Actual source code: da3.c

petsc-3.7.3 2016-07-24
Report Typos and Errors
  2: /*
  3:    Code for manipulating distributed regular 3d arrays in parallel.
  4:    File created by Peter Mell  7/14/95
  5:  */

  7: #include <petsc/private/dmdaimpl.h>     /*I   "petscdmda.h"    I*/

  9: #include <petscdraw.h>
 12: static PetscErrorCode DMView_DA_3d(DM da,PetscViewer viewer)
 13: {
 15:   PetscMPIInt    rank;
 16:   PetscBool      iascii,isdraw,isbinary;
 17:   DM_DA          *dd = (DM_DA*)da->data;
 18: #if defined(PETSC_HAVE_MATLAB_ENGINE)
 19:   PetscBool ismatlab;
 20: #endif

 23:   MPI_Comm_rank(PetscObjectComm((PetscObject)da),&rank);

 25:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
 26:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
 27:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
 28: #if defined(PETSC_HAVE_MATLAB_ENGINE)
 29:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERMATLAB,&ismatlab);
 30: #endif
 31:   if (iascii) {
 32:     PetscViewerFormat format;

 34:     PetscViewerASCIIPushSynchronized(viewer);
 35:     PetscViewerGetFormat(viewer, &format);
 36:     if (format != PETSC_VIEWER_ASCII_VTK && format != PETSC_VIEWER_ASCII_VTK_CELL) {
 37:       DMDALocalInfo info;
 38:       DMDAGetLocalInfo(da,&info);
 39:       PetscViewerASCIISynchronizedPrintf(viewer,"Processor [%d] M %D N %D P %D m %D n %D p %D w %D s %D\n",rank,dd->M,dd->N,dd->P,dd->m,dd->n,dd->p,dd->w,dd->s);
 40:       PetscViewerASCIISynchronizedPrintf(viewer,"X range of indices: %D %D, Y range of indices: %D %D, Z range of indices: %D %D\n",
 41:                                                 info.xs,info.xs+info.xm,info.ys,info.ys+info.ym,info.zs,info.zs+info.zm);
 42: #if !defined(PETSC_USE_COMPLEX)
 43:       if (da->coordinates) {
 44:         PetscInt        last;
 45:         const PetscReal *coors;
 46:         VecGetArrayRead(da->coordinates,&coors);
 47:         VecGetLocalSize(da->coordinates,&last);
 48:         last = last - 3;
 49:         PetscViewerASCIISynchronizedPrintf(viewer,"Lower left corner %g %g %g : Upper right %g %g %g\n",(double)coors[0],(double)coors[1],(double)coors[2],(double)coors[last],(double)coors[last+1],(double)coors[last+2]);
 50:         VecRestoreArrayRead(da->coordinates,&coors);
 51:       }
 52: #endif
 53:       PetscViewerFlush(viewer);
 54:       PetscViewerASCIIPopSynchronized(viewer);
 55:     } else {
 56:       DMView_DA_VTK(da,viewer);
 57:     }
 58:   } else if (isdraw) {
 59:     PetscDraw      draw;
 60:     PetscReal      ymin = -1.0,ymax = (PetscReal)dd->N;
 61:     PetscReal      xmin = -1.0,xmax = (PetscReal)((dd->M+2)*dd->P),x,y,ycoord,xcoord;
 62:     PetscInt       k,plane,base;
 63:     const PetscInt *idx;
 64:     char           node[10];
 65:     PetscBool      isnull;

 67:     PetscViewerDrawGetDraw(viewer,0,&draw);
 68:     PetscDrawIsNull(draw,&isnull);
 69:     if (isnull) return(0);

 71:     PetscDrawCheckResizedWindow(draw);
 72:     PetscDrawClear(draw);
 73:     PetscDrawSetCoordinates(draw,xmin,ymin,xmax,ymax);

 75:     PetscDrawCollectiveBegin(draw);
 76:     /* first processor draw all node lines */
 77:     if (!rank) {
 78:       for (k=0; k<dd->P; k++) {
 79:         ymin = 0.0; ymax = (PetscReal)(dd->N - 1);
 80:         for (xmin=(PetscReal)(k*(dd->M+1)); xmin<(PetscReal)(dd->M+(k*(dd->M+1))); xmin++) {
 81:           PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_BLACK);
 82:         }
 83:         xmin = (PetscReal)(k*(dd->M+1)); xmax = xmin + (PetscReal)(dd->M - 1);
 84:         for (ymin=0; ymin<(PetscReal)dd->N; ymin++) {
 85:           PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_BLACK);
 86:         }
 87:       }
 88:     }
 89:     PetscDrawCollectiveEnd(draw);
 90:     PetscDrawFlush(draw);
 91:     PetscDrawPause(draw);

 93:     PetscDrawCollectiveBegin(draw);
 94:     /*Go through and draw for each plane*/
 95:     for (k=0; k<dd->P; k++) {
 96:       if ((k >= dd->zs) && (k < dd->ze)) {
 97:         /* draw my box */
 98:         ymin = dd->ys;
 99:         ymax = dd->ye - 1;
100:         xmin = dd->xs/dd->w    + (dd->M+1)*k;
101:         xmax =(dd->xe-1)/dd->w + (dd->M+1)*k;

103:         PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_RED);
104:         PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_RED);
105:         PetscDrawLine(draw,xmin,ymax,xmax,ymax,PETSC_DRAW_RED);
106:         PetscDrawLine(draw,xmax,ymin,xmax,ymax,PETSC_DRAW_RED);

108:         xmin = dd->xs/dd->w;
109:         xmax =(dd->xe-1)/dd->w;

111:         /* identify which processor owns the box */
112:         PetscSNPrintf(node,sizeof(node),"%d",(int)rank);
113:         PetscDrawString(draw,xmin+(dd->M+1)*k+.2,ymin+.3,PETSC_DRAW_RED,node);
114:         /* put in numbers*/
115:         base = (dd->base+(dd->xe-dd->xs)*(dd->ye-dd->ys)*(k-dd->zs))/dd->w;
116:         for (y=ymin; y<=ymax; y++) {
117:           for (x=xmin+(dd->M+1)*k; x<=xmax+(dd->M+1)*k; x++) {
118:             PetscSNPrintf(node,sizeof(node),"%d",(int)base++);
119:             PetscDrawString(draw,x,y,PETSC_DRAW_BLACK,node);
120:           }
121:         }

123:       }
124:     }
125:     PetscDrawCollectiveEnd(draw);
126:     PetscDrawFlush(draw);
127:     PetscDrawPause(draw);

129:     PetscDrawCollectiveBegin(draw);
130:     for (k=0-dd->s; k<dd->P+dd->s; k++) {
131:       /* Go through and draw for each plane */
132:       if ((k >= dd->Zs) && (k < dd->Ze)) {
133:         /* overlay ghost numbers, useful for error checking */
134:         base = (dd->Xe-dd->Xs)*(dd->Ye-dd->Ys)*(k-dd->Zs)/dd->w;
135:         ISLocalToGlobalMappingGetBlockIndices(da->ltogmap,&idx);
136:         plane=k;
137:         /* Keep z wrap around points on the drawing */
138:         if (k<0) plane=dd->P+k;
139:         if (k>=dd->P) plane=k-dd->P;
140:         ymin = dd->Ys; ymax = dd->Ye;
141:         xmin = (dd->M+1)*plane*dd->w;
142:         xmax = (dd->M+1)*plane*dd->w+dd->M*dd->w;
143:         for (y=ymin; y<ymax; y++) {
144:           for (x=xmin+dd->Xs; x<xmin+dd->Xe; x+=dd->w) {
145:             sprintf(node,"%d",(int)(idx[base]));
146:             ycoord = y;
147:             /*Keep y wrap around points on drawing */
148:             if (y<0) ycoord = dd->N+y;
149:             if (y>=dd->N) ycoord = y-dd->N;
150:             xcoord = x;   /* Keep x wrap points on drawing */
151:             if (x<xmin) xcoord = xmax - (xmin-x);
152:             if (x>=xmax) xcoord = xmin + (x-xmax);
153:             PetscDrawString(draw,xcoord/dd->w,ycoord,PETSC_DRAW_BLUE,node);
154:             base++;
155:           }
156:         }
157:         ISLocalToGlobalMappingRestoreBlockIndices(da->ltogmap,&idx);
158:       }
159:     }
160:     PetscDrawCollectiveEnd(draw);
161:     PetscDrawFlush(draw);
162:     PetscDrawPause(draw);
163:     PetscDrawSave(draw);
164:   } else if (isbinary) {
165:     DMView_DA_Binary(da,viewer);
166: #if defined(PETSC_HAVE_MATLAB_ENGINE)
167:   } else if (ismatlab) {
168:     DMView_DA_Matlab(da,viewer);
169: #endif
170:   }
171:   return(0);
172: }

