SLEPc: Scalable Library for Eigenvalue Problem Computations

Tutorial – version 3.6

Jose E. Roman
D. Sistemes Informàtics i Computació
Universitat Politècnica de València, Spain

Celebrating 20 years of PETSc, Argonne – June, 2015
Outline

1. Overview

2. Basic Usage
 - Eigenvalue Solvers
 - Spectral Transformation

3. Advanced Features
Eigenproblems

Large-scale eigenvalue problems are among the most demanding calculations in scientific computing

Example application areas:
- Dynamic structural analysis (e.g., civil engineering)
- Stability analysis (e.g., control engineering)
- Eigenfunction determination (e.g., electromagnetics)
- Bifurcation analysis (e.g., fluid dynamics)
- Information retrieval (e.g., latent semantic indexing)
Use Case: Neutron Diffusion Equation in Nuclear Eng.

Neutron power in nuclear reactor cores
- Commercial reactors such as PWR
- Both steady state and transient
- Goal: assure safety

Lambda Modes Equation
\[\mathcal{L}\phi = \frac{1}{\lambda} \mathcal{M}\phi \]

Current trends
- Complex geometries, unstructured meshes, FVM
- Coupled neutronic-thermalhydraulic calculations
Use Case: Gyrokinetic Equations in Plasma Physics

Plasma turbulence in a tokamak determines its energy confinement

- GENE code
- Initial value solver

Knowledge of the spectrum of the linearized equation

\[Ax = \lambda x \]

- Complex, non-Hermitian, implicit \(A \)
- Sizes ranging from a few millions to a billion
- Estimate optimal timestep (largest eigenvalue); track sub-dominant instabilities (rightmost evals)
SLEPc: Scalable Library for Eigenvalue Problem Computations

A general library for solving large-scale sparse eigenproblems on parallel computers

- Linear eigenproblems (standard or generalized, real or complex, Hermitian or non-Hermitian)
- Also support for SVD, PEP, NEP and more

\[Ax = \lambda x \quad Ax = \lambda Bx \quad Av_i = \sigma_i u_i \quad T(\lambda)x = 0 \]

Authors: J. E. Roman, C. Campos, E. Romero, A. Tomas

http://slepc.upv.es

Current version: 3.6 (released June 2015)
PETSc

<table>
<thead>
<tr>
<th>Nonlinear Systems</th>
<th>Time Steppers</th>
<th>Polynomial Eigensolver</th>
<th>Linear Eigensolver</th>
<th>Spectral Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Search</td>
<td>Euler</td>
<td>TOAR</td>
<td>Krylov-Schur</td>
<td>Shift</td>
</tr>
<tr>
<td>Trust Region</td>
<td>Backward Euler</td>
<td>Q-Arnoldi</td>
<td>GD</td>
<td>Shift-and-invert</td>
</tr>
<tr>
<td>Other</td>
<td>Pseudo Time Step</td>
<td>Linearization</td>
<td>JD</td>
<td>Cayley</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LOBPCG</td>
<td>Preconditioner</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CISS</td>
<td></td>
</tr>
</tbody>
</table>

Preconditioners

- Additive Schwarz
- Block Jacobi
- Jacobi
- ILU
- ICC
- LU
- Other

Matrices

- Compressed Sparse Row
- Block CSR
- Symmetric Block CSR
- Dense
- CUSP
- Other

Vectors

- Standard
- CUSP

Index Sets

- Indices
- Block
- Stride
- Other

SLEPC

<table>
<thead>
<tr>
<th>Polynomial Eigensolver</th>
<th>Nonlinear Eigensolver</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOAR</td>
<td>SLP</td>
</tr>
<tr>
<td>Q-Arnoldi</td>
<td>RII</td>
</tr>
<tr>
<td>Linearization</td>
<td>N-Arnoldi</td>
</tr>
<tr>
<td></td>
<td>Interp.</td>
</tr>
</tbody>
</table>

SVD Solver

- Cross Product
- Cyclic Matrix
- Lanczos
- Thick R. Lanczos

M. Function

- Krylov

Linear Eigensolver

- Krylov-Schur
- GD
- JD
- LOBPCG
- CISS
- Other

Spectral Transformation

- Shift
- Shift-and-invert
- Cayley
- Preconditioner

<table>
<thead>
<tr>
<th>Linear</th>
<th>BV</th>
<th>DS</th>
<th>RG</th>
<th>FN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral Transformation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem Classes

