of algorithms within each
class. The performance of a specific algorithm often depends on the numerical
properties of the problem instance. The choice of a particular algorithm could
depend on many factors, such as its computational cost, its memory require-
ments, the likelihood that it computes a solution without failure, and the level
of scalability of a parallel implementation. It is therefore possible to view each
method as reflecting a certain tradeoff among several metrics of performance
and reliability. Even with a very limited set of metrics (for example, the time
to compute a solution and the probability of failure), it is often neither pos-
sible nor practical to predict a priori which algorithm will perform best for
a given suite of problems. For a hard problem instance, an expensive but re-
liable method might be required, while a simpler problem instance could be
solved easily with a faster method with potentially poor reliability. We observe
that even a single simulation could produce problem instances with varying
attributes, such as the degree of nonlinearity and the conditioning of the op-
erator. Furthermore, significant variations in attributes are natural when con-
sidering problems across different application domains. Consequently, there
have been recent efforts to develop multi-method and composite schemes that
utilize several underlying methods in an attempt to improve reliability while
reducing total execution time. The idea of multi-algorithms has been explored
earlier in conjunction with a multiprocessor implementation [6]; the multi-
algorithm comprises several algorithms that are simultaneously applied to the
problem by exploiting parallelism. More recently, Bhowmick et. al have pro-
vided a combinatorial formulation to develop a composite solver as a special
sequence of constituent methods [7].
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Traditionally, software libraries (collections of functions) have been the mech-
anism for encapsulating and disseminating advanced numerical and scientific
algorithms. However, the traditional library model does not provide the flexi-
bility, interoperability and extensibility required for large-scale scientific sim-
ulations with composite or multi-method solvers. Advanced object-oriented
software systems, such as PETSc [4], with well defined abstract interfaces
and dynamic method selection, allow the instantiation of composite methods
without large software development overheads.

In this paper, we focus on potential performance improvements for PDE-based
simulations by developing and implementing composite linear solvers using a
flexible and extensible software environment. More specifically, we study the
role of composite linear solvers for driven cavity flow, which involves the so-
lution of a nonlinear PDE. Section 2 provides a combinatorial framework for
developing composites that can minimize execution times while maximizing
reliability. Section 3 discusses typical PDE-based applications using a driven
cavity flow simulation as an example. Section 4 shows how composite linear
solvers can be developed and implemented within the PETSc library [4,5] and
then used within Newton-type methods to solve nonlinear PDE-based appli-
cations. Section 5 demonstrates how application time can be potentially re-
duced by using robust composite linear solvers and their flexible instantiation
through PETSc. Section 6 contains concluding remarks and future research
directions.

2 A Combinatorial Scheme for Optimal Composite Solvers

The solution of large, sparse systems of linear equations is a fundamental prob-
lem in scientific computing. Such systems arise in a wide variety of PDE-based
simulations, for example, when the underlying physical models are discretized
using finite element and finite difference methods. Despite active research to-
wards the development of efficient algorithms over the last several decades,
there is no single solution method that is robust and consistently the best in
performance across application domains. Thus, sparse linear system solution
has been viewed more recently as a problem for which potential performance
and robustness gains could be achieved through a combination of several base
methods. In this section, we provide some background on sparse linear sys-
tem solution methods, and discuss our combinatorial approach for developing
efficient composite solvers.

We provide a brief overview of sparse linear solution techniques to provide
a context for the development of multi-algorithm composites; some general
references include [3,11,13,14]. In broad terms, linear solution methods can be
categorized into Krylov subspace iterative methods and direct methods. The
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former consist of the method of Conjugate Gradients (CG) and nonsymmet-
ric forms such as BICG and GMRES. These methods converge to a solution
by refining an initial guess through iterations in a certain subspace. These
methods are scalable, but convergence can be slow or fail altogether; conver-
gence depends on the numerical properties of the matrix. The class of direct
methods relies on the sparse factorization of the coefficient matrix followed
by triangular solution with the factors. These methods are typically much
harder to describe and implement because symbolic techniques have to be
used to limit fill-in during factorization; fill-in depends on the zero-nonzero
structure of the matrix and not on actual numeric values. The main limita-
tion of these methods is that they are not memory scalable. Direct methods
can fail if there is insufficient memory; a solution will be computed only if
the fill-in can be accommodated within available memory limits. Both classes
contain several different algorithms with significantly different performance
and reliability attributes. Furthermore, algorithms from the two classes can
be combined through preconditioning; in its more general form, incomplete
variants of a direct method are used to accelerate the convergence of the it-
erative method by providing a linear system with better spectral properties.
More recently, there has been significant research on domain-decomposition,
multilevel and multi-grid methods, and many of these techniques are highly
scalable; however, they are typically linked to the discretization of the under-
lying PDE and not easily packaged as black-box solvers. Given the variety of
algorithms, their implementations, and, performance-robustness tradeoffs, it
is quite natural to explore the benefits of combining several methods to deliver
improved performance for large-scale applications [6,7,9]. The challenges lie
in formulating techniques for meaningful composition and in developing high-
performance software.