176: PetscErrorCode  DMSetUp_DA_3D(DM da)
177: {
178:   DM_DA            *dd          = (DM_DA*)da->data;
179:   const PetscInt   M            = dd->M;
180:   const PetscInt   N            = dd->N;
181:   const PetscInt   P            = dd->P;
182:   PetscInt         m            = dd->m;
183:   PetscInt         n            = dd->n;
184:   PetscInt         p            = dd->p;
185:   const PetscInt   dof          = dd->w;
186:   const PetscInt   s            = dd->s;
187:   DMBoundaryType   bx           = dd->bx;
188:   DMBoundaryType   by           = dd->by;
189:   DMBoundaryType   bz           = dd->bz;
190:   DMDAStencilType  stencil_type = dd->stencil_type;
191:   PetscInt         *lx          = dd->lx;
192:   PetscInt         *ly          = dd->ly;
193:   PetscInt         *lz          = dd->lz;
194:   MPI_Comm         comm;
195:   PetscMPIInt      rank,size;
196:   PetscInt         xs = 0,xe,ys = 0,ye,zs = 0,ze,x = 0,y = 0,z = 0;
197:   PetscInt         Xs,Xe,Ys,Ye,Zs,Ze,IXs,IXe,IYs,IYe,IZs,IZe,pm;
198:   PetscInt         left,right,up,down,bottom,top,i,j,k,*idx,nn;
199:   PetscInt         n0,n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n14;
200:   PetscInt         n15,n16,n17,n18,n19,n20,n21,n22,n23,n24,n25,n26;
201:   PetscInt         *bases,*ldims,base,x_t,y_t,z_t,s_t,count,s_x,s_y,s_z;
202:   PetscInt         sn0  = 0,sn1 = 0,sn2 = 0,sn3 = 0,sn5 = 0,sn6 = 0,sn7 = 0;
203:   PetscInt         sn8  = 0,sn9 = 0,sn11 = 0,sn15 = 0,sn24 = 0,sn25 = 0,sn26 = 0;
204:   PetscInt         sn17 = 0,sn18 = 0,sn19 = 0,sn20 = 0,sn21 = 0,sn23 = 0;
205:   Vec              local,global;
206:   VecScatter       gtol;
207:   IS               to,from;
208:   PetscBool        twod;
209:   PetscErrorCode   ierr;


213:   if (stencil_type == DMDA_STENCIL_BOX && (bx == DM_BOUNDARY_MIRROR || by == DM_BOUNDARY_MIRROR || bz == DM_BOUNDARY_MIRROR)) SETERRQ(PetscObjectComm((PetscObject)da),PETSC_ERR_SUP,"Mirror boundary and box stencil");
214:   PetscObjectGetComm((PetscObject) da, &comm);
215: #if !defined(PETSC_USE_64BIT_INDICES)
216:   if (((Petsc64bitInt) M)*((Petsc64bitInt) N)*((Petsc64bitInt) P)*((Petsc64bitInt) dof) > (Petsc64bitInt) PETSC_MPI_INT_MAX) SETERRQ3(comm,PETSC_ERR_INT_OVERFLOW,"Mesh of %D by %D by %D (dof) is too large for 32 bit indices",M,N,dof);
217: #endif

219:   MPI_Comm_size(comm,&size);
220:   MPI_Comm_rank(comm,&rank);

222:   if (m != PETSC_DECIDE) {
223:     if (m < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in X direction: %D",m);
224:     else if (m > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in X direction: %D %d",m,size);
225:   }
226:   if (n != PETSC_DECIDE) {
227:     if (n < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Y direction: %D",n);
228:     else if (n > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Y direction: %D %d",n,size);
229:   }
230:   if (p != PETSC_DECIDE) {
231:     if (p < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Z direction: %D",p);
232:     else if (p > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Z direction: %D %d",p,size);
233:   }
234:   if ((m > 0) && (n > 0) && (p > 0) && (m*n*p != size)) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"m %D * n %D * p %D != size %d",m,n,p,size);

236:   /* Partition the array among the processors */
237:   if (m == PETSC_DECIDE && n != PETSC_DECIDE && p != PETSC_DECIDE) {
238:     m = size/(n*p);
239:   } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
240:     n = size/(m*p);
241:   } else if (m != PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
242:     p = size/(m*n);
243:   } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
244:     /* try for squarish distribution */
245:     m = (int)(0.5 + PetscSqrtReal(((PetscReal)M)*((PetscReal)size)/((PetscReal)N*p)));
246:     if (!m) m = 1;
247:     while (m > 0) {
248:       n = size/(m*p);
249:       if (m*n*p == size) break;
250:       m--;
251:     }
252:     if (!m) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad p value: p = %D",p);
253:     if (M > N && m < n) {PetscInt _m = m; m = n; n = _m;}
254:   } else if (m == PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
255:     /* try for squarish distribution */
256:     m = (int)(0.5 + PetscSqrtReal(((PetscReal)M)*((PetscReal)size)/((PetscReal)P*n)));
257:     if (!m) m = 1;
258:     while (m > 0) {
259:       p = size/(m*n);
260:       if (m*n*p == size) break;
261:       m--;
262:     }
263:     if (!m) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad n value: n = %D",n);
264:     if (M > P && m < p) {PetscInt _m = m; m = p; p = _m;}
265:   } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
266:     /* try for squarish distribution */
267:     n = (int)(0.5 + PetscSqrtReal(((PetscReal)N)*((PetscReal)size)/((PetscReal)P*m)));
268:     if (!n) n = 1;
269:     while (n > 0) {
270:       p = size/(m*n);
271:       if (m*n*p == size) break;
272:       n--;
273:     }
274:     if (!n) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad m value: m = %D",n);
275:     if (N > P && n < p) {PetscInt _n = n; n = p; p = _n;}
276:   } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
277:     /* try for squarish distribution */
278:     n = (PetscInt)(0.5 + PetscPowReal(((PetscReal)N*N)*((PetscReal)size)/((PetscReal)P*M),(PetscReal)(1./3.)));
279:     if (!n) n = 1;
280:     while (n > 0) {
281:       pm = size/n;
282:       if (n*pm == size) break;
283:       n--;
284:     }
285:     if (!n) n = 1;
286:     m = (PetscInt)(0.5 + PetscSqrtReal(((PetscReal)M)*((PetscReal)size)/((PetscReal)P*n)));
287:     if (!m) m = 1;
288:     while (m > 0) {
289:       p = size/(m*n);
290:       if (m*n*p == size) break;
291:       m--;
292:     }
293:     if (M > P && m < p) {PetscInt _m = m; m = p; p = _m;}
294:   } else if (m*n*p != size) SETERRQ(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Given Bad partition");

296:   if (m*n*p != size) SETERRQ(PetscObjectComm((PetscObject)da),PETSC_ERR_PLIB,"Could not find good partition");
297:   if (M < m) SETERRQ2(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Partition in x direction is too fine! %D %D",M,m);
298:   if (N < n) SETERRQ2(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Partition in y direction is too fine! %D %D",N,n);
299:   if (P < p) SETERRQ2(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Partition in z direction is too fine! %D %D",P,p);

301:   /*
302:      Determine locally owned region
303:      [x, y, or z]s is the first local node number, [x, y, z] is the number of local nodes
304:   */

