Actual source code: dgefa4.c

  1: /*
  2:        Inverts 4 by 4 matrix using gaussian elimination with partial pivoting.

  4:        Used by the sparse factorization routines in
  5:      src/mat/impls/baij/seq

  7:        This is a combination of the Linpack routines
  8:     dgefa() and dgedi() specialized for a size of 4.

 10: */
 11: #include <petscsys.h>

 13: PETSC_EXTERN PetscErrorCode PetscKernel_A_gets_inverse_A_4(MatScalar *a, PetscReal shift, PetscBool allowzeropivot, PetscBool *zeropivotdetected)
 14: {
 15:   PetscInt   i__2, i__3, kp1, j, k, l, ll, i, ipvt[4], kb, k3;
 16:   PetscInt   k4, j3;
 17:   MatScalar *aa, *ax, *ay, work[16], stmp;
 18:   MatReal    tmp, max;

 20:   PetscFunctionBegin;
 21:   if (zeropivotdetected) *zeropivotdetected = PETSC_FALSE;
 22:   shift = .25 * shift * (1.e-12 + PetscAbsScalar(a[0]) + PetscAbsScalar(a[5]) + PetscAbsScalar(a[10]) + PetscAbsScalar(a[15]));

 24:   /* Parameter adjustments */
 25:   a -= 5;

 27:   for (k = 1; k <= 3; ++k) {
 28:     kp1 = k + 1;
 29:     k3  = 4 * k;
 30:     k4  = k3 + k;

 32:     /* find l = pivot index */
 33:     i__2 = 5 - k;
 34:     aa   = &a[k4];
 35:     max  = PetscAbsScalar(aa[0]);
 36:     l    = 1;
 37:     for (ll = 1; ll < i__2; ll++) {
 38:       tmp = PetscAbsScalar(aa[ll]);
 39:       if (tmp > max) {
 40:         max = tmp;
 41:         l   = ll + 1;
 42:       }
 43:     }
 44:     l += k - 1;
 45:     ipvt[k - 1] = l;

 47:     if (a[l + k3] == 0.0) {
 48:       if (shift == 0.0) {
 49:         if (allowzeropivot) {
 50:           PetscCall(PetscInfo(NULL, "Zero pivot, row %" PetscInt_FMT "\n", k - 1));
 51:           if (zeropivotdetected) *zeropivotdetected = PETSC_TRUE;
 52:         } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_MAT_LU_ZRPVT, "Zero pivot, row %" PetscInt_FMT, k - 1);
 53:       } else {
 54:         /* SHIFT is applied to SINGLE diagonal entry; does this make any sense? */
 55:         a[l + k3] = shift;
 56:       }
 57:     }

 59:     /* interchange if necessary */
 60:     if (l != k) {
 61:       stmp      = a[l + k3];
 62:       a[l + k3] = a[k4];
 63:       a[k4]     = stmp;
 64:     }

 66:     /* compute multipliers */
 67:     stmp = -1. / a[k4];
 68:     i__2 = 4 - k;
 69:     aa   = &a[1 + k4];
 70:     for (ll = 0; ll < i__2; ll++) aa[ll] *= stmp;

 72:     /* row elimination with column indexing */
 73:     ax = &a[k4 + 1];
 74:     for (j = kp1; j <= 4; ++j) {
 75:       j3   = 4 * j;
 76:       stmp = a[l + j3];
 77:       if (l != k) {
 78:         a[l + j3] = a[k + j3];
 79:         a[k + j3] = stmp;
 80:       }

 82:       i__3 = 4 - k;
 83:       ay   = &a[1 + k + j3];
 84:       for (ll = 0; ll < i__3; ll++) ay[ll] += stmp * ax[ll];
 85:     }
 86:   }
 87:   ipvt[3] = 4;
 88:   if (a[20] == 0.0) {
 89:     if (PetscLikely(allowzeropivot)) {
 90:       PetscCall(PetscInfo(NULL, "Zero pivot, row 3\n"));
 91:       if (zeropivotdetected) *zeropivotdetected = PETSC_TRUE;
 92:     } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_MAT_LU_ZRPVT, "Zero pivot, row 3");
 93:   }