We now consider a combinatorial framework for developing a composite linear
solver from several base methods [7]. Assume that each candidate method can
be evaluated using two metrics: (i) performance or cost, and (ii) reliability. The
former represents execution time or the number of operations, while the latter
reflects the rate of success. It may be possible to derive analytic expressions
for both metrics, failing which, the metrics can be computed by empirical
means. One approach would be to observe the performance of each method on
a representative set of sample problems and use the observed values to predict
average metrics for the problem population. We assume that the two metrics
can be represented in a normalized form for the set of selected methods. For
example, if the performance metric is execution time, then the values could
be scaled by the time for the fastest method to provide values bounded below
by 1. The reliability is naturally a number in the range [0, 1], reflecting the
probability of success. For example, if an iterative linear solver fails to converge
on average in one third of the sample set of problems, its failure rate is 0.33
and its reliability is 0.67.
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Method 1 Method 2 Method 3

t1, r1, f1 t2, r2, f2 t3, r3, f3

1, 0.1, 0.9 1.5, 0.7, 0.3 3.0, 0.8, 0.2

Permutation Composite Time

1, 2, 3 ‘least time’ 3.16 = 1 + .9× 1.5 + .9× .3× 3.0

3, 2, 1 ‘least failure’ 3.36 = 3 + .2× 1.5 + .2× .3× 1.0

2, 1, 3 2.61 = 1.5 + .3× 1 + .3× .9× 3.0

2, 3, 1 2.46 = 1.5 + .3× 3 + .3× .2× 1.0

Failure rate of any composite is 0.054.

Table 1
An example illustrating the effect of different sequences of base methods on the
worst-case time of the composite.

Consider developing a composite using n base methods labeled B1, B2, . . . , Bn.
Let ti be the performance measure of method Bi with success rate ri (failure
rate fi = 1 − ri). The composite would consist of all the n methods in a
sequence; failure of one method would result in the execution of the next
method in the sequence. Such a composite is significantly more robust than
its component methods. If failures of the methods occur independently, then
the reliability of the composite is 1 − Πi=n

i=1fi, i.e., its failure rate is much
smaller than the failure rate of any component method. All such composites
are equally reliable, however, the exact sequence in which the base methods
are selected can affect the total execution time. Let the set P contain all
permutations (of length n) of {1, 2, . . . , n}. Let P̂i denote the i−th method
in P̂ ∈ P. The composite Ĉ is specified by P̂ , and it executes methods in
the order specified by P̂ . Assuming partial results of a failed method are not
reused, the worst case execution time of Ĉ is:

T̂ = tP̂1
+ fP̂1

tP̂2
+ · · ·+ fP̂1

fP̂2
· · · fP̂n−1

tP̂n
. (1)

Different permutations can lead to wide variations in execution time as shown
by the example in Table 1 for composites of three methods.

In our earlier paper [7], we considered the problem of determining P̃ ∈ P

such that the associated composite C̃ is optimal, i.e., its worst case time
T̃ = min{T̂ : P̂ ∈ P}. We proved that the optimal composite is one in which
the component methods are arranged in increasing order of the ratio ui =

ti
ri

[7]. Such an optimal composite is obviously easy to build; the component
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methods are sorted in increasing order of the ratios of their performance and
reliability metrics. Interestingly, the optimal composite is not realized through
sequences in increasing order of time or failure rates (‘least time first’ or ‘least
failure first’ greedy heuristics).