306:   if (!lx) {
307:     PetscMalloc1(m, &dd->lx);
308:     lx   = dd->lx;
309:     for (i=0; i<m; i++) lx[i] = M/m + ((M % m) > (i % m));
310:   }
311:   x  = lx[rank % m];
312:   xs = 0;
313:   for (i=0; i<(rank%m); i++) xs += lx[i];
314:   if ((x < s) && ((m > 1) || (bx == DM_BOUNDARY_PERIODIC))) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local x-width of domain x %D is smaller than stencil width s %D",x,s);

316:   if (!ly) {
317:     PetscMalloc1(n, &dd->ly);
318:     ly   = dd->ly;
319:     for (i=0; i<n; i++) ly[i] = N/n + ((N % n) > (i % n));
320:   }
321:   y = ly[(rank % (m*n))/m];
322:   if ((y < s) && ((n > 1) || (by == DM_BOUNDARY_PERIODIC))) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local y-width of domain y %D is smaller than stencil width s %D",y,s);

324:   ys = 0;
325:   for (i=0; i<(rank % (m*n))/m; i++) ys += ly[i];

327:   if (!lz) {
328:     PetscMalloc1(p, &dd->lz);
329:     lz = dd->lz;
330:     for (i=0; i<p; i++) lz[i] = P/p + ((P % p) > (i % p));
331:   }
332:   z = lz[rank/(m*n)];

334:   /* note this is different than x- and y-, as we will handle as an important special
335:    case when p=P=1 and DM_BOUNDARY_PERIODIC and s > z.  This is to deal with 2D problems
336:    in a 3D code.  Additional code for this case is noted with "2d case" comments */
337:   twod = PETSC_FALSE;
338:   if (P == 1) twod = PETSC_TRUE;
339:   else if ((z < s) && ((p > 1) || (bz == DM_BOUNDARY_PERIODIC))) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local z-width of domain z %D is smaller than stencil width s %D",z,s);
340:   zs = 0;
341:   for (i=0; i<(rank/(m*n)); i++) zs += lz[i];
342:   ye = ys + y;
343:   xe = xs + x;
344:   ze = zs + z;

346:   /* determine ghost region (Xs) and region scattered into (IXs)  */
347:   if (xs-s > 0) {
348:     Xs = xs - s; IXs = xs - s;
349:   } else {
350:     if (bx) Xs = xs - s;
351:     else Xs = 0;
352:     IXs = 0;
353:   }
354:   if (xe+s <= M) {
355:     Xe = xe + s; IXe = xe + s;
356:   } else {
357:     if (bx) {
358:       Xs = xs - s; Xe = xe + s;
359:     } else Xe = M;
360:     IXe = M;
361:   }

363:   if (bx == DM_BOUNDARY_PERIODIC || bx == DM_BOUNDARY_MIRROR) {
364:     IXs = xs - s;
365:     IXe = xe + s;
366:     Xs  = xs - s;
367:     Xe  = xe + s;
368:   }

370:   if (ys-s > 0) {
371:     Ys = ys - s; IYs = ys - s;
372:   } else {
373:     if (by) Ys = ys - s;
374:     else Ys = 0;
375:     IYs = 0;
376:   }
377:   if (ye+s <= N) {
378:     Ye = ye + s; IYe = ye + s;
379:   } else {
380:     if (by) Ye = ye + s;
381:     else Ye = N;
382:     IYe = N;
383:   }

385:   if (by == DM_BOUNDARY_PERIODIC || by == DM_BOUNDARY_MIRROR) {
386:     IYs = ys - s;
387:     IYe = ye + s;
388:     Ys  = ys - s;
389:     Ye  = ye + s;
390:   }

392:   if (zs-s > 0) {
393:     Zs = zs - s; IZs = zs - s;
394:   } else {
395:     if (bz) Zs = zs - s;
396:     else Zs = 0;
397:     IZs = 0;
398:   }
399:   if (ze+s <= P) {
400:     Ze = ze + s; IZe = ze + s;
401:   } else {
402:     if (bz) Ze = ze + s;
403:     else Ze = P;
404:     IZe = P;
405:   }

407:   if (bz == DM_BOUNDARY_PERIODIC || bz == DM_BOUNDARY_MIRROR) {
408:     IZs = zs - s;
409:     IZe = ze + s;
410:     Zs  = zs - s;
411:     Ze  = ze + s;
412:   }

414:   /* Resize all X parameters to reflect w */
415:   s_x = s;
416:   s_y = s;
417:   s_z = s;

419:   /* determine starting point of each processor */
420:   nn       = x*y*z;
421:   PetscMalloc2(size+1,&bases,size,&ldims);
422:   MPI_Allgather(&nn,1,MPIU_INT,ldims,1,MPIU_INT,comm);
423:   bases[0] = 0;
424:   for (i=1; i<=size; i++) bases[i] = ldims[i-1];
425:   for (i=1; i<=size; i++) bases[i] += bases[i-1];
426:   base = bases[rank]*dof;

428:   /* allocate the base parallel and sequential vectors */
429:   dd->Nlocal = x*y*z*dof;
430:   VecCreateMPIWithArray(comm,dof,dd->Nlocal,PETSC_DECIDE,NULL,&global);
431:   dd->nlocal = (Xe-Xs)*(Ye-Ys)*(Ze-Zs)*dof;
432:   VecCreateSeqWithArray(PETSC_COMM_SELF,dof,dd->nlocal,NULL,&local);

434:   /* generate appropriate vector scatters */
435:   /* local to global inserts non-ghost point region into global */
436:   PetscMalloc1((IXe-IXs)*(IYe-IYs)*(IZe-IZs),&idx);
437:   left   = xs - Xs; right = left + x;
438:   bottom = ys - Ys; top = bottom + y;
439:   down   = zs - Zs; up  = down + z;
440:   count  = 0;
441:   for (i=down; i<up; i++) {
442:     for (j=bottom; j<top; j++) {
443:       for (k=left; k<right; k++) {
444:         idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
445:       }
446:     }
447:   }

449:   /* global to local must include ghost points within the domain,
450:      but not ghost points outside the domain that aren't periodic */
451:   if (stencil_type == DMDA_STENCIL_BOX) {
452:     left   = IXs - Xs; right = left + (IXe-IXs);
453:     bottom = IYs - Ys; top = bottom + (IYe-IYs);
454:     down   = IZs - Zs; up  = down + (IZe-IZs);
455:     count  = 0;
456:     for (i=down; i<up; i++) {
457:       for (j=bottom; j<top; j++) {
458:         for (k=left; k<right; k++) {
459:           idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
460:         }
461:       }
462:     }
463:     ISCreateBlock(comm,dof,count,idx,PETSC_OWN_POINTER,&to);
464:   } else {
465:     /* This is way ugly! We need to list the funny cross type region */
466:     left   = xs - Xs; right = left + x;
467:     bottom = ys - Ys; top = bottom + y;
468:     down   = zs - Zs;   up  = down + z;
469:     count  = 0;
470:     /* the bottom chunck */
471:     for (i=(IZs-Zs); i<down; i++) {
472:       for (j=bottom; j<top; j++) {
473:         for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
474:       }
475:     }
476:     /* the middle piece */
477:     for (i=down; i<up; i++) {
478:       /* front */
479:       for (j=(IYs-Ys); j<bottom; j++) {
480:         for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
481:       }
482:       /* middle */
483:       for (j=bottom; j<top; j++) {
484:         for (k=IXs-Xs; k<IXe-Xs; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
485:       }
486:       /* back */
487:       for (j=top; j<top+IYe-ye; j++) {
488:         for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
489:       }
490:     }
491:     /* the top piece */
492:     for (i=up; i<up+IZe-ze; i++) {
493:       for (j=bottom; j<top; j++) {
494:         for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
495:       }
496:     }
497:     ISCreateBlock(comm,dof,count,idx,PETSC_OWN_POINTER,&to);
498:   }

500:   /* determine who lies on each side of use stored in    n24 n25 n26
501:                                                          n21 n22 n23
502:                                                          n18 n19 n20

504:                                                          n15 n16 n17
505:                                                          n12     n14
506:                                                          n9  n10 n11

508:                                                          n6  n7  n8
509:                                                          n3  n4  n5
510:                                                          n0  n1  n2
511:   */

