Actual source code: mpibaij.c

  1: #include <../src/mat/impls/baij/mpi/mpibaij.h>

  3: #include <petsc/private/hashseti.h>
  4: #include <petscblaslapack.h>
  5: #include <petscsf.h>

  7: static PetscErrorCode MatDestroy_MPIBAIJ(Mat mat)
  8: {
  9:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;

 11:   PetscFunctionBegin;
 12:   PetscCall(PetscLogObjectState((PetscObject)mat, "Rows=%" PetscInt_FMT ",Cols=%" PetscInt_FMT, mat->rmap->N, mat->cmap->N));
 13:   PetscCall(MatStashDestroy_Private(&mat->stash));
 14:   PetscCall(MatStashDestroy_Private(&mat->bstash));
 15:   PetscCall(MatDestroy(&baij->A));
 16:   PetscCall(MatDestroy(&baij->B));
 17: #if defined(PETSC_USE_CTABLE)
 18:   PetscCall(PetscHMapIDestroy(&baij->colmap));
 19: #else
 20:   PetscCall(PetscFree(baij->colmap));
 21: #endif
 22:   PetscCall(PetscFree(baij->garray));
 23:   PetscCall(VecDestroy(&baij->lvec));
 24:   PetscCall(VecScatterDestroy(&baij->Mvctx));
 25:   PetscCall(PetscFree2(baij->rowvalues, baij->rowindices));
 26:   PetscCall(PetscFree(baij->barray));
 27:   PetscCall(PetscFree2(baij->hd, baij->ht));
 28:   PetscCall(PetscFree(baij->rangebs));
 29:   PetscCall(PetscFree(mat->data));

 31:   PetscCall(PetscObjectChangeTypeName((PetscObject)mat, NULL));
 32:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatStoreValues_C", NULL));
 33:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatRetrieveValues_C", NULL));
 34:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatMPIBAIJSetPreallocation_C", NULL));
 35:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatMPIBAIJSetPreallocationCSR_C", NULL));
 36:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDiagonalScaleLocal_C", NULL));
 37:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatSetHashTableFactor_C", NULL));
 38:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpibaij_mpisbaij_C", NULL));
 39:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpibaij_mpiadj_C", NULL));
 40:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpibaij_mpiaij_C", NULL));
 41: #if defined(PETSC_HAVE_HYPRE)
 42:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpibaij_hypre_C", NULL));
 43: #endif
 44:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpibaij_is_C", NULL));
 45:   PetscFunctionReturn(PETSC_SUCCESS);
 46: }

 48: /* defines MatSetValues_MPI_Hash(), MatAssemblyBegin_MPI_Hash(), and  MatAssemblyEnd_MPI_Hash() */
 49: #define TYPE BAIJ
 50: #include "../src/mat/impls/aij/mpi/mpihashmat.h"
 51: #undef TYPE

 53: #if defined(PETSC_HAVE_HYPRE)
 54: PETSC_INTERN PetscErrorCode MatConvert_AIJ_HYPRE(Mat, MatType, MatReuse, Mat *);
 55: #endif

 57: static PetscErrorCode MatGetRowMaxAbs_MPIBAIJ(Mat A, Vec v, PetscInt idx[])
 58: {
 59:   Mat_MPIBAIJ       *a = (Mat_MPIBAIJ *)A->data;
 60:   PetscInt           i, *idxb = NULL, m = A->rmap->n, bs = A->cmap->bs;
 61:   PetscScalar       *va, *vv;
 62:   Vec                vB, vA;
 63:   const PetscScalar *vb;

 65:   PetscFunctionBegin;
 66:   PetscCall(MatCreateVecs(a->A, NULL, &vA));
 67:   PetscCall(MatGetRowMaxAbs(a->A, vA, idx));

 69:   PetscCall(VecGetArrayWrite(vA, &va));
 70:   if (idx) {
 71:     for (i = 0; i < m; i++) {
 72:       if (PetscAbsScalar(va[i])) idx[i] += A->cmap->rstart;
 73:     }
 74:   }

 76:   PetscCall(MatCreateVecs(a->B, NULL, &vB));
 77:   PetscCall(PetscMalloc1(m, &idxb));
 78:   PetscCall(MatGetRowMaxAbs(a->B, vB, idxb));

