Actual source code: sf.c

petsc-3.5.2 2014-09-08
Report Typos and Errors
  1: #include <petsc-private/sfimpl.h> /*I "petscsf.h" I*/
  2: #include <petscctable.h>

  4: /* Logging support */
  5: PetscLogEvent PETSCSF_SetGraph, PETSCSF_BcastBegin, PETSCSF_BcastEnd, PETSCSF_ReduceBegin, PETSCSF_ReduceEnd, PETSCSF_FetchAndOpBegin, PETSCSF_FetchAndOpEnd;

  7: #if defined(PETSC_USE_DEBUG)
  8: #  define PetscSFCheckGraphSet(sf,arg) do {                          \
  9:     if (PetscUnlikely(!(sf)->graphset))                              \
 10:       SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call PetscSFSetGraph() on argument %D \"%s\" before %s()",(arg),#sf,PETSC_FUNCTION_NAME); \
 11:   } while (0)
 12: #else
 13: #  define PetscSFCheckGraphSet(sf,arg) do {} while (0)
 14: #endif

 16: const char *const PetscSFDuplicateOptions[] = {"CONFONLY","RANKS","GRAPH","PetscSFDuplicateOption","PETSCSF_DUPLICATE_",0};

 20: /*@C
 21:    PetscSFCreate - create a star forest communication context

 23:    Not Collective

 25:    Input Arguments:
 26: .  comm - communicator on which the star forest will operate

 28:    Output Arguments:
 29: .  sf - new star forest context

 31:    Level: intermediate

 33: .seealso: PetscSFSetGraph(), PetscSFDestroy()
 34: @*/
 35: PetscErrorCode PetscSFCreate(MPI_Comm comm,PetscSF *sf)
 36: {
 38:   PetscSF        b;

 42:   PetscSFInitializePackage();

 44:   PetscHeaderCreate(b,_p_PetscSF,struct _PetscSFOps,PETSCSF_CLASSID,"PetscSF","Star Forest","PetscSF",comm,PetscSFDestroy,PetscSFView);

 46:   b->nroots    = -1;
 47:   b->nleaves   = -1;
 48:   b->nranks    = -1;
 49:   b->rankorder = PETSC_TRUE;
 50:   b->ingroup   = MPI_GROUP_NULL;
 51:   b->outgroup  = MPI_GROUP_NULL;
 52:   b->graphset  = PETSC_FALSE;

 54:   *sf = b;
 55:   return(0);
 56: }

 60: /*@C
 61:    PetscSFReset - Reset a star forest so that different sizes or neighbors can be used

 63:    Collective

 65:    Input Arguments:
 66: .  sf - star forest

 68:    Level: advanced

 70: .seealso: PetscSFCreate(), PetscSFSetGraph(), PetscSFDestroy()
 71: @*/
 72: PetscErrorCode PetscSFReset(PetscSF sf)
 73: {

 78:   sf->mine   = NULL;
 79:   PetscFree(sf->mine_alloc);
 80:   sf->remote = NULL;
 81:   PetscFree(sf->remote_alloc);
 82:   PetscFree4(sf->ranks,sf->roffset,sf->rmine,sf->rremote);
 83:   PetscFree(sf->degree);
 84:   if (sf->ingroup  != MPI_GROUP_NULL) {MPI_Group_free(&sf->ingroup);}
 85:   if (sf->outgroup != MPI_GROUP_NULL) {MPI_Group_free(&sf->outgroup);}
 86:   PetscSFDestroy(&sf->multi);
 87:   sf->graphset = PETSC_FALSE;
 88:   if (sf->ops->Reset) {(*sf->ops->Reset)(sf);}
 89:   sf->setupcalled = PETSC_FALSE;
 90:   return(0);
 91: }

 95: /*@C
 96:    PetscSFSetType - set the PetscSF communication implementation

 98:    Collective on PetscSF

100:    Input Parameters:
101: +  sf - the PetscSF context
102: -  type - a known method

104:    Options Database Key:
105: .  -sf_type <type> - Sets the method; use -help for a list
106:    of available methods (for instance, window, pt2pt, neighbor)

108:    Notes:
109:    See "include/petscsf.h" for available methods (for instance)
110: +    PETSCSFWINDOW - MPI-2/3 one-sided
111: -    PETSCSFBASIC - basic implementation using MPI-1 two-sided

113:   Level: intermediate

115: .keywords: PetscSF, set, type

117: .seealso: PetscSFType, PetscSFCreate()
118: @*/
119: PetscErrorCode PetscSFSetType(PetscSF sf,PetscSFType type)
120: {
121:   PetscErrorCode ierr,(*r)(PetscSF);
122:   PetscBool      match;


128:   PetscObjectTypeCompare((PetscObject)sf,type,&match);
129:   if (match) return(0);

131:   PetscFunctionListFind(PetscSFList,type,&r);
132:   if (!r) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_UNKNOWN_TYPE,"Unable to find requested PetscSF type %s",type);
133:   /* Destroy the previous private PetscSF context */
134:   if (sf->ops->Destroy) {
135:     (*(sf)->ops->Destroy)(sf);
136:   }
137:   PetscMemzero(sf->ops,sizeof(*sf->ops));
138:   PetscObjectChangeTypeName((PetscObject)sf,type);
139:   (*r)(sf);
140:   return(0);
141: }

145: /*@C
146:    PetscSFDestroy - destroy star forest

148:    Collective

150:    Input Arguments:
151: .  sf - address of star forest

153:    Level: intermediate

155: .seealso: PetscSFCreate(), PetscSFReset()
156: @*/
157: PetscErrorCode PetscSFDestroy(PetscSF *sf)
158: {

162:   if (!*sf) return(0);
164:   if (--((PetscObject)(*sf))->refct > 0) {*sf = 0; return(0);}
165:   PetscSFReset(*sf);
166:   if ((*sf)->ops->Destroy) {(*(*sf)->ops->Destroy)(*sf);}
167:   PetscHeaderDestroy(sf);
168:   return(0);
169: }

173: /*@
174:    PetscSFSetUp - set up communication structures

176:    Collective

178:    Input Arguments:
179: .  sf - star forest communication object

181:    Level: beginner

183: .seealso: PetscSFSetFromOptions(), PetscSFSetType()
184: @*/
185: PetscErrorCode PetscSFSetUp(PetscSF sf)
186: {

190:   if (sf->setupcalled) return(0);
191:   if (!((PetscObject)sf)->type_name) {PetscSFSetType(sf,PETSCSFBASIC);}
192:   if (sf->ops->SetUp) {(*sf->ops->SetUp)(sf);}
193:   sf->setupcalled = PETSC_TRUE;
194:   return(0);
195: }