513:   /* Solve for X,Y, and Z Periodic Case First, Then Modify Solution */
514:   /* Assume Nodes are Internal to the Cube */
515:   n0 = rank - m*n - m - 1;
516:   n1 = rank - m*n - m;
517:   n2 = rank - m*n - m + 1;
518:   n3 = rank - m*n -1;
519:   n4 = rank - m*n;
520:   n5 = rank - m*n + 1;
521:   n6 = rank - m*n + m - 1;
522:   n7 = rank - m*n + m;
523:   n8 = rank - m*n + m + 1;

525:   n9  = rank - m - 1;
526:   n10 = rank - m;
527:   n11 = rank - m + 1;
528:   n12 = rank - 1;
529:   n14 = rank + 1;
530:   n15 = rank + m - 1;
531:   n16 = rank + m;
532:   n17 = rank + m + 1;

534:   n18 = rank + m*n - m - 1;
535:   n19 = rank + m*n - m;
536:   n20 = rank + m*n - m + 1;
537:   n21 = rank + m*n - 1;
538:   n22 = rank + m*n;
539:   n23 = rank + m*n + 1;
540:   n24 = rank + m*n + m - 1;
541:   n25 = rank + m*n + m;
542:   n26 = rank + m*n + m + 1;

544:   /* Assume Pieces are on Faces of Cube */

546:   if (xs == 0) { /* First assume not corner or edge */
547:     n0  = rank       -1 - (m*n);
548:     n3  = rank + m   -1 - (m*n);
549:     n6  = rank + 2*m -1 - (m*n);
550:     n9  = rank       -1;
551:     n12 = rank + m   -1;
552:     n15 = rank + 2*m -1;
553:     n18 = rank       -1 + (m*n);
554:     n21 = rank + m   -1 + (m*n);
555:     n24 = rank + 2*m -1 + (m*n);
556:   }

558:   if (xe == M) { /* First assume not corner or edge */
559:     n2  = rank -2*m +1 - (m*n);
560:     n5  = rank - m  +1 - (m*n);
561:     n8  = rank      +1 - (m*n);
562:     n11 = rank -2*m +1;
563:     n14 = rank - m  +1;
564:     n17 = rank      +1;
565:     n20 = rank -2*m +1 + (m*n);
566:     n23 = rank - m  +1 + (m*n);
567:     n26 = rank      +1 + (m*n);
568:   }

570:   if (ys==0) { /* First assume not corner or edge */
571:     n0  = rank + m * (n-1) -1 - (m*n);
572:     n1  = rank + m * (n-1)    - (m*n);
573:     n2  = rank + m * (n-1) +1 - (m*n);
574:     n9  = rank + m * (n-1) -1;
575:     n10 = rank + m * (n-1);
576:     n11 = rank + m * (n-1) +1;
577:     n18 = rank + m * (n-1) -1 + (m*n);
578:     n19 = rank + m * (n-1)    + (m*n);
579:     n20 = rank + m * (n-1) +1 + (m*n);
580:   }

582:   if (ye == N) { /* First assume not corner or edge */
583:     n6  = rank - m * (n-1) -1 - (m*n);
584:     n7  = rank - m * (n-1)    - (m*n);
585:     n8  = rank - m * (n-1) +1 - (m*n);
586:     n15 = rank - m * (n-1) -1;
587:     n16 = rank - m * (n-1);
588:     n17 = rank - m * (n-1) +1;
589:     n24 = rank - m * (n-1) -1 + (m*n);
590:     n25 = rank - m * (n-1)    + (m*n);
591:     n26 = rank - m * (n-1) +1 + (m*n);
592:   }

594:   if (zs == 0) { /* First assume not corner or edge */
595:     n0 = size - (m*n) + rank - m - 1;
596:     n1 = size - (m*n) + rank - m;
597:     n2 = size - (m*n) + rank - m + 1;
598:     n3 = size - (m*n) + rank - 1;
599:     n4 = size - (m*n) + rank;
600:     n5 = size - (m*n) + rank + 1;
601:     n6 = size - (m*n) + rank + m - 1;
602:     n7 = size - (m*n) + rank + m;
603:     n8 = size - (m*n) + rank + m + 1;
604:   }

606:   if (ze == P) { /* First assume not corner or edge */
607:     n18 = (m*n) - (size-rank) - m - 1;
608:     n19 = (m*n) - (size-rank) - m;
609:     n20 = (m*n) - (size-rank) - m + 1;
610:     n21 = (m*n) - (size-rank) - 1;
611:     n22 = (m*n) - (size-rank);
612:     n23 = (m*n) - (size-rank) + 1;
613:     n24 = (m*n) - (size-rank) + m - 1;
614:     n25 = (m*n) - (size-rank) + m;
615:     n26 = (m*n) - (size-rank) + m + 1;
616:   }

618:   if ((xs==0) && (zs==0)) { /* Assume an edge, not corner */
619:     n0 = size - m*n + rank + m-1 - m;
620:     n3 = size - m*n + rank + m-1;
621:     n6 = size - m*n + rank + m-1 + m;
622:   }

624:   if ((xs==0) && (ze==P)) { /* Assume an edge, not corner */
625:     n18 = m*n - (size - rank) + m-1 - m;
626:     n21 = m*n - (size - rank) + m-1;
627:     n24 = m*n - (size - rank) + m-1 + m;
628:   }

630:   if ((xs==0) && (ys==0)) { /* Assume an edge, not corner */
631:     n0  = rank + m*n -1 - m*n;
632:     n9  = rank + m*n -1;
633:     n18 = rank + m*n -1 + m*n;
634:   }

636:   if ((xs==0) && (ye==N)) { /* Assume an edge, not corner */
637:     n6  = rank - m*(n-1) + m-1 - m*n;
638:     n15 = rank - m*(n-1) + m-1;
639:     n24 = rank - m*(n-1) + m-1 + m*n;
640:   }

642:   if ((xe==M) && (zs==0)) { /* Assume an edge, not corner */
643:     n2 = size - (m*n-rank) - (m-1) - m;
644:     n5 = size - (m*n-rank) - (m-1);
645:     n8 = size - (m*n-rank) - (m-1) + m;
646:   }

648:   if ((xe==M) && (ze==P)) { /* Assume an edge, not corner */
649:     n20 = m*n - (size - rank) - (m-1) - m;
650:     n23 = m*n - (size - rank) - (m-1);
651:     n26 = m*n - (size - rank) - (m-1) + m;
652:   }

654:   if ((xe==M) && (ys==0)) { /* Assume an edge, not corner */
655:     n2  = rank + m*(n-1) - (m-1) - m*n;
656:     n11 = rank + m*(n-1) - (m-1);
657:     n20 = rank + m*(n-1) - (m-1) + m*n;
658:   }

660:   if ((xe==M) && (ye==N)) { /* Assume an edge, not corner */
661:     n8  = rank - m*n +1 - m*n;
662:     n17 = rank - m*n +1;
663:     n26 = rank - m*n +1 + m*n;
664:   }

666:   if ((ys==0) && (zs==0)) { /* Assume an edge, not corner */
667:     n0 = size - m + rank -1;
668:     n1 = size - m + rank;
669:     n2 = size - m + rank +1;
670:   }

672:   if ((ys==0) && (ze==P)) { /* Assume an edge, not corner */
673:     n18 = m*n - (size - rank) + m*(n-1) -1;
674:     n19 = m*n - (size - rank) + m*(n-1);
675:     n20 = m*n - (size - rank) + m*(n-1) +1;
676:   }

678:   if ((ye==N) && (zs==0)) { /* Assume an edge, not corner */
679:     n6 = size - (m*n-rank) - m * (n-1) -1;
680:     n7 = size - (m*n-rank) - m * (n-1);
681:     n8 = size - (m*n-rank) - m * (n-1) +1;
682:   }

684:   if ((ye==N) && (ze==P)) { /* Assume an edge, not corner */
685:     n24 = rank - (size-m) -1;
686:     n25 = rank - (size-m);
687:     n26 = rank - (size-m) +1;
688:   }