The proof that a composite is optimal if and only if its component methods
are in increasing order of the ratio ti

ri
is rather complicated [7]. However, the

intuition behind the proof is easily revealed by considering shortest paths in a
graph. Consider a layered graph with vertices at n + 1 levels, where a vertex
at level i represents a subset of i methods. The vertex V0 at level 0 denotes
the empty set. An edge connects vertex S̄ to Ŝ if they are on adjacent levels,
|Ŝ \ S̄| = 1, and Ŝ ∩ S̄ = S̄. For the subset of methods S, FS = ΠBi∈Sfi and
FΦ = 1; edge S̄ → Ŝ has weight FS̄ti if Ŝ \ S̄ = {i}. In this graph, it is easily
verified that a path from VΦ to V{1,2,···n} denotes a composite in the order
in which methods were added to vertex sets (on the path). Additionally, the
length of the path is the time for the composite, as specified in Equation 1.
Thus, the optimal composite corresponds to the shortest path.

Examining the shortest path in further detail reveals the ordering of the ratio
tj
rj

and ti
ri

when method j precedes i in the optimal composite. Assume that

VS and VŜ are on the shortest path and Ŝ − S = {i, j}. Now there are only
two paths from VS to VŜ, one with VS̄ (S̄ − S = {i}) and another with VS∗

(S∗−S = {j}). Assume without loss of generality that the latter segment is on
the shortest path. Thus, TS+FStj+FSfjti ≤ TS+FSti+FSfitj. This simplifies
to tj(1 − fi) ≤ ti(1 − fj); now

tj
rj
≤ ti

ri
, i.e., uj ≤ ui. Figure 1 illustrates the

relationship between shortest paths and optimal composites for the example
with three components methods introduced in Table 1. As mentioned earlier,
the graph and its shortest paths are not required to construct the optimal
composite.

1

.9 X 1.5
.3 x 1 .2 x 1

.3 x 3

1.5
3 

0

1 2 3

1, 32, 31, 2

1, 2, 3

.2 x 1.5

.2 x .9 x 1.5

.3 x .2 x1

.9 x .3 x 3

Fig. 1. An example with three component methods ( t1
r1
= 10.0, t2

r2
= 2.14, t3

r3
= 3.75)

illustrating the relationship between the optimal composite and the shortest path.
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3 PDE-Based Simulations

This work is motivated by the solution of nonlinear PDEs of the form f(u) = 0,
where f : <n → <n, which arise in a variety of large-scale scientific simulations.
Some applications that motivate this work involve computational aerodynam-
ics [1], astrophysics [12], and fusion [18]. In conjunction with theoretical and
experimental research, such simulations are playing increasingly important
roles in overall scientific advances, particularly when physical experiments are
prohibitively expensive, time consuming, or in some cases impossible. One of
the most computationally intensive phases within semi-implicit and implicit
strategies for solving nonlinear PDEs is the solution of discretized linear sys-
tems, which are typically very large and have sparse coefficient matrices. The
focus of this work is the development of composite linear solvers that increase
algorithmic robustness and decrease overall time to solution.

We consider a driven cavity flow simulation to illustrate the benefits of com-
posite solvers and their instantiation in flexible software. This model has the
characteristics of the motivating simulations mentioned above, yet it is suffi-
ciently compact to allow a simple description. The driven cavity flow model is a
combination of lid-driven flow and buoyancy-driven flow in a two-dimensional
rectangular cavity. The lid moves with a steady and spatially uniform ve-
locity, and thus sets a principal vortex and subsidiary corner vortices. The
differentially heated lateral walls of the cavity induce a buoyant vortex flow,
opposing the principal lid-driven vortex. See [10] for a detailed description of
the problem and solution method.

The two-dimensional driven cavity flow uses the velocity-vorticity formulation
of the Navier-Stokes and energy governing equations, in terms of the velocity
ux, uy in the (x, y) directions and the vorticity ω on a domain Ω defined as
ω(x, y) = ∂u

∂y
+ ∂v

∂x
. The governing differential equations are:

−∆ux +
∂ω

∂y
= 0, (2)

−∆uy +
∂ω

∂x
= 0, (3)

−∆ω + u
∂ω

∂x
+ v

∂ω

∂y
−Gr

∂T

∂x
= 0, (4)

−∆T + Pr(u
∂T

∂x
+ v

∂T

∂y
) = 0, (5)

where T (x, y) is the temperature, Pr is a Prandtl number, and Gr is a Grashof
number. The boundary conditions are ω(x, y) = − ∂u

∂y
+ ∂v

∂x
. The system is

discretized using a standard finite difference scheme with a five-point stencil
for each component on a uniform Cartesian grid.
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4 Algorithms and Software