199: /*@C
200:    PetscSFSetFromOptions - set PetscSF options using the options database

202:    Logically Collective

204:    Input Arguments:
205: .  sf - star forest

207:    Options Database Keys:
208: .  -sf_synchronization - synchronization type used by PetscSF

210:    Level: intermediate

212: .keywords: KSP, set, from, options, database

214: .seealso: PetscSFWindowSetSyncType()
215: @*/
216: PetscErrorCode PetscSFSetFromOptions(PetscSF sf)
217: {
218:   PetscSFType    deft;
219:   char           type[256];
221:   PetscBool      flg;

225:   PetscObjectOptionsBegin((PetscObject)sf);
226:   deft = ((PetscObject)sf)->type_name ? ((PetscObject)sf)->type_name : PETSCSFBASIC;
227:   PetscOptionsFList("-sf_type","PetscSF implementation type","PetscSFSetType",PetscSFList,deft,type,256,&flg);
228:   PetscSFSetType(sf,flg ? type : deft);
229:   PetscOptionsBool("-sf_rank_order","sort composite points for gathers and scatters in rank order, gathers are non-deterministic otherwise","PetscSFSetRankOrder",sf->rankorder,&sf->rankorder,NULL);
230:   if (sf->ops->SetFromOptions) {(*sf->ops->SetFromOptions)(sf);}
231:   PetscOptionsEnd();
232:   return(0);
233: }

237: /*@C
238:    PetscSFSetRankOrder - sort multi-points for gathers and scatters by rank order

240:    Logically Collective

242:    Input Arguments:
243: +  sf - star forest
244: -  flg - PETSC_TRUE to sort, PETSC_FALSE to skip sorting (lower setup cost, but non-deterministic)

246:    Level: advanced

248: .seealso: PetscSFGatherBegin(), PetscSFScatterBegin()
249: @*/
250: PetscErrorCode PetscSFSetRankOrder(PetscSF sf,PetscBool flg)
251: {

256:   if (sf->multi) SETERRQ(PetscObjectComm((PetscObject)sf),PETSC_ERR_ARG_WRONGSTATE,"Rank ordering must be set before first call to PetscSFGatherBegin() or PetscSFScatterBegin()");
257:   sf->rankorder = flg;
258:   return(0);
259: }

263: /*@C
264:    PetscSFSetGraph - Set a parallel star forest

266:    Collective

268:    Input Arguments:
269: +  sf - star forest
270: .  nroots - number of root vertices on the current process (these are possible targets for other process to attach leaves)
271: .  nleaves - number of leaf vertices on the current process, each of these references a root on any process
272: .  ilocal - locations of leaves in leafdata buffers, pass NULL for contiguous storage
273: .  localmode - copy mode for ilocal
274: .  iremote - remote locations of root vertices for each leaf on the current process
275: -  remotemode - copy mode for iremote

277:    Level: intermediate

279: .seealso: PetscSFCreate(), PetscSFView(), PetscSFGetGraph()
280: @*/
281: PetscErrorCode PetscSFSetGraph(PetscSF sf,PetscInt nroots,PetscInt nleaves,const PetscInt *ilocal,PetscCopyMode localmode,const PetscSFNode *iremote,PetscCopyMode remotemode)
282: {
283:   PetscErrorCode     ierr;
284:   PetscTable         table;
285:   PetscTablePosition pos;
286:   PetscMPIInt        size;
287:   PetscInt           i,*rcount,*ranks;

291:   PetscLogEventBegin(PETSCSF_SetGraph,sf,0,0,0);
294:   if (nroots < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"roots %D, cannot be negative",nroots);
295:   if (nleaves < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"nleaves %D, cannot be negative",nleaves);
296:   PetscSFReset(sf);
297:   sf->nroots  = nroots;
298:   sf->nleaves = nleaves;
299:   if (ilocal) {
300:     switch (localmode) {
301:     case PETSC_COPY_VALUES:
302:       PetscMalloc1(nleaves,&sf->mine_alloc);
303:       sf->mine    = sf->mine_alloc;
304:       PetscMemcpy(sf->mine,ilocal,nleaves*sizeof(*sf->mine));
305:       sf->minleaf = PETSC_MAX_INT;
306:       sf->maxleaf = PETSC_MIN_INT;
307:       for (i=0; i<nleaves; i++) {
308:         sf->minleaf = PetscMin(sf->minleaf,ilocal[i]);
309:         sf->maxleaf = PetscMax(sf->maxleaf,ilocal[i]);
310:       }
311:       break;
312:     case PETSC_OWN_POINTER:
313:       sf->mine_alloc = (PetscInt*)ilocal;
314:       sf->mine       = sf->mine_alloc;
315:       break;
316:     case PETSC_USE_POINTER:
317:       sf->mine = (PetscInt*)ilocal;
318:       break;
319:     default: SETERRQ(PetscObjectComm((PetscObject)sf),PETSC_ERR_ARG_OUTOFRANGE,"Unknown localmode");
320:     }
321:   }
322:   if (!ilocal || nleaves > 0) {
323:     sf->minleaf = 0;
324:     sf->maxleaf = nleaves - 1;
325:   }
326:   switch (remotemode) {
327:   case PETSC_COPY_VALUES:
328:     PetscMalloc1(nleaves,&sf->remote_alloc);
329:     sf->remote = sf->remote_alloc;
330:     PetscMemcpy(sf->remote,iremote,nleaves*sizeof(*sf->remote));
331:     break;
332:   case PETSC_OWN_POINTER:
333:     sf->remote_alloc = (PetscSFNode*)iremote;
334:     sf->remote       = sf->remote_alloc;
335:     break;
336:   case PETSC_USE_POINTER:
337:     sf->remote = (PetscSFNode*)iremote;
338:     break;
339:   default: SETERRQ(PetscObjectComm((PetscObject)sf),PETSC_ERR_ARG_OUTOFRANGE,"Unknown remotemode");
340:   }