690:   /* Check for Corners */
691:   if ((xs==0) && (ys==0) && (zs==0)) n0  = size -1;
692:   if ((xs==0) && (ys==0) && (ze==P)) n18 = m*n-1;
693:   if ((xs==0) && (ye==N) && (zs==0)) n6  = (size-1)-m*(n-1);
694:   if ((xs==0) && (ye==N) && (ze==P)) n24 = m-1;
695:   if ((xe==M) && (ys==0) && (zs==0)) n2  = size-m;
696:   if ((xe==M) && (ys==0) && (ze==P)) n20 = m*n-m;
697:   if ((xe==M) && (ye==N) && (zs==0)) n8  = size-m*n;
698:   if ((xe==M) && (ye==N) && (ze==P)) n26 = 0;

700:   /* Check for when not X,Y, and Z Periodic */

702:   /* If not X periodic */
703:   if (bx != DM_BOUNDARY_PERIODIC) {
704:     if (xs==0) n0 = n3 = n6 = n9  = n12 = n15 = n18 = n21 = n24 = -2;
705:     if (xe==M) n2 = n5 = n8 = n11 = n14 = n17 = n20 = n23 = n26 = -2;
706:   }

708:   /* If not Y periodic */
709:   if (by != DM_BOUNDARY_PERIODIC) {
710:     if (ys==0) n0 = n1 = n2 = n9  = n10 = n11 = n18 = n19 = n20 = -2;
711:     if (ye==N) n6 = n7 = n8 = n15 = n16 = n17 = n24 = n25 = n26 = -2;
712:   }

714:   /* If not Z periodic */
715:   if (bz != DM_BOUNDARY_PERIODIC) {
716:     if (zs==0) n0  = n1  = n2  = n3  = n4  = n5  = n6  = n7  = n8  = -2;
717:     if (ze==P) n18 = n19 = n20 = n21 = n22 = n23 = n24 = n25 = n26 = -2;
718:   }

720:   PetscMalloc1(27,&dd->neighbors);

722:   dd->neighbors[0]  = n0;
723:   dd->neighbors[1]  = n1;
724:   dd->neighbors[2]  = n2;
725:   dd->neighbors[3]  = n3;
726:   dd->neighbors[4]  = n4;
727:   dd->neighbors[5]  = n5;
728:   dd->neighbors[6]  = n6;
729:   dd->neighbors[7]  = n7;
730:   dd->neighbors[8]  = n8;
731:   dd->neighbors[9]  = n9;
732:   dd->neighbors[10] = n10;
733:   dd->neighbors[11] = n11;
734:   dd->neighbors[12] = n12;
735:   dd->neighbors[13] = rank;
736:   dd->neighbors[14] = n14;
737:   dd->neighbors[15] = n15;
738:   dd->neighbors[16] = n16;
739:   dd->neighbors[17] = n17;
740:   dd->neighbors[18] = n18;
741:   dd->neighbors[19] = n19;
742:   dd->neighbors[20] = n20;
743:   dd->neighbors[21] = n21;
744:   dd->neighbors[22] = n22;
745:   dd->neighbors[23] = n23;
746:   dd->neighbors[24] = n24;
747:   dd->neighbors[25] = n25;
748:   dd->neighbors[26] = n26;

750:   /* If star stencil then delete the corner neighbors */
751:   if (stencil_type == DMDA_STENCIL_STAR) {
752:     /* save information about corner neighbors */
753:     sn0 = n0; sn1 = n1; sn2 = n2; sn3 = n3; sn5 = n5; sn6 = n6; sn7 = n7;
754:     sn8 = n8; sn9 = n9; sn11 = n11; sn15 = n15; sn17 = n17; sn18 = n18;
755:     sn19 = n19; sn20 = n20; sn21 = n21; sn23 = n23; sn24 = n24; sn25 = n25;
756:     sn26 = n26;
757:     n0 = n1 = n2 = n3 = n5 = n6 = n7 = n8 = n9 = n11 = n15 = n17 = n18 = n19 = n20 = n21 = n23 = n24 = n25 = n26 = -1;
758:   }

760:   PetscMalloc1((Xe-Xs)*(Ye-Ys)*(Ze-Zs),&idx);

762:   nn = 0;
763:   /* Bottom Level */
764:   for (k=0; k<s_z; k++) {
765:     for (i=1; i<=s_y; i++) {
766:       if (n0 >= 0) { /* left below */
767:         x_t = lx[n0 % m];
768:         y_t = ly[(n0 % (m*n))/m];
769:         z_t = lz[n0 / (m*n)];
770:         s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
771:         if (twod && (s_t < 0)) s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x; /* 2D case */
772:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
773:       }
774:       if (n1 >= 0) { /* directly below */
775:         x_t = x;
776:         y_t = ly[(n1 % (m*n))/m];
777:         z_t = lz[n1 / (m*n)];
778:         s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
779:         if (twod && (s_t < 0)) s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t; /* 2D case */
780:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
781:       }
782:       if (n2 >= 0) { /* right below */
783:         x_t = lx[n2 % m];
784:         y_t = ly[(n2 % (m*n))/m];
785:         z_t = lz[n2 / (m*n)];
786:         s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
787:         if (twod && (s_t < 0)) s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t; /* 2D case */
788:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
789:       }
790:     }

792:     for (i=0; i<y; i++) {
793:       if (n3 >= 0) { /* directly left */
794:         x_t = lx[n3 % m];
795:         y_t = y;
796:         z_t = lz[n3 / (m*n)];
797:         s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
798:         if (twod && (s_t < 0)) s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - x_t*y_t; /* 2D case */
799:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
800:       }

802:       if (n4 >= 0) { /* middle */
803:         x_t = x;
804:         y_t = y;
805:         z_t = lz[n4 / (m*n)];
806:         s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
807:         if (twod && (s_t < 0)) s_t = bases[n4] + i*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
808:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
809:       } else if (bz == DM_BOUNDARY_MIRROR) {
810:         for (j=0; j<x; j++) idx[nn++] = 0;
811:       }

813:       if (n5 >= 0) { /* directly right */
814:         x_t = lx[n5 % m];
815:         y_t = y;
816:         z_t = lz[n5 / (m*n)];
817:         s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
818:         if (twod && (s_t < 0)) s_t = bases[n5] + i*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
819:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
820:       }
821:     }

823:     for (i=1; i<=s_y; i++) {
824:       if (n6 >= 0) { /* left above */
825:         x_t = lx[n6 % m];
826:         y_t = ly[(n6 % (m*n))/m];
827:         z_t = lz[n6 / (m*n)];
828:         s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
829:         if (twod && (s_t < 0)) s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - x_t*y_t; /* 2D case */
830:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
831:       }
832:       if (n7 >= 0) { /* directly above */
833:         x_t = x;
834:         y_t = ly[(n7 % (m*n))/m];
835:         z_t = lz[n7 / (m*n)];
836:         s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
837:         if (twod && (s_t < 0)) s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
838:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
839:       }
840:       if (n8 >= 0) { /* right above */
841:         x_t = lx[n8 % m];
842:         y_t = ly[(n8 % (m*n))/m];
843:         z_t = lz[n8 / (m*n)];
844:         s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
845:         if (twod && (s_t < 0)) s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
846:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
847:       }
848:     }
849:   }

851:   /* Middle Level */
852:   for (k=0; k<z; k++) {
853:     for (i=1; i<=s_y; i++) {
854:       if (n9 >= 0) { /* left below */
855:         x_t = lx[n9 % m];
856:         y_t = ly[(n9 % (m*n))/m];
857:         /* z_t = z; */
858:         s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
859:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
860:       }
861:       if (n10 >= 0) { /* directly below */
862:         x_t = x;
863:         y_t = ly[(n10 % (m*n))/m];
864:         /* z_t = z; */
865:         s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
866:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
867:       }  else if (by == DM_BOUNDARY_MIRROR) {
868:         for (j=0; j<x; j++) idx[nn++] = 0;
869:       }
870:       if (n11 >= 0) { /* right below */
871:         x_t = lx[n11 % m];
872:         y_t = ly[(n11 % (m*n))/m];
873:         /* z_t = z; */
874:         s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
875:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
876:       }
877:     }