 95:   /* Now form the inverse */
 96:   /* compute inverse(u) */
 97:   for (k = 1; k <= 4; ++k) {
 98:     k3    = 4 * k;
 99:     k4    = k3 + k;
100:     a[k4] = 1.0 / a[k4];
101:     stmp  = -a[k4];
102:     i__2  = k - 1;
103:     aa    = &a[k3 + 1];
104:     for (ll = 0; ll < i__2; ll++) aa[ll] *= stmp;
105:     kp1 = k + 1;
106:     if (4 < kp1) continue;
107:     ax = aa;
108:     for (j = kp1; j <= 4; ++j) {
109:       j3        = 4 * j;
110:       stmp      = a[k + j3];
111:       a[k + j3] = 0.0;
112:       ay        = &a[j3 + 1];
113:       for (ll = 0; ll < k; ll++) ay[ll] += stmp * ax[ll];
114:     }
115:   }

117:   /* form inverse(u)*inverse(l) */
118:   for (kb = 1; kb <= 3; ++kb) {
119:     k   = 4 - kb;
120:     k3  = 4 * k;
121:     kp1 = k + 1;
122:     aa  = a + k3;
123:     for (i = kp1; i <= 4; ++i) {
124:       work[i - 1] = aa[i];
125:       aa[i]       = 0.0;
126:     }
127:     for (j = kp1; j <= 4; ++j) {
128:       stmp = work[j - 1];
129:       ax   = &a[4 * j + 1];
130:       ay   = &a[k3 + 1];
131:       ay[0] += stmp * ax[0];
132:       ay[1] += stmp * ax[1];
133:       ay[2] += stmp * ax[2];
134:       ay[3] += stmp * ax[3];
135:     }
136:     l = ipvt[k - 1];
137:     if (l != k) {
138:       ax    = &a[k3 + 1];
139:       ay    = &a[4 * l + 1];
140:       stmp  = ax[0];
141:       ax[0] = ay[0];
142:       ay[0] = stmp;
143:       stmp  = ax[1];
144:       ax[1] = ay[1];
145:       ay[1] = stmp;
146:       stmp  = ax[2];
147:       ax[2] = ay[2];
148:       ay[2] = stmp;
149:       stmp  = ax[3];
150:       ax[3] = ay[3];
151:       ay[3] = stmp;
152:     }
153:   }
154:   PetscFunctionReturn(PETSC_SUCCESS);
155: }

157: #if defined(PETSC_HAVE_SSE)
158:   #include PETSC_HAVE_SSE

160: PETSC_EXTERN PetscErrorCode PetscKernel_A_gets_inverse_A_4_SSE(float *a)
161: {
162:   /*
163:      This routine is converted from Intel's Small Matrix Library.
164:      See: Streaming SIMD Extensions -- Inverse of 4x4 Matrix
165:      Order Number: 245043-001
166:      March 1999
167:      https://www.intel.com/content/www/us/en/homepage.html

169:      Inverse of a 4x4 matrix via Kramer's Rule:
170:      bool Invert4x4(SMLXMatrix &);
171:   */
172:   PetscFunctionBegin;
173:   SSE_SCOPE_BEGIN;
174:   SSE_INLINE_BEGIN_1(a)

176:   /* ----------------------------------------------- */

178:   SSE_LOADL_PS(SSE_ARG_1, FLOAT_0, XMM0)
179:   SSE_LOADH_PS(SSE_ARG_1, FLOAT_4, XMM0)

181:   SSE_LOADL_PS(SSE_ARG_1, FLOAT_8, XMM5)
182:   SSE_LOADH_PS(SSE_ARG_1, FLOAT_12, XMM5)

184:   SSE_COPY_PS(XMM3, XMM0)
185:   SSE_SHUFFLE(XMM3, XMM5, 0x88)

187:   SSE_SHUFFLE(XMM5, XMM0, 0xDD)

189:   SSE_LOADL_PS(SSE_ARG_1, FLOAT_2, XMM0)
190:   SSE_LOADH_PS(SSE_ARG_1, FLOAT_6, XMM0)

192:   SSE_LOADL_PS(SSE_ARG_1, FLOAT_10, XMM6)
193:   SSE_LOADH_PS(SSE_ARG_1, FLOAT_14, XMM6)

195:   SSE_COPY_PS(XMM4, XMM0)
196:   SSE_SHUFFLE(XMM4, XMM6, 0x88)

198:   SSE_SHUFFLE(XMM6, XMM0, 0xDD)

200:   /* ----------------------------------------------- */

202:   SSE_COPY_PS(XMM7, XMM4)
203:   SSE_MULT_PS(XMM7, XMM6)

205:   SSE_SHUFFLE(XMM7, XMM7, 0xB1)