342:   MPI_Comm_size(PetscObjectComm((PetscObject)sf),&size);
343:   PetscTableCreate(10,size,&table);
344:   for (i=0; i<nleaves; i++) {
345:     /* Log 1-based rank */
346:     PetscTableAdd(table,iremote[i].rank+1,1,ADD_VALUES);
347:   }
348:   PetscTableGetCount(table,&sf->nranks);
349:   PetscMalloc4(sf->nranks,&sf->ranks,sf->nranks+1,&sf->roffset,nleaves,&sf->rmine,nleaves,&sf->rremote);
350:   PetscMalloc2(sf->nranks,&rcount,sf->nranks,&ranks);
351:   PetscTableGetHeadPosition(table,&pos);
352:   for (i=0; i<sf->nranks; i++) {
353:     PetscTableGetNext(table,&pos,&ranks[i],&rcount[i]);
354:     ranks[i]--;             /* Convert back to 0-based */
355:   }
356:   PetscTableDestroy(&table);
357:   PetscSortIntWithArray(sf->nranks,ranks,rcount);
358:   sf->roffset[0] = 0;
359:   for (i=0; i<sf->nranks; i++) {
360:     PetscMPIIntCast(ranks[i],sf->ranks+i);
361:     sf->roffset[i+1] = sf->roffset[i] + rcount[i];
362:     rcount[i]        = 0;
363:   }
364:   for (i=0; i<nleaves; i++) {
365:     PetscInt lo,hi,irank;
366:     /* Search for index of iremote[i].rank in sf->ranks */
367:     lo = 0; hi = sf->nranks;
368:     while (hi - lo > 1) {
369:       PetscInt mid = lo + (hi - lo)/2;
370:       if (iremote[i].rank < sf->ranks[mid]) hi = mid;
371:       else                                  lo = mid;
372:     }
373:     if (hi - lo == 1 && iremote[i].rank == sf->ranks[lo]) irank = lo;
374:     else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Could not find rank %D in array",iremote[i].rank);
375:     sf->rmine[sf->roffset[irank] + rcount[irank]]   = ilocal ? ilocal[i] : i;
376:     sf->rremote[sf->roffset[irank] + rcount[irank]] = iremote[i].index;
377:     rcount[irank]++;
378:   }
379:   PetscFree2(rcount,ranks);
380: #if !defined(PETSC_USE_64BIT_INDICES)
381:   if (nroots == PETSC_DETERMINE) {
382:     /* Jed, if you have a better way to do this, put it in */
383:     PetscInt *numRankLeaves, *leafOff, *leafIndices, *numRankRoots, *rootOff, *rootIndices, maxRoots = 0;

385:     /* All to all to determine number of leaf indices from each (you can do this using Scan and asynch messages) */
386:     PetscMalloc4(size,&numRankLeaves,size+1,&leafOff,size,&numRankRoots,size+1,&rootOff);
387:     PetscMemzero(numRankLeaves, size * sizeof(PetscInt));
388:     for (i = 0; i < nleaves; ++i) ++numRankLeaves[iremote[i].rank];
389:     MPI_Alltoall(numRankLeaves, 1, MPIU_INT, numRankRoots, 1, MPIU_INT, PetscObjectComm((PetscObject)sf));
390:     /* Could set nroots to this maximum */
391:     for (i = 0; i < size; ++i) maxRoots += numRankRoots[i];

393:     /* Gather all indices */
394:     PetscMalloc2(nleaves,&leafIndices,maxRoots,&rootIndices);
395:     leafOff[0] = 0;
396:     for (i = 0; i < size; ++i) leafOff[i+1] = leafOff[i] + numRankLeaves[i];
397:     for (i = 0; i < nleaves; ++i) leafIndices[leafOff[iremote[i].rank]++] = iremote[i].index;
398:     leafOff[0] = 0;
399:     for (i = 0; i < size; ++i) leafOff[i+1] = leafOff[i] + numRankLeaves[i];
400:     rootOff[0] = 0;
401:     for (i = 0; i < size; ++i) rootOff[i+1] = rootOff[i] + numRankRoots[i];
402:     MPI_Alltoallv(leafIndices, numRankLeaves, leafOff, MPIU_INT, rootIndices, numRankRoots, rootOff, MPIU_INT, PetscObjectComm((PetscObject)sf));
403:     /* Sort and reduce */
404:     PetscSortRemoveDupsInt(&maxRoots, rootIndices);
405:     PetscFree2(leafIndices,rootIndices);
406:     PetscFree4(numRankLeaves,leafOff,numRankRoots,rootOff);
407:     sf->nroots = maxRoots;
408:   }
409: #endif

411:   sf->graphset = PETSC_TRUE;
412:   PetscLogEventEnd(PETSCSF_SetGraph,sf,0,0,0);
413:   return(0);
414: }

418: /*@C
419:    PetscSFCreateInverseSF - given a PetscSF in which all vertices have degree 1, creates the inverse map

421:    Collective

423:    Input Arguments:
424: .  sf - star forest to invert

426:    Output Arguments:
427: .  isf - inverse of sf

429:    Level: advanced

431:    Notes:
432:    All roots must have degree 1.

434:    The local space may be a permutation, but cannot be sparse.

436: .seealso: PetscSFSetGraph()
437: @*/
438: PetscErrorCode PetscSFCreateInverseSF(PetscSF sf,PetscSF *isf)
439: {
441:   PetscMPIInt    rank;
442:   PetscInt       i,nroots,nleaves,maxlocal,count,*newilocal;
443:   const PetscInt *ilocal;
444:   PetscSFNode    *roots,*leaves;

447:   MPI_Comm_rank(PetscObjectComm((PetscObject)sf),&rank);
448:   PetscSFGetGraph(sf,&nroots,&nleaves,&ilocal,NULL);
449:   for (i=0,maxlocal=0; i<nleaves; i++) maxlocal = PetscMax(maxlocal,(ilocal ? ilocal[i] : i)+1);
450:   PetscMalloc2(nroots,&roots,nleaves,&leaves);
451:   for (i=0; i<nleaves; i++) {
452:     leaves[i].rank  = rank;
453:     leaves[i].index = i;
454:   }
455:   for (i=0; i <nroots; i++) {
456:     roots[i].rank  = -1;
457:     roots[i].index = -1;
458:   }
459:   PetscSFReduceBegin(sf,MPIU_2INT,leaves,roots,MPIU_REPLACE);
460:   PetscSFReduceEnd(sf,MPIU_2INT,leaves,roots,MPIU_REPLACE);

462:   /* Check whether our leaves are sparse */
463:   for (i=0,count=0; i<nroots; i++) if (roots[i].rank >= 0) count++;
464:   if (count == nroots) newilocal = NULL;
465:   else {                        /* Index for sparse leaves and compact "roots" array (which is to become our leaves). */
466:     PetscMalloc1(count,&newilocal);
467:     for (i=0,count=0; i<nroots; i++) {
468:       if (roots[i].rank >= 0) {
469:         newilocal[count]   = i;
470:         roots[count].rank  = roots[i].rank;
471:         roots[count].index = roots[i].index;
472:         count++;
473:       }
474:     }
475:   }