We use inexact Newton methods (see, e.g., [16]) to simultaneously solve the
driven cavity flow equations (2) through (5), which have the combined form
f(u) = 0. We use a Krylov iterative method to (approximately) solve the
Newton correction equation

f ′(u`−1) δu` = −f(u`−1), (6)

in the sense that the linear residual norm ||f ′(u`−1) δu`+f(u`−1)|| is sufficiently
small. We then update the iterate via

u` = u`−1 + α · δu`,

where α is a scalar determined by a line search technique such that 0 < α ≤ 1.
We terminate the Newton iterates when the relative reduction in the residual
norm falls below a specified tolerance, i.e., when ||f(u`)|| < ε||f(u0)||, where
0 < ε < 1.

We precondition the Newton-Krylov methods, whereby we increase the linear
convergence rate at each nonlinear iteration by transforming the linear system
(6) into the equivalent form

B−1f ′(u`−1) δu` = −B−1f(u`−1),

through the action of a preconditioner, B, whose inverse action approximates
that of the Jacobian, but at smaller cost. As further discussed in Section 5,
we consider Krylov methods such as restarted GMRES, with preconditioners
including both drop tolerance and level of fill variants of incomplete factoriza-
tions (see, e.g., [14]).

We instantiate the solution of our driven cavity flow models through the
Portable, Extensible Toolkit for Scientific Computation (PETSc) [4,5], a suite
of data structures and routines for the scalable solution of scientific appli-
cations modeled by PDEs. The software integrates a hierarchy of libraries
that range from low-level distributed data structures for meshes, vectors, and
matrices through high-level linear, nonlinear, and timestepping solvers. The
algorithmic source code is written in high-level abstractions so that it can be
easily understood and modified. This approach promotes code reuse and flexi-
bility, and in many cases helps to decouple issues of parallelism from algorithm
choices.

The toolkit attempts to handle in a highly efficient way, through a uniform
interface, the low-level details of assembling and invoking a large number of
methods. Examples of such details include organizing code for strong cache
locality, preallocating memory in sizable chunks rather than incrementally,
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and separating tasks into one-time and every-time subtasks using the inspec-
tor/executor paradigm. The benefits to be gained from these and from other
numerically neutral but architecturally important techniques are so significant
that it is efficient in both programmer time and execution time to express them
in general-purpose code.

Figure 2 illustrates the calling tree of a typical nonlinear PDE application us-
ing preconditioned Newton-Krylov solvers within PETSc. The top-level appli-
cation driver performs I/O related to initialization, restart, and post-processing;
it also calls PETSc routines to create data structures for vectors and matri-
ces and to initiate the nonlinear solver. In turn, the nonlinear solver library
calls user-defined routines for function evaluations f(u) and (approximate)
Jacobian evaluations f ′(u) at given state vectors.

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post
Processing

PC KSP PETSc

Application Driver

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Solve
F(u) = 0

Fig. 2. Schematic diagram of a nonlinear PDE application using preconditioned
Newton-Krylov methods, showing a user-provided driver and user-provided callback
routines for evaluating the nonlinear residual vector and corresponding Jacobian at
solver-requested states.

The Newton-based methods within PETSc are written in a data-structure-
neutral form that uses abstractions for vectors, matrices, and linear solvers.
The techniques of encapsulation and polymorphism enable the support of var-
ious matrix storage schemes and linear solvers through a single user interface.
Such flexibility is critical for enabling easy experimentation with different al-
gorithms and data structures. For example, we implemented the composite
methods presented in Section 2 by defining a new linear solver that encom-
passes the set of possible algorithms in the composite. We then investigated a
range of composite variants simply by specifying particular runtime options;
no changes in the application code were required for these experiments.
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5 Experiments

We report on our experiments with single and multi-method (composite) linear
solvers for the driven cavity flow application. We performed our experiments
on a workstation with a dual-CPU 500 MHz Pentium III with 512 MB of
RAM. As described in Section 4, the application employs several iterations
of an inexact Newton method, where each nonlinear iteration requires a lin-
ear system solution. The linear solver can use one of several underlying base
preconditioned Krylov methods or their composites. Our initial experiments
were directed towards evaluating the potential benefits of robust composite
linear solvers for reducing total application time over a set of several related
simulations.

