*

SPINning Parallel Systems Software

Olga Shumsky Matlin, Ewing Lusk, and William McCune

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439, USA
{matlin,lusk,mccune}@mcs.anl.gov

Abstract. We describe our experiences in using SPIN to verify parts of
the Multi-Purpose Daemon (MPD) parallel process management system.
MPD is a distributed collection of processes connected by Unix network
sockets. Its dynamic nature is easily expressible in the SPIN/PROMELA
framework but poses performance and scalability challenges. We present
here the results of expressing some of the parallel algorithms of MPD
and executing verification runs with SPIN.

1 Introduction

Reasoning about parallel programs is surprisingly difficult. Even small parallel
programs are difficult to write correctly, and an incorrect parallel program is
equally difficult to debug, as we experienced while writing the Multi-Purpose
Daemon (MPD), a process manager for parallel programs [1J2]. Despite MPD’s
small size and apparent simplicity, errors have impeded progress toward code
in which we have complete confidence. Such a situation motivates us to explore
program verification techniques. In our first attempt [9], based on the ACL2 [7]
theorem prover, formulating desired properties of and reasoning about models
of MPD algorithms proved difficult. Our second approach employs the model
checker SPIN [6].

MPD is itself a parallel program. Its function is to start the processes of a
parallel job in a scalable way, manage input and output, handle faults, provide
services to the application, and terminate jobs cleanly. MPD is the sort of process
manager needed to run applications that use the standard MPI [TOJTT] library
for parallelism, although it is not MPI specific. MPD is distributed as part of
the portable and publicly available MPICH [45] implementation of MPI.

The remainder of the paper is structured as follows. In Section 2 we describe
MPD in more detail and outline our method for modeling a distributed, dynamic
set of Unix processes in PROMELA. In Section Bl we present the concrete results
of specific verification experiments. We conclude in Section H] with a summary
of the current project status and our future plans.

* This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research,
U.S. Department of Energy, under Contract W-31-109-Eng-38.

D. Bosnacki and S. Leue (Eds.): SPIN 2002, LNCS 2318, pp. 213-220] 2002.
© Springer-Verlag Berlin Heidelberg 2002

214 Olga Shumsky Matlin, Ewing Lusk, and William McCune

Fig. 1. Daemons with console process, managers, and clients

2 Approach

The MPD system comprises several types of processes. The daemons are per-
sistent (may run for weeks or months at a time, starting many jobs) and are
connected in a ring. Manager processes, started by the daemons to control the
application processes (clients) of a single parallel job, provide most of the MPD
features and are also connected in a ring. A separate set of managers supports
an individual process environment for each user process. A console process is an
interface between a user and the daemon ring. A representative topology of the
MPD system is shown in Figure[Il The vertical solid lines represent connections
based on pipes; the remaining solid lines all represent connections based on Unix
sockets. The remainder are potential or special-purpose connections.

Each of the daemon, manager, and console process types has essentially the
same pattern of behavior, which is important for our purpose. After initialization,
the process enters an infinite, mostly idle, loop, implemented by a Unix socket
function select. When a message arrives on one of its sockets, the process calls
the appropriate message handler routine and reenters the idle select state.
The handler does a small amount of processing, creating new sockets or sending
messages on existing ones. The logic of the distributed algorithms executed by
the system as a whole is contained primarily in the handlers, and this is where
the difficult bugs appear.

2.1 Modeling Components of the Multi-purpose Daemon

Components of the MPD system map naturally to PROMELA entities: a proctype
is defined for each MPD process type, and sockets are represented by channels.
The structure of the MPD process types allows us to treat them as comprising
three tiers. The top tier corresponds to the upper-level sequential logic of the pro-
cess (initialization, select loop, calling the handlers). Handlers form the second
tier. The bottom tier corresponds to well-understood Unix socket operations.

An MPD programmer uses, but does not implement, predefined libraries of
the socket functions. However, having to model the socket operations explicitly,
we created a PROMELA library of the primitives, which allows us to (1) hide the
details of the socket model from both the verification and the future mapping of
the model to the executable code, (2) interchange, if need be, different models of
sockets without changing the remainder of the model, and (3) reuse the socket
model in verifying independent MPD algorithms.