477:   PetscSFDuplicate(sf,PETSCSF_DUPLICATE_CONFONLY,isf);
478:   PetscSFSetGraph(*isf,maxlocal,count,newilocal,PETSC_OWN_POINTER,roots,PETSC_COPY_VALUES);
479:   PetscFree2(roots,leaves);
480:   return(0);
481: }

485: /*@
486:    PetscSFDuplicate - duplicate a PetscSF, optionally preserving rank connectivity and graph

488:    Collective

490:    Input Arguments:
491: +  sf - communication object to duplicate
492: -  opt - PETSCSF_DUPLICATE_CONFONLY, PETSCSF_DUPLICATE_RANKS, or PETSCSF_DUPLICATE_GRAPH (see PetscSFDuplicateOption)

494:    Output Arguments:
495: .  newsf - new communication object

497:    Level: beginner

499: .seealso: PetscSFCreate(), PetscSFSetType(), PetscSFSetGraph()
500: @*/
501: PetscErrorCode PetscSFDuplicate(PetscSF sf,PetscSFDuplicateOption opt,PetscSF *newsf)
502: {

506:   PetscSFCreate(PetscObjectComm((PetscObject)sf),newsf);
507:   PetscSFSetType(*newsf,((PetscObject)sf)->type_name);
508:   if (sf->ops->Duplicate) {(*sf->ops->Duplicate)(sf,opt,*newsf);}
509:   if (opt == PETSCSF_DUPLICATE_GRAPH) {
510:     PetscInt          nroots,nleaves;
511:     const PetscInt    *ilocal;
512:     const PetscSFNode *iremote;
513:     PetscSFGetGraph(sf,&nroots,&nleaves,&ilocal,&iremote);
514:     PetscSFSetGraph(*newsf,nroots,nleaves,ilocal,PETSC_COPY_VALUES,iremote,PETSC_COPY_VALUES);
515:   }
516:   return(0);
517: }

521: /*@C
522:    PetscSFGetGraph - Get the graph specifying a parallel star forest

524:    Not Collective

526:    Input Arguments:
527: .  sf - star forest

529:    Output Arguments:
530: +  nroots - number of root vertices on the current process (these are possible targets for other process to attach leaves)
531: .  nleaves - number of leaf vertices on the current process, each of these references a root on any process
532: .  ilocal - locations of leaves in leafdata buffers
533: -  iremote - remote locations of root vertices for each leaf on the current process

535:    Level: intermediate

537: .seealso: PetscSFCreate(), PetscSFView(), PetscSFSetGraph()
538: @*/
539: PetscErrorCode PetscSFGetGraph(PetscSF sf,PetscInt *nroots,PetscInt *nleaves,const PetscInt **ilocal,const PetscSFNode **iremote)
540: {

544:   /* We are not currently requiring that the graph is set, thus returning nroots=-1 if it has not been set */
545:   /* if (!sf->graphset) SETERRQ(PetscObjectComm((PetscObject)sf),PETSC_ERR_ARG_WRONGSTATE,"Graph has not been set, must call PetscSFSetGraph()"); */
546:   if (nroots) *nroots = sf->nroots;
547:   if (nleaves) *nleaves = sf->nleaves;
548:   if (ilocal) *ilocal = sf->mine;
549:   if (iremote) *iremote = sf->remote;
550:   return(0);
551: }

555: /*@C
556:    PetscSFGetLeafRange - Get the active leaf ranges

558:    Not Collective

560:    Input Arguments:
561: .  sf - star forest

563:    Output Arguments:
564: +  minleaf - minimum active leaf on this process
565: -  maxleaf - maximum active leaf on this process

567:    Level: developer

569: .seealso: PetscSFCreate(), PetscSFView(), PetscSFSetGraph(), PetscSFGetGraph()
570: @*/
571: PetscErrorCode PetscSFGetLeafRange(PetscSF sf,PetscInt *minleaf,PetscInt *maxleaf)
572: {

576:   if (minleaf) *minleaf = sf->minleaf;
577:   if (maxleaf) *maxleaf = sf->maxleaf;
578:   return(0);
579: }

583: /*@C
584:    PetscSFView - view a star forest

586:    Collective

588:    Input Arguments:
589: +  sf - star forest
590: -  viewer - viewer to display graph, for example PETSC_VIEWER_STDOUT_WORLD

592:    Level: beginner

594: .seealso: PetscSFCreate(), PetscSFSetGraph()
595: @*/
596: PetscErrorCode PetscSFView(PetscSF sf,PetscViewer viewer)
597: {
598:   PetscErrorCode    ierr;
599:   PetscBool         iascii;
600:   PetscViewerFormat format;

604:   if (!viewer) {PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)sf),&viewer);}
607:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
608:   if (iascii) {
609:     PetscMPIInt rank;
610:     PetscInt    i,j;

612:     PetscObjectPrintClassNamePrefixType((PetscObject)sf,viewer);
613:     PetscViewerASCIIPushTab(viewer);
614:     if (sf->ops->View) {(*sf->ops->View)(sf,viewer);}
615:     MPI_Comm_rank(PetscObjectComm((PetscObject)sf),&rank);
616:     PetscViewerASCIISynchronizedAllow(viewer,PETSC_TRUE);
617:     PetscViewerASCIISynchronizedPrintf(viewer,"[%d] Number of roots=%D, leaves=%D, remote ranks=%D\n",rank,sf->nroots,sf->nleaves,sf->nranks);
618:     for (i=0; i<sf->nleaves; i++) {
619:       PetscViewerASCIISynchronizedPrintf(viewer,"[%d] %D <- (%D,%D)\n",rank,sf->mine ? sf->mine[i] : i,sf->remote[i].rank,sf->remote[i].index);
620:     }
621:     PetscViewerFlush(viewer);
622:     PetscViewerGetFormat(viewer,&format);
623:     if (format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
624:       PetscViewerASCIISynchronizedPrintf(viewer,"[%d] Roots referenced by my leaves, by rank\n",rank);
625:       for (i=0; i<sf->nranks; i++) {
626:         PetscViewerASCIISynchronizedPrintf(viewer,"[%d] %d: %D edges\n",rank,sf->ranks[i],sf->roffset[i+1]-sf->roffset[i]);
627:         for (j=sf->roffset[i]; j<sf->roffset[i+1]; j++) {
628:           PetscViewerASCIISynchronizedPrintf(viewer,"[%d]    %D <- %D\n",rank,sf->rmine[j],sf->rremote[j]);
629:         }
630:       }
631:     }
632:     PetscViewerFlush(viewer);
633:     PetscViewerASCIISynchronizedAllow(viewer,PETSC_FALSE);
634:     PetscViewerASCIIPopTab(viewer);
635:   }
636:   return(0);
637: }