In our driven cavity flow application with a fixed mesh (and linear system
size), the convergence of the nonlinear solver is affected mainly by two pa-
rameters that determine the degree of nonlinearity of the system: the Grashof
number and the lid velocity. At higher values of either or both parameters, the
application typically produces linear systems that are more difficult to solve
using Krylov methods with mild to medium degrees of preconditioning. Con-
sequently, most underlying linear solvers have high failure rates. Furthermore,
the nonlinear iterations often fail even with relatively low failure rates of the
linear solver. At significantly lower values of the two parameters, both linear
and nonlinear iterations converge readily, and linear solver failures seem to
have a negligible effect on the convergence of the nonlinear solver. Thus, these
low and high parameter values define the range of values that are relevant
for our experiments; our experiments were limited to those values where the
nonlinear solver converged while incurring failures for several linear system
solution instances.

Our experiments used a 96 × 96 mesh with Grashof numbers in the range
[500, 1000] and lid velocities in [10, 20]. We detected convergence of New-
ton’s method when ||f(u)|| < ε||f(u0)||, where ε = 1.e−8. To obtain initial
sample observations, we fixed the lid velocity at 20 for Grashof numbers 820,
840, and 1000. Table 2 summarizes performance measures for the four base lin-
ear solvers B1, B2, B3, and B4; all methods use GMRES with different values
of the restart parameter and preconditioners with level of fill ILU and an RCM
ordering or drop-threshold ILU and a QMD ordering. Failure rates, reliability
and utility ratios were computed as specified in Section 2 and used to con-
struct three composite linear solvers. The “optimal” composite, U, comprises
base methods B3, B1, B4, and B2, arranged in increasing order of the utility
ratio. A second composite, labeled T, comprises methods B1, B3, B4, and B2,
in increasing order of time. The third composite, R, has methods in a random
order B3, B4, B1, and B2. In our composites, the solution from a failed base
method becomes the initial guess for a subsequent method, thus naturally al-
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lowing reuse. We detected convergence of each linear solve (whether composite
or not) when the relative reduction in residual norm fell below 1.e−5.

Base Methods B1 B2 B3 B4

GMRES Restart 30 60 45 30

Preconditioner ILU ILUT ILUT ILUT

ILU: Incomplete LU with 1 level of fill and an RCM ordering.

ILUT: Incomplete LU with drop threshold .01 and a QMD ordering.

Linear Solver

Iteration count 2114 2135 2191 2188

Time for all iterations (sec) 1001 1512 1252 1400

Mean time per iteration (sec) 1.42 2.12 1.71 1.92

Failure rate 0.75 0.75 0.50 0.67

Reliability 0.25 0.25 0.50 0.33

Utility ratio 4004 6049 2503 4664

Failure rate of a composite is .19 (.75× .75× .50× .67).

Reliability of a composite is .81 (1.00 − failure rate).

Nonlinear Solver

Iteration count 12 12 12 12

Time for all iterations (sec) 1049 1562 1300 1448

Mean time per iteration (sec) 262 390 325 362

Failure rate 0 0 0 0

Reliability 1 1 1 1

Utility ratio 4198 6242 2599 4824

Utility ratio was obtained using reliability measure of the linear solver.

Table 2
The cumulative performance of four base methods for three driven cavity flow sim-
ulations with a 96 × 96 mesh, a lid velocity of 20, and Grashof numbers 820, 840,
and 1000.

We report on the performance of the four base methods and three composites
for nine simulations. We introduce the term simulation point to designate each
set of nonlinearity parameters. We use a series of figures with a stacked bar
for each method; the height of a bar indicates the cumulative value over all
simulation points, while a single segment corresponds to the value observed
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Fig. 3. The number of failures and the mean reliability of the linear solver using
base linear solution methods B1, B2, B3, and B4, and composites U, T, and R.

at a simulation point. In our figures, we indicate the parameters for each
simulation point (and thus a segment of stacked bar) in the form i:j, where i

denotes the Grashof number and j denotes the lid velocity.

Figure 3 shows the total number of failures and the reliability for base meth-
ods B1, B2, B3, B4, and composites U, T, and R. Based on our model, all
composites should have a worst-case failure rate of .19, a value significantly
lower than that of a base method. Likewise, the reliability of a composite is .81
and thus higher than that of a base method (see Table 2). The observed values
of composite reliability were ideal and better than the predicted values. All
composites successfully solve all linear systems and no failures were observed
(although composites typically use more than one underlying method).