 80:   PetscCall(VecGetArrayWrite(v, &vv));
 81:   PetscCall(VecGetArrayRead(vB, &vb));
 82:   for (i = 0; i < m; i++) {
 83:     if (PetscAbsScalar(va[i]) < PetscAbsScalar(vb[i])) {
 84:       vv[i] = vb[i];
 85:       if (idx) idx[i] = bs * a->garray[idxb[i] / bs] + (idxb[i] % bs);
 86:     } else {
 87:       vv[i] = va[i];
 88:       if (idx && PetscAbsScalar(va[i]) == PetscAbsScalar(vb[i]) && idxb[i] != -1 && idx[i] > bs * a->garray[idxb[i] / bs] + (idxb[i] % bs)) idx[i] = bs * a->garray[idxb[i] / bs] + (idxb[i] % bs);
 89:     }
 90:   }
 91:   PetscCall(VecRestoreArrayWrite(vA, &vv));
 92:   PetscCall(VecRestoreArrayWrite(vA, &va));
 93:   PetscCall(VecRestoreArrayRead(vB, &vb));
 94:   PetscCall(PetscFree(idxb));
 95:   PetscCall(VecDestroy(&vA));
 96:   PetscCall(VecDestroy(&vB));
 97:   PetscFunctionReturn(PETSC_SUCCESS);
 98: }

100: static PetscErrorCode MatGetRowSumAbs_MPIBAIJ(Mat A, Vec v)
101: {
102:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;
103:   Vec          vB, vA;

105:   PetscFunctionBegin;
106:   PetscCall(MatCreateVecs(a->A, NULL, &vA));
107:   PetscCall(MatGetRowSumAbs(a->A, vA));
108:   PetscCall(MatCreateVecs(a->B, NULL, &vB));
109:   PetscCall(MatGetRowSumAbs(a->B, vB));
110:   PetscCall(VecAXPY(vA, 1.0, vB));
111:   PetscCall(VecDestroy(&vB));
112:   PetscCall(VecCopy(vA, v));
113:   PetscCall(VecDestroy(&vA));
114:   PetscFunctionReturn(PETSC_SUCCESS);
115: }

117: static PetscErrorCode MatStoreValues_MPIBAIJ(Mat mat)
118: {
119:   Mat_MPIBAIJ *aij = (Mat_MPIBAIJ *)mat->data;

121:   PetscFunctionBegin;
122:   PetscCall(MatStoreValues(aij->A));
123:   PetscCall(MatStoreValues(aij->B));
124:   PetscFunctionReturn(PETSC_SUCCESS);
125: }

127: static PetscErrorCode MatRetrieveValues_MPIBAIJ(Mat mat)
128: {
129:   Mat_MPIBAIJ *aij = (Mat_MPIBAIJ *)mat->data;

131:   PetscFunctionBegin;
132:   PetscCall(MatRetrieveValues(aij->A));
133:   PetscCall(MatRetrieveValues(aij->B));
134:   PetscFunctionReturn(PETSC_SUCCESS);
135: }

137: /*
138:      Local utility routine that creates a mapping from the global column
139:    number to the local number in the off-diagonal part of the local
140:    storage of the matrix.  This is done in a non scalable way since the
141:    length of colmap equals the global matrix length.
142: */
143: PetscErrorCode MatCreateColmap_MPIBAIJ_Private(Mat mat)
144: {
145:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
146:   Mat_SeqBAIJ *B    = (Mat_SeqBAIJ *)baij->B->data;
147:   PetscInt     nbs = B->nbs, i, bs = mat->rmap->bs;

149:   PetscFunctionBegin;
150: #if defined(PETSC_USE_CTABLE)
151:   PetscCall(PetscHMapICreateWithSize(baij->nbs, &baij->colmap));
152:   for (i = 0; i < nbs; i++) PetscCall(PetscHMapISet(baij->colmap, baij->garray[i] + 1, i * bs + 1));
153: #else
154:   PetscCall(PetscCalloc1(baij->Nbs + 1, &baij->colmap));
155:   for (i = 0; i < nbs; i++) baij->colmap[baij->garray[i]] = i * bs + 1;
156: #endif
157:   PetscFunctionReturn(PETSC_SUCCESS);
158: }