879:     for (i=0; i<y; i++) {
880:       if (n12 >= 0) { /* directly left */
881:         x_t = lx[n12 % m];
882:         y_t = y;
883:         /* z_t = z; */
884:         s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
885:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
886:       }  else if (bx == DM_BOUNDARY_MIRROR) {
887:         for (j=0; j<s_x; j++) idx[nn++] = 0;
888:       }

890:       /* Interior */
891:       s_t = bases[rank] + i*x + k*x*y;
892:       for (j=0; j<x; j++) idx[nn++] = s_t++;

894:       if (n14 >= 0) { /* directly right */
895:         x_t = lx[n14 % m];
896:         y_t = y;
897:         /* z_t = z; */
898:         s_t = bases[n14] + i*x_t + k*x_t*y_t;
899:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
900:       } else if (bx == DM_BOUNDARY_MIRROR) {
901:         for (j=0; j<s_x; j++) idx[nn++] = 0;
902:       }
903:     }

905:     for (i=1; i<=s_y; i++) {
906:       if (n15 >= 0) { /* left above */
907:         x_t = lx[n15 % m];
908:         y_t = ly[(n15 % (m*n))/m];
909:         /* z_t = z; */
910:         s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
911:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
912:       }
913:       if (n16 >= 0) { /* directly above */
914:         x_t = x;
915:         y_t = ly[(n16 % (m*n))/m];
916:         /* z_t = z; */
917:         s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
918:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
919:       } else if (by == DM_BOUNDARY_MIRROR) {
920:         for (j=0; j<x; j++) idx[nn++] = 0;
921:       }
922:       if (n17 >= 0) { /* right above */
923:         x_t = lx[n17 % m];
924:         y_t = ly[(n17 % (m*n))/m];
925:         /* z_t = z; */
926:         s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
927:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
928:       }
929:     }
930:   }

932:   /* Upper Level */
933:   for (k=0; k<s_z; k++) {
934:     for (i=1; i<=s_y; i++) {
935:       if (n18 >= 0) { /* left below */
936:         x_t = lx[n18 % m];
937:         y_t = ly[(n18 % (m*n))/m];
938:         /* z_t = lz[n18 / (m*n)]; */
939:         s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
940:         if (twod && (s_t >= M*N*P)) s_t = bases[n18] - (s_y-i)*x_t -s_x + x_t*y_t; /* 2d case */
941:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
942:       }
943:       if (n19 >= 0) { /* directly below */
944:         x_t = x;
945:         y_t = ly[(n19 % (m*n))/m];
946:         /* z_t = lz[n19 / (m*n)]; */
947:         s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
948:         if (twod && (s_t >= M*N*P)) s_t = bases[n19] - (s_y+1-i)*x_t + x_t*y_t; /* 2d case */
949:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
950:       }
951:       if (n20 >= 0) { /* right below */
952:         x_t = lx[n20 % m];
953:         y_t = ly[(n20 % (m*n))/m];
954:         /* z_t = lz[n20 / (m*n)]; */
955:         s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
956:         if (twod && (s_t >= M*N*P)) s_t = bases[n20] - (s_y+1-i)*x_t + x_t*y_t; /* 2d case */
957:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
958:       }
959:     }

961:     for (i=0; i<y; i++) {
962:       if (n21 >= 0) { /* directly left */
963:         x_t = lx[n21 % m];
964:         y_t = y;
965:         /* z_t = lz[n21 / (m*n)]; */
966:         s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
967:         if (twod && (s_t >= M*N*P)) s_t = bases[n21] + (i+1)*x_t - s_x;  /* 2d case */
968:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
969:       }

971:       if (n22 >= 0) { /* middle */
972:         x_t = x;
973:         y_t = y;
974:         /* z_t = lz[n22 / (m*n)]; */
975:         s_t = bases[n22] + i*x_t + k*x_t*y_t;
976:         if (twod && (s_t >= M*N*P)) s_t = bases[n22] + i*x_t; /* 2d case */
977:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
978:       } else if (bz == DM_BOUNDARY_MIRROR) {
979:         for (j=0; j<x; j++) idx[nn++] = 0;
980:       }

982:       if (n23 >= 0) { /* directly right */
983:         x_t = lx[n23 % m];
984:         y_t = y;
985:         /* z_t = lz[n23 / (m*n)]; */
986:         s_t = bases[n23] + i*x_t + k*x_t*y_t;
987:         if (twod && (s_t >= M*N*P)) s_t = bases[n23] + i*x_t; /* 2d case */
988:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
989:       }
990:     }

992:     for (i=1; i<=s_y; i++) {
993:       if (n24 >= 0) { /* left above */
994:         x_t = lx[n24 % m];
995:         y_t = ly[(n24 % (m*n))/m];
996:         /* z_t = lz[n24 / (m*n)]; */
997:         s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
998:         if (twod && (s_t >= M*N*P)) s_t = bases[n24] + i*x_t - s_x; /* 2d case */
999:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1000:       }
1001:       if (n25 >= 0) { /* directly above */
1002:         x_t = x;
1003:         y_t = ly[(n25 % (m*n))/m];
1004:         /* z_t = lz[n25 / (m*n)]; */
1005:         s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
1006:         if (twod && (s_t >= M*N*P)) s_t = bases[n25] + (i-1)*x_t; /* 2d case */
1007:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1008:       }
1009:       if (n26 >= 0) { /* right above */
1010:         x_t = lx[n26 % m];
1011:         y_t = ly[(n26 % (m*n))/m];
1012:         /* z_t = lz[n26 / (m*n)]; */
1013:         s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
1014:         if (twod && (s_t >= M*N*P)) s_t = bases[n26] + (i-1)*x_t; /* 2d case */
1015:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1016:       }
1017:     }
1018:   }

1020:   ISCreateBlock(comm,dof,nn,idx,PETSC_USE_POINTER,&from);
1021:   VecScatterCreate(global,from,local,to,&gtol);
1022:   PetscLogObjectParent((PetscObject)da,(PetscObject)gtol);
1023:   ISDestroy(&to);
1024:   ISDestroy(&from);

1026:   if (stencil_type == DMDA_STENCIL_STAR) {
1027:     n0  = sn0;  n1  = sn1;  n2  = sn2;  n3  = sn3;  n5  = sn5;  n6  = sn6; n7 = sn7;
1028:     n8  = sn8;  n9  = sn9;  n11 = sn11; n15 = sn15; n17 = sn17; n18 = sn18;
1029:     n19 = sn19; n20 = sn20; n21 = sn21; n23 = sn23; n24 = sn24; n25 = sn25;
1030:     n26 = sn26;
1031:   }

1033:   if (((stencil_type == DMDA_STENCIL_STAR) ||
1034:       (bx != DM_BOUNDARY_PERIODIC && bx) ||
1035:       (by != DM_BOUNDARY_PERIODIC && by) ||
1036:        (bz != DM_BOUNDARY_PERIODIC && bz))) {
1037:     /*
1038:         Recompute the local to global mappings, this time keeping the
1039:       information about the cross corner processor numbers.
1040:     */
1041:     nn = 0;
1042:     /* Bottom Level */
1043:     for (k=0; k<s_z; k++) {
1044:       for (i=1; i<=s_y; i++) {
1045:         if (n0 >= 0) { /* left below */
1046:           x_t = lx[n0 % m];
1047:           y_t = ly[(n0 % (m*n))/m];
1048:           z_t = lz[n0 / (m*n)];
1049:           s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
1050:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1051:         } else if (Xs-xs < 0 && Ys-ys < 0 && Zs-zs < 0) {
1052:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1053:         }
1054:         if (n1 >= 0) { /* directly below */
1055:           x_t = x;
1056:           y_t = ly[(n1 % (m*n))/m];
1057:           z_t = lz[n1 / (m*n)];
1058:           s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1059:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1060:         } else if (Ys-ys < 0 && Zs-zs < 0) {
1061:           for (j=0; j<x; j++) idx[nn++] = -1;
1062:         }
1063:         if (n2 >= 0) { /* right below */
1064:           x_t = lx[n2 % m];
1065:           y_t = ly[(n2 % (m*n))/m];
1066:           z_t = lz[n2 / (m*n)];
1067:           s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1068:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1069:         } else if (xe-Xe < 0 && Ys-ys < 0 && Zs-zs < 0) {
1070:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1071:         }
1072:       }