207:   SSE_COPY_PS(XMM0, XMM5)
208:   SSE_MULT_PS(XMM0, XMM7)

210:   SSE_COPY_PS(XMM2, XMM3)
211:   SSE_MULT_PS(XMM2, XMM7)

213:   SSE_SHUFFLE(XMM7, XMM7, 0x4E)

215:   SSE_COPY_PS(XMM1, XMM5)
216:   SSE_MULT_PS(XMM1, XMM7)
217:   SSE_SUB_PS(XMM1, XMM0)

219:   SSE_MULT_PS(XMM7, XMM3)
220:   SSE_SUB_PS(XMM7, XMM2)

222:   SSE_SHUFFLE(XMM7, XMM7, 0x4E)
223:   SSE_STORE_PS(SSE_ARG_1, FLOAT_4, XMM7)

225:   /* ----------------------------------------------- */

227:   SSE_COPY_PS(XMM0, XMM5)
228:   SSE_MULT_PS(XMM0, XMM4)

230:   SSE_SHUFFLE(XMM0, XMM0, 0xB1)

232:   SSE_COPY_PS(XMM2, XMM6)
233:   SSE_MULT_PS(XMM2, XMM0)
234:   SSE_ADD_PS(XMM2, XMM1)

236:   SSE_COPY_PS(XMM7, XMM3)
237:   SSE_MULT_PS(XMM7, XMM0)

239:   SSE_SHUFFLE(XMM0, XMM0, 0x4E)

241:   SSE_COPY_PS(XMM1, XMM6)
242:   SSE_MULT_PS(XMM1, XMM0)
243:   SSE_SUB_PS(XMM2, XMM1)

245:   SSE_MULT_PS(XMM0, XMM3)
246:   SSE_SUB_PS(XMM0, XMM7)

248:   SSE_SHUFFLE(XMM0, XMM0, 0x4E)
249:   SSE_STORE_PS(SSE_ARG_1, FLOAT_12, XMM0)

251:   /* ----------------------------------------------- */

253:   SSE_COPY_PS(XMM7, XMM5)
254:   SSE_SHUFFLE(XMM7, XMM5, 0x4E)
255:   SSE_MULT_PS(XMM7, XMM6)

257:   SSE_SHUFFLE(XMM7, XMM7, 0xB1)

259:   SSE_SHUFFLE(XMM4, XMM4, 0x4E)

261:   SSE_COPY_PS(XMM0, XMM4)
262:   SSE_MULT_PS(XMM0, XMM7)
263:   SSE_ADD_PS(XMM0, XMM2)

265:   SSE_COPY_PS(XMM2, XMM3)
266:   SSE_MULT_PS(XMM2, XMM7)

268:   SSE_SHUFFLE(XMM7, XMM7, 0x4E)

270:   SSE_COPY_PS(XMM1, XMM4)
271:   SSE_MULT_PS(XMM1, XMM7)
272:   SSE_SUB_PS(XMM0, XMM1)
273:   SSE_STORE_PS(SSE_ARG_1, FLOAT_0, XMM0)

275:   SSE_MULT_PS(XMM7, XMM3)
276:   SSE_SUB_PS(XMM7, XMM2)

278:   SSE_SHUFFLE(XMM7, XMM7, 0x4E)

280:   /* ----------------------------------------------- */

282:   SSE_COPY_PS(XMM1, XMM3)
283:   SSE_MULT_PS(XMM1, XMM5)

285:   SSE_SHUFFLE(XMM1, XMM1, 0xB1)

287:   SSE_COPY_PS(XMM0, XMM6)
288:   SSE_MULT_PS(XMM0, XMM1)
289:   SSE_ADD_PS(XMM0, XMM7)

291:   SSE_COPY_PS(XMM2, XMM4)
292:   SSE_MULT_PS(XMM2, XMM1)
293:   SSE_SUB_PS_M(XMM2, SSE_ARG_1, FLOAT_12)

295:   SSE_SHUFFLE(XMM1, XMM1, 0x4E)

297:   SSE_COPY_PS(XMM7, XMM6)
298:   SSE_MULT_PS(XMM7, XMM1)
299:   SSE_SUB_PS(XMM7, XMM0)

301:   SSE_MULT_PS(XMM1, XMM4)
302:   SSE_SUB_PS(XMM2, XMM1)
303:   SSE_STORE_PS(SSE_ARG_1, FLOAT_12, XMM2)