641: /*@C
642:    PetscSFGetRanks - Get ranks and number of vertices referenced by leaves on this process

644:    Not Collective

646:    Input Arguments:
647: .  sf - star forest

649:    Output Arguments:
650: +  nranks - number of ranks referenced by local part
651: .  ranks - array of ranks
652: .  roffset - offset in rmine/rremote for each rank (length nranks+1)
653: .  rmine - concatenated array holding local indices referencing each remote rank
654: -  rremote - concatenated array holding remote indices referenced for each remote rank

656:    Level: developer

658: .seealso: PetscSFSetGraph()
659: @*/
660: PetscErrorCode PetscSFGetRanks(PetscSF sf,PetscInt *nranks,const PetscMPIInt **ranks,const PetscInt **roffset,const PetscInt **rmine,const PetscInt **rremote)
661: {

665:   if (nranks)  *nranks  = sf->nranks;
666:   if (ranks)   *ranks   = sf->ranks;
667:   if (roffset) *roffset = sf->roffset;
668:   if (rmine)   *rmine   = sf->rmine;
669:   if (rremote) *rremote = sf->rremote;
670:   return(0);
671: }

675: /*@C
676:    PetscSFGetGroups - gets incoming and outgoing process groups

678:    Collective

680:    Input Argument:
681: .  sf - star forest

683:    Output Arguments:
684: +  incoming - group of origin processes for incoming edges (leaves that reference my roots)
685: -  outgoing - group of destination processes for outgoing edges (roots that I reference)

687:    Level: developer

689: .seealso: PetscSFGetWindow(), PetscSFRestoreWindow()
690: @*/
691: PetscErrorCode PetscSFGetGroups(PetscSF sf,MPI_Group *incoming,MPI_Group *outgoing)
692: {
694:   MPI_Group      group;

697:   if (sf->ingroup == MPI_GROUP_NULL) {
698:     PetscInt       i;
699:     const PetscInt *indegree;
700:     PetscMPIInt    rank,*outranks,*inranks;
701:     PetscSFNode    *remote;
702:     PetscSF        bgcount;

704:     /* Compute the number of incoming ranks */
705:     PetscMalloc1(sf->nranks,&remote);
706:     for (i=0; i<sf->nranks; i++) {
707:       remote[i].rank  = sf->ranks[i];
708:       remote[i].index = 0;
709:     }
710:     PetscSFDuplicate(sf,PETSCSF_DUPLICATE_CONFONLY,&bgcount);
711:     PetscSFSetGraph(bgcount,1,sf->nranks,NULL,PETSC_COPY_VALUES,remote,PETSC_OWN_POINTER);
712:     PetscSFComputeDegreeBegin(bgcount,&indegree);
713:     PetscSFComputeDegreeEnd(bgcount,&indegree);

715:     /* Enumerate the incoming ranks */
716:     PetscMalloc2(indegree[0],&inranks,sf->nranks,&outranks);
717:     MPI_Comm_rank(PetscObjectComm((PetscObject)sf),&rank);
718:     for (i=0; i<sf->nranks; i++) outranks[i] = rank;
719:     PetscSFGatherBegin(bgcount,MPI_INT,outranks,inranks);
720:     PetscSFGatherEnd(bgcount,MPI_INT,outranks,inranks);
721:     MPI_Comm_group(PetscObjectComm((PetscObject)sf),&group);
722:     MPI_Group_incl(group,indegree[0],inranks,&sf->ingroup);
723:     MPI_Group_free(&group);
724:     PetscFree2(inranks,outranks);
725:     PetscSFDestroy(&bgcount);
726:   }
727:   *incoming = sf->ingroup;

729:   if (sf->outgroup == MPI_GROUP_NULL) {
730:     MPI_Comm_group(PetscObjectComm((PetscObject)sf),&group);
731:     MPI_Group_incl(group,sf->nranks,sf->ranks,&sf->outgroup);
732:     MPI_Group_free(&group);
733:   }
734:   *outgoing = sf->outgroup;
735:   return(0);
736: }

740: /*@C
741:    PetscSFGetMultiSF - gets the inner SF implemeting gathers and scatters

743:    Collective

745:    Input Argument:
746: .  sf - star forest that may contain roots with 0 or with more than 1 vertex

748:    Output Arguments:
749: .  multi - star forest with split roots, such that each root has degree exactly 1

751:    Level: developer

753:    Notes:

755:    In most cases, users should use PetscSFGatherBegin() and PetscSFScatterBegin() instead of manipulating multi
756:    directly. Since multi satisfies the stronger condition that each entry in the global space has exactly one incoming
757:    edge, it is a candidate for future optimization that might involve its removal.

759: .seealso: PetscSFSetGraph(), PetscSFGatherBegin(), PetscSFScatterBegin()
760: @*/
761: PetscErrorCode PetscSFGetMultiSF(PetscSF sf,PetscSF *multi)
762: {