1074:       for (i=0; i<y; i++) {
1075:         if (n3 >= 0) { /* directly left */
1076:           x_t = lx[n3 % m];
1077:           y_t = y;
1078:           z_t = lz[n3 / (m*n)];
1079:           s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1080:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1081:         } else if (Xs-xs < 0 && Zs-zs < 0) {
1082:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1083:         }

1085:         if (n4 >= 0) { /* middle */
1086:           x_t = x;
1087:           y_t = y;
1088:           z_t = lz[n4 / (m*n)];
1089:           s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1090:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1091:         } else if (Zs-zs < 0) {
1092:           if (bz == DM_BOUNDARY_MIRROR) {
1093:             for (j=0; j<x; j++) idx[nn++] = 0;
1094:           } else {
1095:             for (j=0; j<x; j++) idx[nn++] = -1;
1096:           }
1097:         }

1099:         if (n5 >= 0) { /* directly right */
1100:           x_t = lx[n5 % m];
1101:           y_t = y;
1102:           z_t = lz[n5 / (m*n)];
1103:           s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1104:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1105:         } else if (xe-Xe < 0 && Zs-zs < 0) {
1106:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1107:         }
1108:       }

1110:       for (i=1; i<=s_y; i++) {
1111:         if (n6 >= 0) { /* left above */
1112:           x_t = lx[n6 % m];
1113:           y_t = ly[(n6 % (m*n))/m];
1114:           z_t = lz[n6 / (m*n)];
1115:           s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1116:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1117:         } else if (Xs-xs < 0 && ye-Ye < 0 && Zs-zs < 0) {
1118:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1119:         }
1120:         if (n7 >= 0) { /* directly above */
1121:           x_t = x;
1122:           y_t = ly[(n7 % (m*n))/m];
1123:           z_t = lz[n7 / (m*n)];
1124:           s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1125:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1126:         } else if (ye-Ye < 0 && Zs-zs < 0) {
1127:           for (j=0; j<x; j++) idx[nn++] = -1;
1128:         }
1129:         if (n8 >= 0) { /* right above */
1130:           x_t = lx[n8 % m];
1131:           y_t = ly[(n8 % (m*n))/m];
1132:           z_t = lz[n8 / (m*n)];
1133:           s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1134:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1135:         } else if (xe-Xe < 0 && ye-Ye < 0 && Zs-zs < 0) {
1136:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1137:         }
1138:       }
1139:     }

1141:     /* Middle Level */
1142:     for (k=0; k<z; k++) {
1143:       for (i=1; i<=s_y; i++) {
1144:         if (n9 >= 0) { /* left below */
1145:           x_t = lx[n9 % m];
1146:           y_t = ly[(n9 % (m*n))/m];
1147:           /* z_t = z; */
1148:           s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1149:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1150:         } else if (Xs-xs < 0 && Ys-ys < 0) {
1151:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1152:         }
1153:         if (n10 >= 0) { /* directly below */
1154:           x_t = x;
1155:           y_t = ly[(n10 % (m*n))/m];
1156:           /* z_t = z; */
1157:           s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1158:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1159:         } else if (Ys-ys < 0) {
1160:           if (by == DM_BOUNDARY_MIRROR) {
1161:             for (j=0; j<x; j++) idx[nn++] = -1;
1162:           } else {
1163:             for (j=0; j<x; j++) idx[nn++] = -1;
1164:           }
1165:         }
1166:         if (n11 >= 0) { /* right below */
1167:           x_t = lx[n11 % m];
1168:           y_t = ly[(n11 % (m*n))/m];
1169:           /* z_t = z; */
1170:           s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1171:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1172:         } else if (xe-Xe < 0 && Ys-ys < 0) {
1173:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1174:         }
1175:       }

1177:       for (i=0; i<y; i++) {
1178:         if (n12 >= 0) { /* directly left */
1179:           x_t = lx[n12 % m];
1180:           y_t = y;
1181:           /* z_t = z; */
1182:           s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
1183:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1184:         } else if (Xs-xs < 0) {
1185:           if (bx == DM_BOUNDARY_MIRROR) {
1186:             for (j=0; j<s_x; j++) idx[nn++] = 0;
1187:           } else {
1188:             for (j=0; j<s_x; j++) idx[nn++] = -1;
1189:           }
1190:         }

1192:         /* Interior */
1193:         s_t = bases[rank] + i*x + k*x*y;
1194:         for (j=0; j<x; j++) idx[nn++] = s_t++;

1196:         if (n14 >= 0) { /* directly right */
1197:           x_t = lx[n14 % m];
1198:           y_t = y;
1199:           /* z_t = z; */
1200:           s_t = bases[n14] + i*x_t + k*x_t*y_t;
1201:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1202:         } else if (xe-Xe < 0) {
1203:           if (bx == DM_BOUNDARY_MIRROR) {
1204:             for (j=0; j<s_x; j++) idx[nn++] = 0;
1205:           } else {
1206:             for (j=0; j<s_x; j++) idx[nn++] = -1;
1207:           }
1208:         }
1209:       }

1211:       for (i=1; i<=s_y; i++) {
1212:         if (n15 >= 0) { /* left above */
1213:           x_t = lx[n15 % m];
1214:           y_t = ly[(n15 % (m*n))/m];
1215:           /* z_t = z; */
1216:           s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
1217:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1218:         } else if (Xs-xs < 0 && ye-Ye < 0) {
1219:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1220:         }
1221:         if (n16 >= 0) { /* directly above */
1222:           x_t = x;
1223:           y_t = ly[(n16 % (m*n))/m];
1224:           /* z_t = z; */
1225:           s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
1226:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1227:         } else if (ye-Ye < 0) {
1228:           if (by == DM_BOUNDARY_MIRROR) {
1229:             for (j=0; j<x; j++) idx[nn++] = 0;
1230:           } else {
1231:             for (j=0; j<x; j++) idx[nn++] = -1;
1232:           }
1233:         }
1234:         if (n17 >= 0) { /* right above */
1235:           x_t = lx[n17 % m];
1236:           y_t = ly[(n17 % (m*n))/m];
1237:           /* z_t = z; */
1238:           s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
1239:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1240:         } else if (xe-Xe < 0 && ye-Ye < 0) {
1241:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1242:         }
1243:       }
1244:     }

1246:     /* Upper Level */
1247:     for (k=0; k<s_z; k++) {
1248:       for (i=1; i<=s_y; i++) {
1249:         if (n18 >= 0) { /* left below */
1250:           x_t = lx[n18 % m];
1251:           y_t = ly[(n18 % (m*n))/m];
1252:           /* z_t = lz[n18 / (m*n)]; */
1253:           s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1254:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1255:         } else if (Xs-xs < 0 && Ys-ys < 0 && ze-Ze < 0) {
1256:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1257:         }
1258:         if (n19 >= 0) { /* directly below */
1259:           x_t = x;
1260:           y_t = ly[(n19 % (m*n))/m];
1261:           /* z_t = lz[n19 / (m*n)]; */
1262:           s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1263:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1264:         } else if (Ys-ys < 0 && ze-Ze < 0) {
1265:           for (j=0; j<x; j++) idx[nn++] = -1;
1266:         }
1267:         if (n20 >= 0) { /* right below */
1268:           x_t = lx[n20 % m];
1269:           y_t = ly[(n20 % (m*n))/m];
1270:           /* z_t = lz[n20 / (m*n)]; */
1271:           s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1272:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1273:         } else if (xe-Xe < 0 && Ys-ys < 0 && ze-Ze < 0) {
1274:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1275:         }
1276:       }

1278:       for (i=0; i<y; i++) {
1279:         if (n21 >= 0) { /* directly left */
1280:           x_t = lx[n21 % m];
1281:           y_t = y;
1282:           /* z_t = lz[n21 / (m*n)]; */
1283:           s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
1284:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1285:         } else if (Xs-xs < 0 && ze-Ze < 0) {
1286:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1287:         }