The user must choose the most appropriate solver for each problem class

<table>
<thead>
<tr>
<th>Problem class</th>
<th>Model equation</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear eigenproblem</td>
<td>$Ax = \lambda x, \quad Ax = \lambda Bx$</td>
<td>EPS</td>
</tr>
<tr>
<td>Quadratic eigenproblem</td>
<td>$(K + \lambda C + \lambda^2 M)x = 0$</td>
<td>†</td>
</tr>
<tr>
<td>Polynomial eigenproblem</td>
<td>$(A_0 + \lambda A_1 + \cdots + \lambda^d A_d)x = 0$</td>
<td>PEP</td>
</tr>
<tr>
<td>Nonlinear eigenproblem</td>
<td>$T(\lambda)x = 0$</td>
<td>NEP</td>
</tr>
<tr>
<td>Singular value decomp.</td>
<td>$Av = \sigma u$</td>
<td>SVD</td>
</tr>
<tr>
<td>Matrix function</td>
<td>$y = f(A)v$</td>
<td>MFN</td>
</tr>
</tbody>
</table>

† QEP removed in version 3.5

This tutorial focuses on the linear eigenvalue problem (EPS)
EPS: Eigenvalue Problem Solver

Compute a few eigenpairs \((x, \lambda)\) of

Standard Eigenproblem

\[
Ax = \lambda x
\]

Generalized Eigenproblem

\[
Ax = \lambda Bx
\]

where \(A, B\) can be real or complex, symmetric (Hermitian) or not

User can specify:

- Number of eigenpairs (\(nev\)), subspace dimension (\(ncv\))
- Selected part of spectrum
- Tolerance, maximum number of iterations
- Advanced: extraction type, initial guess, constraints, balancing
Basic EPS Usage

```c
EPS eps; /* eigensolver context */
Mat A, B; /* matrices of Ax=kBx */
Vec xr, xi; /* eigenvector, x */
PetscScalar kr, ki; /* eigenvalue, k */

EPSCreate(PETSC_COMM_WORLD, &eps);
EPSSetOperators(eps, A, B);
EPSSetProblemType(eps, EPS_GNHEP);
EPSSetFromOptions(eps);
EPSSolve(eps);
EPSGetConverged(eps, &nconv);
for (i=0; i<nconv; i++) {
    EPSGetEigenpair(eps, i, &kr, &ki, xr, xi);
}
EPSDestroy(eps);
```
Problem Definition

EPSSetOperators(EPS eps, Mat A, Mat B)
Pass one or two matrices that define the problem $Ax = \lambda Bx$

- For a standard problem, set $B=NULL$
- Any PETSc matrix type, including *shell* matrices

EPSSetProblemType(EPS eps, EPSProblemType type)
To indicate the problem type (hint for the solver)

- EPS_HEP standard Hermitian problem, $A = A^*$, all λ_i real
- EPS_NHEP standard non-Hermitian problem
- EPS_GHEP generalized Hermitian problem, A, B symmetric (Hermitian), B positive (semi-)definite, all λ_i real
- EPS_GNHEP generalized non-Hermitian problem
Solution of the Eigenvalue Problem

There are n eigenvalues (counted with their multiplicities)

Partial eigensolution: nev solutions

$$\lambda_0, \lambda_1, \ldots, \lambda_{nev-1} \in \mathbb{C}$$
$$x_0, x_1, \ldots, x_{nev-1} \in \mathbb{C}^n$$

$nev = \text{number of eigenvalues} / \text{eigenvectors (eigenpairs)}$

Which eigenvalues must be computed?

1. Those with largest (smallest) magnitude
2. Those with largest (smallest) real (imaginary) part
3. Those closest to a given target value τ of the complex plane
4. All eigenvalues in an interval or region of the complex plane
5. According to a user-defined criterion
Available Eigensolvers

User code is independent of the selected solver

1. Single vector iteration: power iteration, inverse iteration, RQI
2. Subspace iteration with Rayleigh-Ritz projection and locking
3. Explicitly restarted Arnoldi and Lanczos
4. Krylov-Schur, including thick-restart Lanczos
5. Generalized Davidson, Jacobi-Davidson
6. Conjugate gradient methods: LOBPCG, RQCG
7. CISS, a contour-integral solver
8. External packages, and LAPACK for testing

...but some solvers are specific for a particular case:

- LOBPCG computes smallest λ_i of symmetric problems
- CISS allows computation of all λ_i within a region
Processing Command-Line Options

EPSSetFromOptions(EPS eps)
Looks in the command line for options related to EPS

For example, the following command line
$./ex1 -eps_hermitian
is equivalent to a call EPSSetProblemType(eps,EPS_HEP)

Other options have an associated function call
$./ex1 -eps_nev 6 -eps_tol 1e-8

EPSView(EPS eps,PetscViewer viewer)
Prints information about the object (equivalent to -eps_view)
Sample Output of \texttt{-eps_view} (edited)

EPS Object: 1 MPI processes
 type: krylovschur
 Krylov-Schur: 50\% of basis vectors kept after restart
 Krylov-Schur: using the locking variant
 problem type: symmetric eigenvalue problem
 extraction type: Rayleigh-Ritz
 selected portion of the spectrum: largest eigenvalues in magnitude
 number of eigenvalues (nev): 1
 number of column vectors (ncv): 16
 maximum dimension of projected problem (mpd): 16
 maximum number of iterations: 100
 tolerance: \texttt{1e-08}

BV Object: 1 MPI processes
 type: svec
 orthogonalization method: classical Gram-Schmidt
 orthogonalization refinement: if needed (eta: 0.7071)

DS Object: 1 MPI processes
 type: hep
 solving the problem with: Implicit QR method (_steqr)

ST Object: 1 MPI processes
 type: shift
 shift: 0
EPS: Run-Time Examples

$./ex5 -eps_type krylovshur -eps_nev 6 -eps_ncv 24
$./ex5 -eps_type arnoldi -eps_tol 1e-11 -eps_max_it 2000
$./ex1 -eps_type subspace -eps_hermitian -log_summary
$./ex1 -eps_type lobpcg -eps_smallest_real
$./ex5 -eps_type gd -eps_gd_blocksize 2
$./ex9 -eps_type arpack -eps_largest_real
Viewing the Solution

Eigenvalues and eigenvectors can be viewed with PetscViewers

- **Text output, e.g. M-file**
 - `-eps_view_values :myeig.m:ascii_matlab`

- **Plotting eigenvalues**
 - `-eps_view_values draw`

- **Eigenvectors, e.g. to binary file**
 - `-eps_view_vectors binary:evec.bin`

```bash
$ ./ex1 -eps_error_relative ::ascii_info_detail
```

| k | ||Ax-kx||/||kx|| |
|--------|----------------|
| 3.999326 | 1.26221e-09 |
| 3.997304 | 3.82982e-10 |
| 3.993936 | 2.76971e-09 |
| 3.989224 | 4.94104e-10 |
| 3.983171 | 6.19307e-10 |
| 3.975781 | 5.9628e-10 |

Can also compute and display residual errors
Monitoring Convergence

Graphical monitors
-eps_monitor_lg
-eps_monitor_lg_all

Textual monitors
-eps_monitor
-eps_monitor_all
-eps_monitor_conv

1 EPS nconv=0 first unconverged value (error) -0.0695109+2.10989i (2.38956768e-01)
2 EPS nconv=0 first unconverged value (error) -0.0231046+2.14902i (1.09212525e-01)
3 EPS nconv=0 first unconverged value (error) -0.000633399+2.14178i (2.67086904e-02)
4 EPS nconv=0 first unconverged value (error) 9.89074e-05+2.13924i (6.62097793e-03)
5 EPS nconv=0 first unconverged value (error) -0.000149404+2.13976i (1.53444214e-02)
6 EPS nconv=0 first unconverged value (error) 0.000183676+2.13939i (2.85521004e-03)
7 EPS nconv=0 first unconverged value (error) 0.000192479+2.13938i (9.97563492e-04)
8 EPS nconv=0 first unconverged value (error) 0.000192534+2.13938i (1.77259863e-04)
9 EPS nconv=0 first unconverged value (error) 0.000192557+2.13938i (2.82539990e-05)
10 EPS nconv=0 first unconverged value (error) 0.000192559+2.13938i (2.51440008e-06)
11 EPS nconv=2 first unconverged value (error) -0.671923+2.52712i (8.92724972e-05)
Spectral Transformation

Shift-and-invert is used to compute interior eigenvalues

\[Ax = \lambda Bx \quad \implies \quad (A - \sigma B)^{-1} Bx = \theta x \]