768:   if (sf->nroots < 0) {         /* Graph has not been set yet; why do we need this? */
769:     PetscSFDuplicate(sf,PETSCSF_DUPLICATE_RANKS,&sf->multi);
770:     *multi = sf->multi;
771:     return(0);
772:   }
773:   if (!sf->multi) {
774:     const PetscInt *indegree;
775:     PetscInt       i,*inoffset,*outones,*outoffset;
776:     PetscSFNode    *remote;
777:     PetscSFComputeDegreeBegin(sf,&indegree);
778:     PetscSFComputeDegreeEnd(sf,&indegree);
779:     PetscMalloc3(sf->nroots+1,&inoffset,sf->nleaves,&outones,sf->nleaves,&outoffset);
780:     inoffset[0] = 0;
781: #if 1
782:     for (i=0; i<sf->nroots; i++) inoffset[i+1] = PetscMax(i+1, inoffset[i] + indegree[i]);
783: #else
784:     for (i=0; i<sf->nroots; i++) inoffset[i+1] = inoffset[i] + indegree[i];
785: #endif
786:     for (i=0; i<sf->nleaves; i++) outones[i] = 1;
787:     PetscSFFetchAndOpBegin(sf,MPIU_INT,inoffset,outones,outoffset,MPIU_SUM);
788:     PetscSFFetchAndOpEnd(sf,MPIU_INT,inoffset,outones,outoffset,MPIU_SUM);
789:     for (i=0; i<sf->nroots; i++) inoffset[i] -= indegree[i]; /* Undo the increment */
790: #if 0
791: #if defined(PETSC_USE_DEBUG)                                 /* Check that the expected number of increments occurred */
792:     for (i=0; i<sf->nroots; i++) {
793:       if (inoffset[i] + indegree[i] != inoffset[i+1]) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Incorrect result after PetscSFFetchAndOp");
794:     }
795: #endif
796: #endif
797:     PetscMalloc1(sf->nleaves,&remote);
798:     for (i=0; i<sf->nleaves; i++) {
799:       remote[i].rank  = sf->remote[i].rank;
800:       remote[i].index = outoffset[i];
801:     }
802:     PetscSFDuplicate(sf,PETSCSF_DUPLICATE_RANKS,&sf->multi);
803:     PetscSFSetGraph(sf->multi,inoffset[sf->nroots],sf->nleaves,NULL,PETSC_COPY_VALUES,remote,PETSC_OWN_POINTER);
804:     if (sf->rankorder) {        /* Sort the ranks */
805:       PetscMPIInt rank;
806:       PetscInt    *inranks,*newoffset,*outranks,*newoutoffset,*tmpoffset,maxdegree;
807:       PetscSFNode *newremote;
808:       MPI_Comm_rank(PetscObjectComm((PetscObject)sf),&rank);
809:       for (i=0,maxdegree=0; i<sf->nroots; i++) maxdegree = PetscMax(maxdegree,indegree[i]);
810:       PetscMalloc5(sf->multi->nroots,&inranks,sf->multi->nroots,&newoffset,sf->nleaves,&outranks,sf->nleaves,&newoutoffset,maxdegree,&tmpoffset);
811:       for (i=0; i<sf->nleaves; i++) outranks[i] = rank;
812:       PetscSFReduceBegin(sf->multi,MPIU_INT,outranks,inranks,MPIU_REPLACE);
813:       PetscSFReduceEnd(sf->multi,MPIU_INT,outranks,inranks,MPIU_REPLACE);
814:       /* Sort the incoming ranks at each vertex, build the inverse map */
815:       for (i=0; i<sf->nroots; i++) {
816:         PetscInt j;
817:         for (j=0; j<indegree[i]; j++) tmpoffset[j] = j;
818:         PetscSortIntWithArray(indegree[i],inranks+inoffset[i],tmpoffset);
819:         for (j=0; j<indegree[i]; j++) newoffset[inoffset[i] + tmpoffset[j]] = inoffset[i] + j;
820:       }
821:       PetscSFBcastBegin(sf->multi,MPIU_INT,newoffset,newoutoffset);
822:       PetscSFBcastEnd(sf->multi,MPIU_INT,newoffset,newoutoffset);
823:       PetscMalloc1(sf->nleaves,&newremote);
824:       for (i=0; i<sf->nleaves; i++) {
825:         newremote[i].rank  = sf->remote[i].rank;
826:         newremote[i].index = newoutoffset[i];
827:       }
828:       PetscSFSetGraph(sf->multi,inoffset[sf->nroots],sf->nleaves,NULL,PETSC_COPY_VALUES,newremote,PETSC_OWN_POINTER);
829:       PetscFree5(inranks,newoffset,outranks,newoutoffset,tmpoffset);
830:     }
831:     PetscFree3(inoffset,outones,outoffset);
832:   }
833:   *multi = sf->multi;
834:   return(0);
835: }

839: /*@C
840:    PetscSFCreateEmbeddedSF - removes edges from all but the selected roots, does not remap indices

842:    Collective

844:    Input Arguments:
845: +  sf - original star forest
846: .  nroots - number of roots to select on this process
847: -  selected - selected roots on this process

849:    Output Arguments:
850: .  newsf - new star forest

852:    Level: advanced

854:    Note:
855:    To use the new PetscSF, it may be necessary to know the indices of the leaves that are still participating. This can
856:    be done by calling PetscSFGetGraph().

858: .seealso: PetscSFSetGraph(), PetscSFGetGraph()
859: @*/
860: PetscErrorCode PetscSFCreateEmbeddedSF(PetscSF sf,PetscInt nroots,const PetscInt *selected,PetscSF *newsf)
861: {
862:   PetscInt      *rootdata, *leafdata, *ilocal;
863:   PetscSFNode   *iremote;
864:   PetscInt       leafsize = 0, nleaves = 0, n, i;

871:   if (sf->mine) for (i = 0; i < sf->nleaves; ++i) {leafsize = PetscMax(leafsize, sf->mine[i]+1);}
872:   else leafsize = sf->nleaves;
873:   PetscCalloc2(sf->nroots,&rootdata,leafsize,&leafdata);
874:   for (i=0; i<nroots; ++i) rootdata[selected[i]] = 1;
875:   PetscSFBcastBegin(sf,MPIU_INT,rootdata,leafdata);
876:   PetscSFBcastEnd(sf,MPIU_INT,rootdata,leafdata);

878:   for (i = 0; i < leafsize; ++i) nleaves += leafdata[i];
879:   PetscMalloc1(nleaves,&ilocal);
880:   PetscMalloc1(nleaves,&iremote);
881:   for (i = 0, n = 0; i < sf->nleaves; ++i) {
882:     const PetscInt lidx = sf->mine ? sf->mine[i] : i;

884:     if (leafdata[lidx]) {
885:       ilocal[n]        = lidx;
886:       iremote[n].rank  = sf->remote[i].rank;
887:       iremote[n].index = sf->remote[i].index;
888:       ++n;
889:     }
890:   }
891:   if (n != nleaves) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_PLIB, "There is a size mismatch in the SF embedding, %d != %d", n, nleaves);
892:   PetscSFDuplicate(sf,PETSCSF_DUPLICATE_RANKS,newsf);
893:   PetscSFSetGraph(*newsf,sf->nroots,nleaves,ilocal,PETSC_OWN_POINTER,iremote,PETSC_OWN_POINTER);
894:   PetscFree2(rootdata,leafdata);
895:   return(0);
896: }

900: /*@C
901:    PetscSFBcastBegin - begin pointwise broadcast to be concluded with call to PetscSFBcastEnd()

903:    Collective on PetscSF

905:    Input Arguments:
906: +  sf - star forest on which to communicate
907: .  unit - data type associated with each node
908: -  rootdata - buffer to broadcast

910:    Output Arguments:
911: .  leafdata - buffer to update with values from each leaf's respective root

913:    Level: intermediate

915: .seealso: PetscSFCreate(), PetscSFSetGraph(), PetscSFView(), PetscSFBcastEnd(), PetscSFReduceBegin()
916: @*/
917: PetscErrorCode PetscSFBcastBegin(PetscSF sf,MPI_Datatype unit,const void *rootdata,void *leafdata)
918: {