SPINning Parallel Systems Software 215

0 1 2 3 4 6 7
—=
other_fd O [5] 3]
owner_pid L O T T
c process 2 use_flag FRER RHS LHS
leftfd =5

Fig. 2. Connected MPD processes and corresponding socket records array

2.2 Modeling Unix Sockets

A Unix socket, an endpoint of a bidirectional communication path, is manipu-
lated when a connection between two processes is established or destroyed. A
socket is referenced by a file descriptor (fd) and represents a buffer for reading
and writing messages. Our PROMELA model of a socket consists of a channel and
a three-part record. The first record field references the fd at the other endpoint
of the connection. The second field identifies a process that has an exclusive
control over the socket. The third field indicates whether the socket is free and,
if not, how it can be used by the owner process. Figure [2 shows two connected
processes and the corresponding state of an array of the socket descriptors.

Five Unix socket primitives have been modeled according to [13]: connect,
accept, close, read, and write. As select appears only in the top tier of the
MPD process, its implementation is specific to an MPD algorithm. Below is an
excerpt of the socket library.

typedef conn_info_type { /* socket descriptor */
unsigned other_fd : FD_BITS;
unsigned owner_pid : PROC_BITS;
unsigned use_flag : FLAG_BITS;
+
conn_info_type conn_info[CONN_MAX];
chan connection[CONN_MAX] = [QSZ] of {msg_typel};

inline read(file_desc, message) {
connection[file_desc] 7message; }

inline write(file_desc, message) {
connection[conn_info[file_desc] .other_fd] !message;
fd_select_check(conn_info[file_desc].other_fd) }

inline close(file_desc) {

IF /% other side has not been closed yet */
(conn_info[file_desc].other_fd != INVALID_FD) ->
set_other_side(conn_info[file_desc] .other_fd,INVALID_FD);
fd_select_check(conn_info[file_desc].other_fd)

FI;

deallocate_connection(file_desc) }

216 Olga Shumsky Matlin, Ewing Lusk, and William McCune

D-new D-left D-right

connect D-lef

reconnect_rhs

[connect D-right new_hs

close old Ihs

Fig. 3. Parallel ring insertion algorithm

inline connect(file_desc, 1lp) {
allocate_connection(j); /* server’s connection */
set_owner(j, 1p); /* finalized by accept */
set_handler(j, AWAIT_ACCEPT);
allocate_connection(file_desc); /* client’s connection */
set_owner (file_desc, _pid);

set_other_side(j, file_desc); /* relate connections */
set_other_side(file_desc, j); /* to each other */
1p_select_check(lp) }

inline accept(file_desc) {
file_desc = 0;
do /* next line is a simplification of real accept */
(file_desc >= CONN_MAX) -> assert(0) /* error, no connect */
(readable_lp(file_desc,_pid)) ->
set_handler(file_desc, NEW); break
:: else —> file_desc = file_desc + 1
od }

3 Verification of MPD Algorithms

Most interesting MPD algorithms reside in the daemons and the managers. We
modeled and verified algorithms for daemon ring creation and recovery and a
manager-level barrier algorithm. The models conform to the three-tiered view of
the algorithms and rely on the socket library. We used bit-arrays and followed
recommendations from [12] and employed ideas from [3].

3.1 Ring Establishment Algorithm

To create a daemon ring, the initial daemon establishes a listening port to which
subsequent connections are made. A ring of one daemon is created. The other
daemons enter the ring by connecting to the first daemon. Figure Bl shows an
MSC representation of an algorithm that allows several daemons to enter the ring
simultaneously. To establish the ring and to recover from a failure, each daemon

SPINning Parallel Systems Software 217

maintains identities of the two right-hand side neighbors (rsh and rhs2). Upon
receipt of new_rhs, D-left sends a message of type rhs2info (not shown in the
figure), counterclockwise along the ring, to notify its left-hand side neighbor that
D-new is its new rhs2. Upon receipt of new_lhs, D-right sends rhs2info, also
counterclockwise, to notify D-new that its rhs2 is the rhs of D-right.

We verify that, upon algorithm completion, the resulting system topology
implicit in the socket descriptor structures array is a ring of the correct size. We
also check that in each daemon the identities of rhs and rhs2 agree with the
information in the array. These two conditions are collectively referred to as the
state property. MPD designers and users test the ring by invoking mpitrace,
which reports the identities and positions of all daemons. To convince our “cus-
tomers” (i.e., MPD designers) of the correctness of our model, we model the
trace algorithm and prove its termination. Because the algorithm involves send-
ing additional messages, verification of the trace completion is more expensive,
in time and memory, than verification of the state property.

3.2 Recovery from a Single Nondeterministic Failure

Upon daemon crash, the operating system will close all associated sockets, which
will be visible to its neighbors. When the right-hand side socket of the daemon
to the left of the crash is closed unexpectedly, the daemon reinstates the ring by
connecting to its rhs2 neighbor. In our model a random daemon in the initial
hard-coded ring is directed to fail, and the recovery procedure is initiated. The
model was verified against the state and trace termination correctness properties.