- Trivial mapping of eigenvalues: \(\theta = (\lambda - \sigma)^{-1} \)
- Eigenvectors are not modified
- Very fast convergence close to \(\sigma \)

Things to consider:
- Implicit inverse \((A - \sigma B)^{-1}\) via linear solves
- Direct linear solver for robustness
- Less effective for eigenvalues far away from \(\sigma \)
- Cheaper alternative: preconditioned eigensolvers (J-D)
Illustration of Shift-and-Invert

\[\theta = \frac{1}{\lambda - \sigma} \]
Spectral Transformation in SLEPc

An ST object is always associated to any EPS object

- The user need not create the ST object, EPSGetST to get it
- Internally, the eigensolver works with the operator T
- At the end, eigenvalues are transformed back automatically

<table>
<thead>
<tr>
<th>ST</th>
<th>Standard problem</th>
<th>Generalized problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>shift</td>
<td>$A - \sigma I$</td>
<td>$B^{-1}A - \sigma I$</td>
</tr>
<tr>
<td>sinvert</td>
<td>$(A - \sigma I)^{-1}$</td>
<td>$(A - \sigma B)^{-1}B$</td>
</tr>
<tr>
<td>cayley</td>
<td>$(A - \sigma I)^{-1}(A + \tau I)$</td>
<td>$(A - \sigma B)^{-1}(A + \tau B)$</td>
</tr>
<tr>
<td>precond</td>
<td>$K^{-1} \approx (A - \sigma I)^{-1}$</td>
<td>$K^{-1} \approx (A - \sigma B)^{-1}$</td>
</tr>
</tbody>
</table>

A KSP object is handled internally for the linear solves
ST: Command-Line Examples

$./ex1 -st_type sinvert -eps_target 2.1
 -st_ksp_type preonly -st_pc_type lu
 -st_pc_factor_mat_solver_package mumps

$./ex1 -st_type sinvert -eps_target 2.1
 -st_ksp_type bcgs -st_ksp_rtol 1e-9
 -st_pc_type sor -st_pc_sor_omega 1.3

$./ex5 -eps_type gd -eps_target 0.8 -eps_harmonic
 -st_pc_type asm -st_sub_pc_factor_levels 2

$./ex5 -eps_type jd -st_ksp_type gmres
 -st_pc_type jacobi -st_ksp_max_it 10

$./ex1 -eps_interval 0.4,0.8 -st_type sinvert
 -st_ksp_type preonly -st_pc_type cholesky
Options for Subspace Generation

Initial Subspace

- Provide an initial trial subspace with EPSSetInitialSpace, e.g. from a previous computation
- Krylov solvers only support a single vector

Deflation Subspace

- Provide a deflation space with EPSAttachDeflationSpace
- The eigensolver operates in the restriction to the orthogonal complement
- Useful for constrained eigenproblems or problems with a known nullspace
Extraction / Balancing

Harmonic extraction
In some cases, convergence of the eigensolver may be very slow
→ try to extract better approximations from the available subspace
 ▶ Compute harmonic Ritz values instead of Ritz values
 ▶ To compute interior eigenvalues (alternative to the spectral transformation)
 ▶ Particularly useful in preconditioned eigensolvers (JD, GD)
$./ex5 -m 45 -eps_harmonic -eps_target 0.8 -eps_ncv 60$

Balancing
 ▶ Possible bad accuracy if $\|A\|_2$ large (non-Hermitian problems)
 ▶ Balancing implicitly performs a diagonal similarity DAD^{-1}
Computation of Many Eigenpairs

By default, a subspace of dimension $2 \cdot nev$ is used...

For large nev, this is not appropriate

- Excessive storage and inefficient computation

$$A V_m = V_m S_m b_{m+1}^*$$

Strategy: compute eigenvalues in chunks - restrict the dimension of the projected problem

```
$ ex1 -eps_nev 5000 -eps_mpd 600
```
SLEPc Highlights

- Growing number of eigensolvers
- Seemlessly integrated spectral transformation
- Easy programming with PETSc’s object-oriented style
- Data-structure neutral implementation
- Run-time flexibility, giving full control over the solution process
- Portability to a wide range of parallel platforms
- Usable from code written in C, C++ and Fortran
- Extensive documentation
More Information

Homepage:
http://slepc.upv.es

Hands-on Exercises:
http://slepc.upv.es/handson

Contact email:
slepc-maint@upv.es