1289:         if (n22 >= 0) { /* middle */
1290:           x_t = x;
1291:           y_t = y;
1292:           /* z_t = lz[n22 / (m*n)]; */
1293:           s_t = bases[n22] + i*x_t + k*x_t*y_t;
1294:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1295:         } else if (ze-Ze < 0) {
1296:           if (bz == DM_BOUNDARY_MIRROR) {
1297:             for (j=0; j<x; j++) idx[nn++] = 0;
1298:           } else {
1299:             for (j=0; j<x; j++) idx[nn++] = -1;
1300:           }
1301:         }

1303:         if (n23 >= 0) { /* directly right */
1304:           x_t = lx[n23 % m];
1305:           y_t = y;
1306:           /* z_t = lz[n23 / (m*n)]; */
1307:           s_t = bases[n23] + i*x_t + k*x_t*y_t;
1308:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1309:         } else if (xe-Xe < 0 && ze-Ze < 0) {
1310:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1311:         }
1312:       }

1314:       for (i=1; i<=s_y; i++) {
1315:         if (n24 >= 0) { /* left above */
1316:           x_t = lx[n24 % m];
1317:           y_t = ly[(n24 % (m*n))/m];
1318:           /* z_t = lz[n24 / (m*n)]; */
1319:           s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
1320:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1321:         } else if (Xs-xs < 0 && ye-Ye < 0 && ze-Ze < 0) {
1322:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1323:         }
1324:         if (n25 >= 0) { /* directly above */
1325:           x_t = x;
1326:           y_t = ly[(n25 % (m*n))/m];
1327:           /* z_t = lz[n25 / (m*n)]; */
1328:           s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
1329:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1330:         } else if (ye-Ye < 0 && ze-Ze < 0) {
1331:           for (j=0; j<x; j++) idx[nn++] = -1;
1332:         }
1333:         if (n26 >= 0) { /* right above */
1334:           x_t = lx[n26 % m];
1335:           y_t = ly[(n26 % (m*n))/m];
1336:           /* z_t = lz[n26 / (m*n)]; */
1337:           s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
1338:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1339:         } else if (xe-Xe < 0 && ye-Ye < 0 && ze-Ze < 0) {
1340:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1341:         }
1342:       }
1343:     }
1344:   }
1345:   /*
1346:      Set the local to global ordering in the global vector, this allows use
1347:      of VecSetValuesLocal().
1348:   */
1349:   ISLocalToGlobalMappingCreate(comm,dof,nn,idx,PETSC_OWN_POINTER,&da->ltogmap);
1350:   PetscLogObjectParent((PetscObject)da,(PetscObject)da->ltogmap);

1352:   PetscFree2(bases,ldims);
1353:   dd->m = m;  dd->n  = n;  dd->p  = p;
1354:   /* note petsc expects xs/xe/Xs/Xe to be multiplied by #dofs in many places */
1355:   dd->xs = xs*dof; dd->xe = xe*dof; dd->ys = ys; dd->ye = ye; dd->zs = zs; dd->ze = ze;
1356:   dd->Xs = Xs*dof; dd->Xe = Xe*dof; dd->Ys = Ys; dd->Ye = Ye; dd->Zs = Zs; dd->Ze = Ze;

1358:   VecDestroy(&local);
1359:   VecDestroy(&global);

1361:   dd->gtol      = gtol;
1362:   dd->base      = base;
1363:   da->ops->view = DMView_DA_3d;
1364:   dd->ltol      = NULL;
1365:   dd->ao        = NULL;
1366:   return(0);
1367: }


1372: /*@C
1373:    DMDACreate3d - Creates an object that will manage the communication of three-dimensional
1374:    regular array data that is distributed across some processors.

1376:    Collective on MPI_Comm

1378:    Input Parameters:
1379: +  comm - MPI communicator
1380: .  bx,by,bz - type of ghost nodes the array have.
1381:          Use one of DM_BOUNDARY_NONE, DM_BOUNDARY_GHOSTED, DM_BOUNDARY_PERIODIC.
1382: .  stencil_type - Type of stencil (DMDA_STENCIL_STAR or DMDA_STENCIL_BOX)
1383: .  M,N,P - global dimension in each direction of the array (use -M, -N, and or -P to indicate that it may be set to a different value
1384:             from the command line with -da_grid_x <M> -da_grid_y <N> -da_grid_z <P>)
1385: .  m,n,p - corresponding number of processors in each dimension
1386:            (or PETSC_DECIDE to have calculated)
1387: .  dof - number of degrees of freedom per node
1388: .  s - stencil width
1389: -  lx, ly, lz - arrays containing the number of nodes in each cell along
1390:           the x, y, and z coordinates, or NULL. If non-null, these
1391:           must be of length as m,n,p and the corresponding
1392:           m,n, or p cannot be PETSC_DECIDE. Sum of the lx[] entries must be M, sum of
1393:           the ly[] must N, sum of the lz[] must be P

1395:    Output Parameter:
1396: .  da - the resulting distributed array object

1398:    Options Database Key:
1399: +  -dm_view - Calls DMView() at the conclusion of DMDACreate3d()
1400: .  -da_grid_x <nx> - number of grid points in x direction, if M < 0
1401: .  -da_grid_y <ny> - number of grid points in y direction, if N < 0
1402: .  -da_grid_z <nz> - number of grid points in z direction, if P < 0
1403: .  -da_processors_x <MX> - number of processors in x direction
1404: .  -da_processors_y <MY> - number of processors in y direction
1405: .  -da_processors_z <MZ> - number of processors in z direction
1406: .  -da_refine_x <rx> - refinement ratio in x direction
1407: .  -da_refine_y <ry> - refinement ratio in y direction
1408: .  -da_refine_z <rz>- refinement ratio in z directio
1409: -  -da_refine <n> - refine the DMDA n times before creating it, , if M, N, or P < 0

1411:    Level: beginner

1413:    Notes:
1414:    The stencil type DMDA_STENCIL_STAR with width 1 corresponds to the
1415:    standard 7-pt stencil, while DMDA_STENCIL_BOX with width 1 denotes
1416:    the standard 27-pt stencil.

1418:    The array data itself is NOT stored in the DMDA, it is stored in Vec objects;
1419:    The appropriate vector objects can be obtained with calls to DMCreateGlobalVector()
1420:    and DMCreateLocalVector() and calls to VecDuplicate() if more are needed.

1422: .keywords: distributed array, create, three-dimensional

1424: .seealso: DMDestroy(), DMView(), DMDACreate1d(), DMDACreate2d(), DMGlobalToLocalBegin(), DMDAGetRefinementFactor(),
1425:           DMGlobalToLocalEnd(), DMLocalToGlobalBegin(), DMLocalToLocalBegin(), DMLocalToLocalEnd(), DMDASetRefinementFactor(),
1426:           DMDAGetInfo(), DMCreateGlobalVector(), DMCreateLocalVector(), DMDACreateNaturalVector(), DMLoad(), DMDAGetOwnershipRanges()

1428: @*/
1429: PetscErrorCode  DMDACreate3d(MPI_Comm comm,DMBoundaryType bx,DMBoundaryType by,DMBoundaryType bz,DMDAStencilType stencil_type,PetscInt M,
1430:                PetscInt N,PetscInt P,PetscInt m,PetscInt n,PetscInt p,PetscInt dof,PetscInt s,const PetscInt lx[],const PetscInt ly[],const PetscInt lz[],DM *da)
1431: {

1435:   DMDACreate(comm, da);
1436:   DMSetDimension(*da, 3);
1437:   DMDASetSizes(*da, M, N, P);
1438:   DMDASetNumProcs(*da, m, n, p);
1439:   DMDASetBoundaryType(*da, bx, by, bz);
1440:   DMDASetDof(*da, dof);
1441:   DMDASetStencilType(*da, stencil_type);
1442:   DMDASetStencilWidth(*da, s);
1443:   DMDASetOwnershipRanges(*da, lx, ly, lz);
1444:   /* This violates the behavior for other classes, but right now users expect negative dimensions to be handled this way */
1445:   DMSetFromOptions(*da);
1446:   DMSetUp(*da);
1447:   return(0);
1448: }