305:   /* ----------------------------------------------- */

307:   SSE_COPY_PS(XMM1, XMM3)
308:   SSE_MULT_PS(XMM1, XMM6)

310:   SSE_SHUFFLE(XMM1, XMM1, 0xB1)

312:   SSE_COPY_PS(XMM2, XMM4)
313:   SSE_MULT_PS(XMM2, XMM1)
314:   SSE_LOAD_PS(SSE_ARG_1, FLOAT_4, XMM0)
315:   SSE_SUB_PS(XMM0, XMM2)

317:   SSE_COPY_PS(XMM2, XMM5)
318:   SSE_MULT_PS(XMM2, XMM1)
319:   SSE_ADD_PS(XMM2, XMM7)

321:   SSE_SHUFFLE(XMM1, XMM1, 0x4E)

323:   SSE_COPY_PS(XMM7, XMM4)
324:   SSE_MULT_PS(XMM7, XMM1)
325:   SSE_ADD_PS(XMM7, XMM0)

327:   SSE_MULT_PS(XMM1, XMM5)
328:   SSE_SUB_PS(XMM2, XMM1)

330:   /* ----------------------------------------------- */

332:   SSE_MULT_PS(XMM4, XMM3)

334:   SSE_SHUFFLE(XMM4, XMM4, 0xB1)

336:   SSE_COPY_PS(XMM1, XMM6)
337:   SSE_MULT_PS(XMM1, XMM4)
338:   SSE_ADD_PS(XMM1, XMM7)

340:   SSE_COPY_PS(XMM0, XMM5)
341:   SSE_MULT_PS(XMM0, XMM4)
342:   SSE_LOAD_PS(SSE_ARG_1, FLOAT_12, XMM7)
343:   SSE_SUB_PS(XMM7, XMM0)

345:   SSE_SHUFFLE(XMM4, XMM4, 0x4E)

347:   SSE_MULT_PS(XMM6, XMM4)
348:   SSE_SUB_PS(XMM1, XMM6)

350:   SSE_MULT_PS(XMM5, XMM4)
351:   SSE_ADD_PS(XMM5, XMM7)

353:   /* ----------------------------------------------- */

355:   SSE_LOAD_PS(SSE_ARG_1, FLOAT_0, XMM0)
356:   SSE_MULT_PS(XMM3, XMM0)

358:   SSE_COPY_PS(XMM4, XMM3)
359:   SSE_SHUFFLE(XMM4, XMM3, 0x4E)
360:   SSE_ADD_PS(XMM4, XMM3)

362:   SSE_COPY_PS(XMM6, XMM4)
363:   SSE_SHUFFLE(XMM6, XMM4, 0xB1)
364:   SSE_ADD_SS(XMM6, XMM4)

366:   SSE_COPY_PS(XMM3, XMM6)
367:   SSE_RECIP_SS(XMM3, XMM6)
368:   SSE_COPY_SS(XMM4, XMM3)
369:   SSE_ADD_SS(XMM4, XMM3)
370:   SSE_MULT_SS(XMM3, XMM3)
371:   SSE_MULT_SS(XMM6, XMM3)
372:   SSE_SUB_SS(XMM4, XMM6)

374:   SSE_SHUFFLE(XMM4, XMM4, 0x00)

376:   SSE_MULT_PS(XMM0, XMM4)
377:   SSE_STOREL_PS(SSE_ARG_1, FLOAT_0, XMM0)
378:   SSE_STOREH_PS(SSE_ARG_1, FLOAT_2, XMM0)

380:   SSE_MULT_PS(XMM1, XMM4)
381:   SSE_STOREL_PS(SSE_ARG_1, FLOAT_4, XMM1)
382:   SSE_STOREH_PS(SSE_ARG_1, FLOAT_6, XMM1)

384:   SSE_MULT_PS(XMM2, XMM4)
385:   SSE_STOREL_PS(SSE_ARG_1, FLOAT_8, XMM2)
386:   SSE_STOREH_PS(SSE_ARG_1, FLOAT_10, XMM2)

388:   SSE_MULT_PS(XMM4, XMM5)
389:   SSE_STOREL_PS(SSE_ARG_1, FLOAT_12, XMM4)
390:   SSE_STOREH_PS(SSE_ARG_1, FLOAT_14, XMM4)

392:   /* ----------------------------------------------- */

394:   SSE_INLINE_END_1;
395:   SSE_SCOPE_END;
396:   PetscFunctionReturn(PETSC_SUCCESS);
397: }

399: #endif