3.3 Manager-Level Barrier Algorithm

Parallel jobs (programs running on the clients) rely on the managers to imple-
ment a synchronization mechanism, called barrier. In our model of the algorithm
some messages are abstracted, and the clients are not modeled explicitly. When
a leader manager receives a barrier request from its client (represented by setting
the client_barrier_in bit), it sends the message barrier_in along the ring. A
non-leader manager holds the message (setting the bit holding barrier_in) un-
til its client requests the service. Once the barrier_in is received by the leader,
the message is converted to barrier_out and sent along the ring. Upon receipt
of barrier_out, managers notify the clients, setting the client_barrier_in bit,
that the synchronization has occurred. A special constant ALL_BITS corresponds
to a bit-vector with all bits set.
We verified two correctness conditions. First, all clients pass the barrier.

timeout -> assert(client_barrier_out==ALL_BITS)

Second, an invariant holds: a client is allowed to proceed only when all clients
have reached the barrier and all managers have released the barrier_in message.

assert((client_barrier_out==0) ||
((client_barrier_in==ALL_BITS) && (holding_barrier_in==0)))

218 Olga Shumsky Matlin, Ewing Lusk, and William McCune

Table 1. Verification statistics summary

Model| Time |Memory|Vector Size States Search

Algorithm |Property| Size | (s) (MB) (byte) Stored/Matched |Depth
Insert State 4]105.35| 768 224 3.83e+06/7.97e+06| 115
Insert Trace 3 0.80 3.3 136 5743/6718 58
4* 1159.33| 173 224 4.57¢4+06/9.28¢4+06| 115
Recover | State 9 69.70 | 376.0 520 734040/3.26e4+06 | 158
12* 15340.19| 772.6 876 2.75e+07/1.76e+08| 209
Recover | Trace 8 163.39 | 814.1 464 1.93e406/7.83e+06| 199
9* 11919.94| 502.5 520 1.62e4-07/7.85e4+07| 232
Barrier 12 | 127.97 | 549.2 288 1.95e4+06/1.18e407| 101
14* |3050.96| 571.3 332 1.75e4-07/1.25e4+08| 117

3.4 Verification Statistics

Table [l summarizes verification statistics for the three algorithms. All verifica-
tion runs were conducted on a 933 MHz Pentium IIT processor with 970 MB
of usable RAM, with default XSPIN settings, except the memory limit. Com-
pression (-DCOLLAPSE compile-time directive) was used in cases identified by an
asterisk. We show statistics for the largest models on which verification succeeded
with and without compression.

We were unable to exhaustively verify the ring insertion algorithm on models
with five or more daemons, even with compression. Applying predicate abstrac-
tion techniques enabled verification of models of eight daemons, but a desirable
correlation of the model to the C code was lost, as was the ability to perform
meaningful simulations. For other algorithms, verification succeeded for larger
models, although, admittedly, the algorithms are rather simple.

Let us put in perspective the size of models on which verification succeeds.
While a running MPD may consist of tens or hundreds of processes, prior ex-
perience with debugging MPD code suggests that even the most difficult errors
manifest themselves in systems of four to ten processes. Therefore, the models
of some MPD algorithms at the current level of abstraction allow us to verify
some algorithms on models of satisfactory size. For other algorithms, such as the
ring establishment algorithm, a slightly more abstract model or a more efficient
socket library will enable meaningful verification.

4 Summary and Future Plans

We described here our initial experiences in applying the SPIN-based approach
to verifying a parallel process management system called MPD. Our models
relied on a reusable model of Unix socket operations. For the ring establishment
algorithm, we were able to complete exhaustive verification only on models with
up to four daemons. We were, however, able to exhaustively verify larger models
of other algorithms.

SPINning Parallel Systems Software 219

p-1 : (msg.cmd == barrier_in) ->

p.2 if

p.-3 (IS_1(client_barrier_in,_pid)) ->
p.-4 if

p.5 :: (_pid == 0) ->

p.6 make_barrier_out_msg;

p.7 find_right (fd, _pid);

p-8 write(fd,msg)

P-9 :: else —>

p-10 make_barrier_in_msg;

p-11 find_right (fd, _pid);

p.-12 write(fd,msg)

p.13 fi

p.14 :: else —>

p-15 SET_1(holding_barrier_in,_pid)
p.16 fi

c.1 if (strcmp(cmdval, "barrier_in") == 0) {
c.2 if (client_barrier_in) {

c.3 if (rank == 0) {

c.4 sprintf(buf, "cmd=barrier_out dest=anyone src=Ys\n", myid);
c.5 write_line(buf, rhs_idx);

c.6 }

c.7 else {

c.8 sprintf(buf, "cmd=barrier_in dest=anyone src=Ys\n", origin);
c.9 write_line(buf, rhs_idx);

c.10 }

c.11 }

c.12 else {

c.13 holding_barrier_in = 1;

c.14 }

c.15 }

Fig. 4. Portion of the PROMELA model and C implementation of the barrier algorithm

