Actual source code: ex50.c

petsc-3.4.4 2014-03-13
  1: /*   DM/KSP solving a system of linear equations.
  2:      Poisson equation in 2D:

  4:      div(grad p) = f,  0 < x,y < 1
  5:      with
  6:        forcing function f = -cos(m*pi*x)*cos(n*pi*y),
  7:        Neuman boundary conditions
  8:         dp/dx = 0 for x = 0, x = 1.
  9:         dp/dy = 0 for y = 0, y = 1.

 11:      Contributed by Michael Boghosian <boghmic@iit.edu>, 2008,
 12:          based on petsc/src/ksp/ksp/examples/tutorials/ex29.c and ex32.c

 14:      Example of Usage:
 15:           ./ex50 -mglevels 3 -ksp_monitor -M 3 -N 3 -ksp_view -dm_view draw -draw_pause -1
 16:           ./ex50 -M 100 -N 100 -mglevels 1 -mg_levels_0_pc_factor_levels <ilu_levels> -ksp_monitor -cmp_solu
 17:           ./ex50 -M 100 -N 100 -mglevels 1 -mg_levels_0_pc_type lu -mg_levels_0_pc_factor_shift_type NONZERO -ksp_monitor -cmp_solu
 18:           mpiexec -n 4 ./ex50 -M 3 -N 3 -ksp_monitor -ksp_view -mglevels 10 -log_summary
 19: */

 21: static char help[] = "Solves 2D Poisson equation using multigrid.\n\n";

 23: #include <petscdmda.h>
 24: #include <petscksp.h>
 25: #include <petscsys.h>
 26: #include <petscvec.h>

 28: extern PetscErrorCode ComputeJacobian(KSP,Mat,Mat,MatStructure*,void*);
 29: extern PetscErrorCode ComputeRHS(KSP,Vec,void*);
 30: extern PetscErrorCode ComputeTrueSolution(DM, Vec);
 31: extern PetscErrorCode VecView_VTK(Vec, const char [], const char []);

 33: typedef enum {DIRICHLET, NEUMANN} BCType;

 35: typedef struct {
 36:   PetscScalar uu, tt;
 37:   BCType      bcType;
 38: } UserContext;

 42: int main(int argc,char **argv)
 43: {
 44:   KSP            ksp;
 45:   DM             da;
 46:   UserContext    user;
 47:   PetscInt       bc;

 50:   PetscInitialize(&argc,&argv,(char*)0,help);
 51:   KSPCreate(PETSC_COMM_WORLD,&ksp);
 52:   DMDACreate2d(PETSC_COMM_WORLD, DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_NONE,DMDA_STENCIL_STAR,-11,-11,PETSC_DECIDE,PETSC_DECIDE,1,1,NULL,NULL,&da);
 53:   KSPSetDM(ksp,(DM)da);
 54:   DMSetApplicationContext(da,&user);

 56:   user.uu     = 1.0;
 57:   user.tt     = 1.0;
 58:   bc          = (PetscInt)NEUMANN; /* Use Neumann Boundary Conditions */
 59:   user.bcType = (BCType)bc;


 62:   KSPSetComputeRHS(ksp,ComputeRHS,&user);
 63:   KSPSetComputeOperators(ksp,ComputeJacobian,&user);
 64:   KSPSetFromOptions(ksp);
 65:   KSPSolve(ksp,NULL,NULL);

 67:   DMDestroy(&da);
 68:   KSPDestroy(&ksp);
 69:   PetscFinalize();
 70:   return 0;
 71: }

 75: PetscErrorCode ComputeRHS(KSP ksp,Vec b,void *ctx)
 76: {
 77:   UserContext    *user = (UserContext*)ctx;
 79:   PetscInt       i,j,M,N,xm,ym,xs,ys;
 80:   PetscScalar    Hx,Hy,pi,uu,tt;
 81:   PetscScalar    **array;
 82:   DM             da;

 85:   KSPGetDM(ksp,&da);
 86:   DMDAGetInfo(da, 0, &M, &N, 0,0,0,0,0,0,0,0,0,0);
 87:   uu   = user->uu; tt = user->tt;
 88:   pi   = 4*atan(1.0);
 89:   Hx   = 1.0/(PetscReal)(M);
 90:   Hy   = 1.0/(PetscReal)(N);