Figures 4 and 5 show the total number of linear and nonlinear iterations, and
the time per iteration for each method. The product of these two measures is
approximately equal to the total time for linear (or nonlinear) solution. These
results show the benefits of taking into account both failure rates and execution
times to develop composites. The time per linear iteration is the lowest for the
composite T, which is based on least time. However, since the initial methods
in the composite often fail, the overall number of linear solver iterations for
T correspondingly increases, as does the time per nonlinear iteration. On the
other hand, for the utility ratio composite U, although the time per linear
iteration is higher than for T, the number of linear iterations and hence the
time per nonlinear iteration are significantly smaller. Observe, too, that the
total number of nonlinear iterations is lower for all composites than for the base
methods. We conjecture that this is a consequence of the improved reliability
of the composite linear solvers. We expect this effect to be more pronounced
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Fig. 4. Iteration counts for linear and nonlinear solution using base methods B1,
B2, B3, and B4, and composites U, T, and R.

in applications where the convergence of the nonlinear solver depends more
critically on accurate linear system solution. This relationship is somewhat
weak for our application for the selected range of parameters.

Figure 6 shows the total linear and nonlinear solution time over all nine sim-
ulations, and Table 3 contains a summary of the results shown in detail in
Figures 3 through 6. Observe that these times are the least for composite U,
in which the underlying methods are in increasing order of the utility ratio.
However, these execution times are not vastly different from those for the base
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1000:20

Fig. 5. Average time per iteration for linear and nonlinear solution.
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Fig. 6. Total time for linear and nonlinear solution using base methods B1, B2, B3,
and B4, and composites U, T, and R.

method B1, even though the number of linear solver iterations for U is signif-
icantly lower (see Figure 4). This situation occurs partly because the decrease
in nonlinear iterations from accurate linear system solution using U is offset
by the lower time per linear iteration of base method B1. Another reason is
that although base method B1 fails the most number of times (least reliable),
the failures do not translate into a proportional increase in the nonlinear it-
erations. We conjecture that the potential benefits of robust linear solution
through composites would be even more dramatic for applications in which
the linear solver failures lead to significantly slower convergence (or failure) of
the nonlinear solver. We expect this situation to be especially relevant in the
latter iterations of Newton’s method, when relatively accurate linear solves
are often needed to achieve quadratic convergence.

6 Conclusions

We have provided a combinatorial model for developing multi-method com-
posite solvers that provide highly reliable solution while minimizing worst-case
average execution time. We have shown how such composites can be instan-
tiated with relative ease using advanced software environments. As demon-
strated by our experiments for the PDE-based driven cavity flow simulation,
our composite solvers can indeed provide improved performance and reliability
compared to any single method.

Our composites were based on a static ordering of underlying methods. We
conjecture that long-running simulations can potentially benefit from adapting
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Metric Base Methods Composites

B1 B2 B3 B4 U T R

Linear solver

Time (seconds) 3371 3916 3258 3640 3105 4668 3299

Iteration count 7160 5571 5698 5696 4966 8332 5157

Number of Failures 31 23 18 22 0 0 0

Failure Rate(%) 77.5 71.9 56.2 67.7 0 0 0

Nonlinear solver

Time (seconds) 3563 4044 3387 3769 3224 4795 3417

Iteration count 40 32 32 32 27 29 27

Table 3
Summary of cumulative performance measures for nine simulations.

the composite to match evolving problem characteristics more accurately. We
are currently investigating practical methods for developing such dynamic
composites.

The traditional library approach for scientific computing software would im-
pose prohibitive software development costs for instantiating composite meth-
ods. Consequently, advanced software environments such as PETSc are crit-
ical for implementing both static and dynamic composites. A key feature of
such systems is that they provide a hierarchy of abstract interfaces, whose
implementations can be selected at run-time. A more general component ap-
proach for high-performance scientific software is currently under development
by the Common Component Architecture Forum (CCA) [2]. Recently, Norris
et. al. have developed some prototype CCA compliant component interfaces
for PDEs and optimization [17]; these interfaces are at moderate granularities
such as a linear solve or a gradient evaluation with support for multiple under-
lying component implementations. These developments in advanced software
architectures for scientific computing make composite methods both timely
and practical. We plan to implement CCA-compliant components that would
allow both static and dynamic algorithm composition to improve application
performance. A longer term goal is to develop component interfaces for com-
posites that simplify their assembly and invocation.
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