923:   PetscSFCheckGraphSet(sf,1);
924:   PetscLogEventBegin(PETSCSF_BcastBegin,sf,0,0,0);
925:   PetscSFSetUp(sf);
926:   (*sf->ops->BcastBegin)(sf,unit,rootdata,leafdata);
927:   PetscLogEventEnd(PETSCSF_BcastBegin,sf,0,0,0);
928:   return(0);
929: }

933: /*@C
934:    PetscSFBcastEnd - end a broadcast operation started with PetscSFBcastBegin()

936:    Collective

938:    Input Arguments:
939: +  sf - star forest
940: .  unit - data type
941: -  rootdata - buffer to broadcast

943:    Output Arguments:
944: .  leafdata - buffer to update with values from each leaf's respective root

946:    Level: intermediate

948: .seealso: PetscSFSetGraph(), PetscSFReduceEnd()
949: @*/
950: PetscErrorCode PetscSFBcastEnd(PetscSF sf,MPI_Datatype unit,const void *rootdata,void *leafdata)
951: {

956:   PetscSFCheckGraphSet(sf,1);
957:   PetscLogEventBegin(PETSCSF_BcastEnd,sf,0,0,0);
958:   PetscSFSetUp(sf);
959:   (*sf->ops->BcastEnd)(sf,unit,rootdata,leafdata);
960:   PetscLogEventEnd(PETSCSF_BcastEnd,sf,0,0,0);
961:   return(0);
962: }

966: /*@C
967:    PetscSFReduceBegin - begin reduction of leafdata into rootdata, to be completed with call to PetscSFReduceEnd()

969:    Collective

971:    Input Arguments:
972: +  sf - star forest
973: .  unit - data type
974: .  leafdata - values to reduce
975: -  op - reduction operation

977:    Output Arguments:
978: .  rootdata - result of reduction of values from all leaves of each root

980:    Level: intermediate

982: .seealso: PetscSFBcastBegin()
983: @*/
984: PetscErrorCode PetscSFReduceBegin(PetscSF sf,MPI_Datatype unit,const void *leafdata,void *rootdata,MPI_Op op)
985: {

990:   PetscSFCheckGraphSet(sf,1);
991:   PetscLogEventBegin(PETSCSF_ReduceBegin,sf,0,0,0);
992:   PetscSFSetUp(sf);
993:   (sf->ops->ReduceBegin)(sf,unit,leafdata,rootdata,op);
994:   PetscLogEventEnd(PETSCSF_ReduceBegin,sf,0,0,0);
995:   return(0);
996: }

1000: /*@C
1001:    PetscSFReduceEnd - end a reduction operation started with PetscSFReduceBegin()

1003:    Collective

1005:    Input Arguments:
1006: +  sf - star forest
1007: .  unit - data type
1008: .  leafdata - values to reduce
1009: -  op - reduction operation

1011:    Output Arguments:
1012: .  rootdata - result of reduction of values from all leaves of each root

1014:    Level: intermediate

1016: .seealso: PetscSFSetGraph(), PetscSFBcastEnd()
1017: @*/
1018: PetscErrorCode PetscSFReduceEnd(PetscSF sf,MPI_Datatype unit,const void *leafdata,void *rootdata,MPI_Op op)
1019: {

1024:   PetscSFCheckGraphSet(sf,1);
1025:   PetscLogEventBegin(PETSCSF_ReduceEnd,sf,0,0,0);
1026:   PetscSFSetUp(sf);
1027:   (*sf->ops->ReduceEnd)(sf,unit,leafdata,rootdata,op);
1028:   PetscLogEventEnd(PETSCSF_ReduceEnd,sf,0,0,0);
1029:   return(0);
1030: }

1034: /*@C
1035:    PetscSFComputeDegreeBegin - begin computation of degree for each root vertex, to be completed with PetscSFComputeDegreeEnd()

1037:    Collective

1039:    Input Arguments:
1040: .  sf - star forest

1042:    Output Arguments:
1043: .  degree - degree of each root vertex

1045:    Level: advanced

1047: .seealso: PetscSFGatherBegin()
1048: @*/
1049: PetscErrorCode PetscSFComputeDegreeBegin(PetscSF sf,const PetscInt **degree)
1050: {

1055:   PetscSFCheckGraphSet(sf,1);
1057:   if (!sf->degree) {
1058:     PetscInt i;
1059:     PetscMalloc1(sf->nroots,&sf->degree);
1060:     PetscMalloc1(sf->nleaves,&sf->degreetmp);
1061:     for (i=0; i<sf->nroots; i++) sf->degree[i] = 0;
1062:     for (i=0; i<sf->nleaves; i++) sf->degreetmp[i] = 1;
1063:     PetscSFReduceBegin(sf,MPIU_INT,sf->degreetmp,sf->degree,MPIU_SUM);
1064:   }
1065:   *degree = NULL;
1066:   return(0);
1067: }

1071: /*@C
1072:    PetscSFComputeDegreeEnd - complete computation of degree for each root vertex, started with PetscSFComputeDegreeBegin()

1074:    Collective

1076:    Input Arguments:
1077: .  sf - star forest

1079:    Output Arguments:
1080: .  degree - degree of each root vertex

1082:    Level: developer

1084: .seealso:
1085: @*/
1086: PetscErrorCode PetscSFComputeDegreeEnd(PetscSF sf,const PetscInt **degree)
1087: {

1092:   PetscSFCheckGraphSet(sf,1);
1093:   if (!sf->degreeknown) {
1094:     PetscSFReduceEnd(sf,MPIU_INT,sf->degreetmp,sf->degree,MPIU_SUM);
1095:     PetscFree(sf->degreetmp);

1097:     sf->degreeknown = PETSC_TRUE;
1098:   }
1099:   *degree = sf->degree;
1100:   return(0);
1101: }

1105: /*@C
1106:    PetscSFFetchAndOpBegin - begin operation that fetches values from root and updates atomically by applying operation using my leaf value, to be completed with PetscSFFetchAndOpEnd()

1108:    Collective

1110:    Input Arguments:
1111: +  sf - star forest
1112: .  unit - data type
1113: .  leafdata - leaf values to use in reduction
1114: -  op - operation to use for reduction

1116:    Output Arguments:
1117: +  rootdata - root values to be updated, input state is seen by first process to perform an update
1118: -  leafupdate - state at each leaf's respective root immediately prior to my atomic update

1120:    Level: advanced

1122:    Note:
1123:    The update is only atomic at the granularity provided by the hardware. Different roots referenced by the same process
1124:    might be updated in a different order. Furthermore, if a composite type is used for the unit datatype, atomicity is
1125:    not guaranteed across the whole vertex. Therefore, this function is mostly only used with primitive types such as
1126:    integers.