 92:   DMDAGetCorners(da,&xs,&ys,0,&xm,&ym,0); /* Fine grid */
 93:   /* printf(" M N: %d %d; xm ym: %d %d; xs ys: %d %d\n",M,N,xm,ym,xs,ys); */
 94:   DMDAVecGetArray(da, b, &array);
 95:   for (j=ys; j<ys+ym; j++) {
 96:     for (i=xs; i<xs+xm; i++) {
 97:       array[j][i] = -PetscCosScalar(uu*pi*((PetscReal)i+0.5)*Hx)*cos(tt*pi*((PetscReal)j+0.5)*Hy)*Hx*Hy;
 98:     }
 99:   }
100:   DMDAVecRestoreArray(da, b, &array);
101:   VecAssemblyBegin(b);
102:   VecAssemblyEnd(b);

104:   /* force right hand side to be consistent for singular matrix */
105:   /* note this is really a hack, normally the model would provide you with a consistent right handside */
106:   if (user->bcType == NEUMANN) {
107:     MatNullSpace nullspace;

109:     MatNullSpaceCreate(PETSC_COMM_WORLD,PETSC_TRUE,0,0,&nullspace);
110:     MatNullSpaceRemove(nullspace,b,NULL);
111:     MatNullSpaceDestroy(&nullspace);
112:   }
113:   return(0);
114: }

118: PetscErrorCode ComputeJacobian(KSP ksp,Mat J, Mat jac,MatStructure *str,void *ctx)
119: {
120:   UserContext    *user = (UserContext*)ctx;
122:   PetscInt       i, j, M, N, xm, ym, xs, ys, num, numi, numj;
123:   PetscScalar    v[5], Hx, Hy, HydHx, HxdHy;
124:   MatStencil     row, col[5];
125:   DM             da;

128:   KSPGetDM(ksp,&da);
129:   DMDAGetInfo(da,0,&M,&N,0,0,0,0,0,0,0,0,0,0);
130:   Hx    = 1.0 / (PetscReal)(M);
131:   Hy    = 1.0 / (PetscReal)(N);
132:   HxdHy = Hx/Hy;
133:   HydHx = Hy/Hx;
134:   DMDAGetCorners(da,&xs,&ys,0,&xm,&ym,0);
135:   for (j=ys; j<ys+ym; j++) {
136:     for (i=xs; i<xs+xm; i++) {
137:       row.i = i; row.j = j;

139:       if (i==0 || j==0 || i==M-1 || j==N-1) {
140:         if (user->bcType == DIRICHLET) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Dirichlet boundary conditions not supported !\n");
141:         else if (user->bcType == NEUMANN) {
142:           num=0; numi=0; numj=0;
143:           if (j!=0) {
144:             v[num] = -HxdHy;              col[num].i = i;   col[num].j = j-1;
145:             num++; numj++;
146:           }
147:           if (i!=0) {
148:             v[num] = -HydHx;              col[num].i = i-1; col[num].j = j;
149:             num++; numi++;
150:           }
151:           if (i!=M-1) {
152:             v[num] = -HydHx;              col[num].i = i+1; col[num].j = j;
153:             num++; numi++;
154:           }
155:           if (j!=N-1) {
156:             v[num] = -HxdHy;              col[num].i = i;   col[num].j = j+1;
157:             num++; numj++;
158:           }
159:           v[num] = ((PetscReal)(numj)*HxdHy + (PetscReal)(numi)*HydHx); col[num].i = i;   col[num].j = j;
160:           num++;
161:           MatSetValuesStencil(jac,1,&row,num,col,v,INSERT_VALUES);
162:         }
163:       } else {
164:         v[0] = -HxdHy;              col[0].i = i;   col[0].j = j-1;
165:         v[1] = -HydHx;              col[1].i = i-1; col[1].j = j;
166:         v[2] = 2.0*(HxdHy + HydHx); col[2].i = i;   col[2].j = j;
167:         v[3] = -HydHx;              col[3].i = i+1; col[3].j = j;
168:         v[4] = -HxdHy;              col[4].i = i;   col[4].j = j+1;
169:         MatSetValuesStencil(jac,1,&row,5,col,v,INSERT_VALUES);
170:       }
171:     }
172:   }
173:   MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY);
174:   MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY);
175:   if (user->bcType == NEUMANN) {
176:     MatNullSpace nullspace;

178:     MatNullSpaceCreate(PETSC_COMM_WORLD,PETSC_TRUE,0,0,&nullspace);
179:     MatSetNullSpace(jac,nullspace);
180:     MatNullSpaceDestroy(&nullspace);
181:   }
182:   return(0);
183: }