Based on our experiences, we believe that design and development of algo-
rithms for MPD and similar systems can benefit greatly from application of the
SpPIN-based software verification methods. SPIN’s simulation capability enables
rapid prototyping of new algorithms. Since even the most difficult errors can be
discovered on models comprising only a few processes, the verification engine of
SPIN enables us to verify the algorithms on models that are sufficiently large for
our purposes.

A long-term goal of this project is to model and verify MPD algorithms and
then translate them into C or another programming language, while preserving
the verified properties. Ideally, translation should be automated. To allow this
to happen, the PROMELA model must not be overly abstract. Figure @ shows
a PROMELA model and a C implementation of a portion of the barrier algo-
rithm. Given the one-to-one correspondence between the control structures, and

220 Olga Shumsky Matlin, Ewing Lusk, and William McCune

a mapping between the rest of the code, automated translation certainly appears
feasible for this level of abstraction. In general, verifiable models of the MPD
algorithms should fall into just a few different classes with respect to the level of
abstraction, and a separate mapping can be defined for each class to enable the
PROMELA-to-C translation. Only the handlers in the middle tier of the process
model need to be translated.

Many algorithms execute in parallel in a running MPD system, and their
interaction is important. We hope to be able eventually to reason formally about
MPD models that consist of several related and interdependent algorithms.

More information on the project, including the discussed PROMELA models,
can be found in [§] and at http://www.mcs.anl.gov/ matlin/spin-mpd.

References

1. R. Butler, W. Gropp, and E. Lusk. A scalable process-management environment for
parallel programs. In J. Dongarra, P. Kacsuk, and N. Podhorszki, editors, Recent
Advances in Parallel Virutal Machine and Message Passing Interface, LNCS 1908,
pages 168-175. Springer Verlag, September 2000.

2. R. Butler, W. Gropp, and E. Lusk. Components and interfaces of a process man-
agement system for parallel programs. Parallel Computing, 27:1417-1429, 2001.

3. E. Fersman and B. Jonsson. Abstraction of communication channels in Promela:
A case study. In K. Havelund, J. Penix, and W. Visser, editors, Proceedings of the
7th International SPIN Workshop, LNCS 1885, pages 187-204. Springer Verlag,
2000.

4. W. Gropp and E. Lusk. MPICH. ftp://info.mcs.anl.gov/pub/mpi.

5. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable im-
plementation of the MPI Message-Passing Interface standard. Parallel Computing,
22(6):789-828, 1996.

6. G. J. Holzmann. The model checker SPIN. IEEFE Transactions on Software Engi-
neering, 22(5):279-295, May 1997.

7. M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers, 2000.

8. O. S. Matlin, E. Lusk, and W. McCune. SPINning parallel systems software.
Preprint ANL/MCS-P921-1201, Argonne National Laboratory, 2001.

9. W. McCune and E. Lusk. ACL2 for parallel systems software. In M. Kaufmann
and J S. Moore, editors, Proceedings of the 2nd ACL2 Workshop. University of
Texas, 2000. http://www.cs.utexas.edu/users/moore/acl2/workshop-2000.

10. Message Passing Interface Forum. MPI: A Message-Passing Interface standard.
International Journal of Supercomputer Applications, 8(3/4):165-414, 1994.

11. Message Passing Interface Forum. MPI2: A message passing interface standard.
International Journal of High Performance Computing Applications, 12(1-2):1—
299, 1998.

12. T. C. Ruys. Low-fat recipes for SPIN. In K. Havelund, J. Penix, and W. Visser,
editors, Proceedings of the 7Tth International SPIN Workshop, LNCS 1885, pages
287-321. Springer Verlag, 2000.

13. W. R. Stevens. Uniz Network Programming, volume 1. Prentice Hall PTR, second
edition, 1998.

	1 Introduction
	2 Approach
	2.1 Modeling Components of the Multi-purpose Daemon
	2.2 Modeling Unix Sockets

	3 Verification of MPD Algorithms
	3.1 Ring Establishment Algorithm
	3.2 Recovery from a Single Nondeterministic Failure
	3.3 Manager-Level Barrier Algorithm
	3.4 Verification Statistics

	4 Summary and Future Plans
	References