1128: .seealso: PetscSFComputeDegreeBegin(), PetscSFReduceBegin(), PetscSFSetGraph()
1129: @*/
1130: PetscErrorCode PetscSFFetchAndOpBegin(PetscSF sf,MPI_Datatype unit,void *rootdata,const void *leafdata,void *leafupdate,MPI_Op op)
1131: {

1136:   PetscSFCheckGraphSet(sf,1);
1137:   PetscLogEventBegin(PETSCSF_FetchAndOpBegin,sf,0,0,0);
1138:   PetscSFSetUp(sf);
1139:   (*sf->ops->FetchAndOpBegin)(sf,unit,rootdata,leafdata,leafupdate,op);
1140:   PetscLogEventEnd(PETSCSF_FetchAndOpBegin,sf,0,0,0);
1141:   return(0);
1142: }

1146: /*@C
1147:    PetscSFFetchAndOpEnd - end operation started in matching call to PetscSFFetchAndOpBegin() to fetch values from roots and update atomically by applying operation using my leaf value

1149:    Collective

1151:    Input Arguments:
1152: +  sf - star forest
1153: .  unit - data type
1154: .  leafdata - leaf values to use in reduction
1155: -  op - operation to use for reduction

1157:    Output Arguments:
1158: +  rootdata - root values to be updated, input state is seen by first process to perform an update
1159: -  leafupdate - state at each leaf's respective root immediately prior to my atomic update

1161:    Level: advanced

1163: .seealso: PetscSFComputeDegreeEnd(), PetscSFReduceEnd(), PetscSFSetGraph()
1164: @*/
1165: PetscErrorCode PetscSFFetchAndOpEnd(PetscSF sf,MPI_Datatype unit,void *rootdata,const void *leafdata,void *leafupdate,MPI_Op op)
1166: {

1171:   PetscSFCheckGraphSet(sf,1);
1172:   PetscLogEventBegin(PETSCSF_FetchAndOpEnd,sf,0,0,0);
1173:   PetscSFSetUp(sf);
1174:   (*sf->ops->FetchAndOpEnd)(sf,unit,rootdata,leafdata,leafupdate,op);
1175:   PetscLogEventEnd(PETSCSF_FetchAndOpEnd,sf,0,0,0);
1176:   return(0);
1177: }

1181: /*@C
1182:    PetscSFGatherBegin - begin pointwise gather of all leaves into multi-roots, to be completed with PetscSFGatherEnd()

1184:    Collective

1186:    Input Arguments:
1187: +  sf - star forest
1188: .  unit - data type
1189: -  leafdata - leaf data to gather to roots

1191:    Output Argument:
1192: .  multirootdata - root buffer to gather into, amount of space per root is equal to its degree

1194:    Level: intermediate

1196: .seealso: PetscSFComputeDegreeBegin(), PetscSFScatterBegin()
1197: @*/
1198: PetscErrorCode PetscSFGatherBegin(PetscSF sf,MPI_Datatype unit,const void *leafdata,void *multirootdata)
1199: {
1201:   PetscSF        multi;

1205:   PetscSFGetMultiSF(sf,&multi);
1206:   PetscSFReduceBegin(multi,unit,leafdata,multirootdata,MPIU_REPLACE);
1207:   return(0);
1208: }

1212: /*@C
1213:    PetscSFGatherEnd - ends pointwise gather operation that was started with PetscSFGatherBegin()

1215:    Collective

1217:    Input Arguments:
1218: +  sf - star forest
1219: .  unit - data type
1220: -  leafdata - leaf data to gather to roots

1222:    Output Argument:
1223: .  multirootdata - root buffer to gather into, amount of space per root is equal to its degree

1225:    Level: intermediate

1227: .seealso: PetscSFComputeDegreeEnd(), PetscSFScatterEnd()
1228: @*/
1229: PetscErrorCode PetscSFGatherEnd(PetscSF sf,MPI_Datatype unit,const void *leafdata,void *multirootdata)
1230: {
1232:   PetscSF        multi;

1236:   PetscSFCheckGraphSet(sf,1);
1237:   PetscSFSetUp(sf);
1238:   PetscSFGetMultiSF(sf,&multi);
1239:   PetscSFReduceEnd(multi,unit,leafdata,multirootdata,MPIU_REPLACE);
1240:   return(0);
1241: }

1245: /*@C
1246:    PetscSFScatterBegin - begin pointwise scatter operation from multi-roots to leaves, to be completed with PetscSFScatterEnd()

1248:    Collective

1250:    Input Arguments:
1251: +  sf - star forest
1252: .  unit - data type
1253: -  multirootdata - root buffer to send to each leaf, one unit of data per leaf

1255:    Output Argument:
1256: .  leafdata - leaf data to be update with personal data from each respective root

1258:    Level: intermediate

1260: .seealso: PetscSFComputeDegreeBegin(), PetscSFScatterBegin()
1261: @*/
1262: PetscErrorCode PetscSFScatterBegin(PetscSF sf,MPI_Datatype unit,const void *multirootdata,void *leafdata)
1263: {
1265:   PetscSF        multi;

1269:   PetscSFCheckGraphSet(sf,1);
1270:   PetscSFSetUp(sf);
1271:   PetscSFGetMultiSF(sf,&multi);
1272:   PetscSFBcastBegin(multi,unit,multirootdata,leafdata);
1273:   return(0);
1274: }

1278: /*@C
1279:    PetscSFScatterEnd - ends pointwise scatter operation that was started with PetscSFScatterBegin()

1281:    Collective

1283:    Input Arguments:
1284: +  sf - star forest
1285: .  unit - data type
1286: -  multirootdata - root buffer to send to each leaf, one unit of data per leaf

1288:    Output Argument:
1289: .  leafdata - leaf data to be update with personal data from each respective root

1291:    Level: intermediate

1293: .seealso: PetscSFComputeDegreeEnd(), PetscSFScatterEnd()
1294: @*/
1295: PetscErrorCode PetscSFScatterEnd(PetscSF sf,MPI_Datatype unit,const void *multirootdata,void *leafdata)
1296: {
1298:   PetscSF        multi;

1302:   PetscSFCheckGraphSet(sf,1);
1303:   PetscSFSetUp(sf);
1304:   PetscSFGetMultiSF(sf,&multi);
1305:   PetscSFBcastEnd(multi,unit,multirootdata,leafdata);
1306:   return(0);
1307: }