160: #define MatSetValues_SeqBAIJ_A_Private(row, col, value, addv, orow, ocol) \
161:   do { \
162:     brow = row / bs; \
163:     rp   = PetscSafePointerPlusOffset(aj, ai[brow]); \
164:     ap   = PetscSafePointerPlusOffset(aa, bs2 * ai[brow]); \
165:     rmax = aimax[brow]; \
166:     nrow = ailen[brow]; \
167:     bcol = col / bs; \
168:     ridx = row % bs; \
169:     cidx = col % bs; \
170:     low  = 0; \
171:     high = nrow; \
172:     while (high - low > 3) { \
173:       t = (low + high) / 2; \
174:       if (rp[t] > bcol) high = t; \
175:       else low = t; \
176:     } \
177:     for (_i = low; _i < high; _i++) { \
178:       if (rp[_i] > bcol) break; \
179:       if (rp[_i] == bcol) { \
180:         bap = ap + bs2 * _i + bs * cidx + ridx; \
181:         if (addv == ADD_VALUES) *bap += value; \
182:         else *bap = value; \
183:         goto a_noinsert; \
184:       } \
185:     } \
186:     if (a->nonew == 1) goto a_noinsert; \
187:     PetscCheck(a->nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero at global row/column (%" PetscInt_FMT ", %" PetscInt_FMT ") into matrix", orow, ocol); \
188:     MatSeqXAIJReallocateAIJ(A, a->mbs, bs2, nrow, brow, bcol, rmax, aa, ai, aj, rp, ap, aimax, a->nonew, MatScalar); \
189:     N = nrow++ - 1; \
190:     /* shift up all the later entries in this row */ \
191:     PetscCall(PetscArraymove(rp + _i + 1, rp + _i, N - _i + 1)); \
192:     PetscCall(PetscArraymove(ap + bs2 * (_i + 1), ap + bs2 * _i, bs2 * (N - _i + 1))); \
193:     PetscCall(PetscArrayzero(ap + bs2 * _i, bs2)); \
194:     rp[_i]                          = bcol; \
195:     ap[bs2 * _i + bs * cidx + ridx] = value; \
196:   a_noinsert:; \
197:     ailen[brow] = nrow; \
198:   } while (0)

200: #define MatSetValues_SeqBAIJ_B_Private(row, col, value, addv, orow, ocol) \
201:   do { \
202:     brow = row / bs; \
203:     rp   = PetscSafePointerPlusOffset(bj, bi[brow]); \
204:     ap   = PetscSafePointerPlusOffset(ba, bs2 * bi[brow]); \
205:     rmax = bimax[brow]; \
206:     nrow = bilen[brow]; \
207:     bcol = col / bs; \
208:     ridx = row % bs; \
209:     cidx = col % bs; \
210:     low  = 0; \
211:     high = nrow; \
212:     while (high - low > 3) { \
213:       t = (low + high) / 2; \
214:       if (rp[t] > bcol) high = t; \
215:       else low = t; \
216:     } \
217:     for (_i = low; _i < high; _i++) { \
218:       if (rp[_i] > bcol) break; \
219:       if (rp[_i] == bcol) { \
220:         bap = ap + bs2 * _i + bs * cidx + ridx; \
221:         if (addv == ADD_VALUES) *bap += value; \
222:         else *bap = value; \
223:         goto b_noinsert; \
224:       } \
225:     } \
226:     if (b->nonew == 1) goto b_noinsert; \
227:     PetscCheck(b->nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero at global row/column  (%" PetscInt_FMT ", %" PetscInt_FMT ") into matrix", orow, ocol); \
228:     MatSeqXAIJReallocateAIJ(B, b->mbs, bs2, nrow, brow, bcol, rmax, ba, bi, bj, rp, ap, bimax, b->nonew, MatScalar); \
229:     N = nrow++ - 1; \
230:     /* shift up all the later entries in this row */ \
231:     PetscCall(PetscArraymove(rp + _i + 1, rp + _i, N - _i + 1)); \
232:     PetscCall(PetscArraymove(ap + bs2 * (_i + 1), ap + bs2 * _i, bs2 * (N - _i + 1))); \
233:     PetscCall(PetscArrayzero(ap + bs2 * _i, bs2)); \
234:     rp[_i]                          = bcol; \
235:     ap[bs2 * _i + bs * cidx + ridx] = value; \
236:   b_noinsert:; \
237:     bilen[brow] = nrow; \
238:   } while (0)

240: PetscErrorCode MatSetValues_MPIBAIJ(Mat mat, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode addv)
241: {
242:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
243:   MatScalar    value;
244:   PetscBool    roworiented = baij->roworiented;
245:   PetscInt     i, j, row, col;
246:   PetscInt     rstart_orig = mat->rmap->rstart;
247:   PetscInt     rend_orig = mat->rmap->rend, cstart_orig = mat->cmap->rstart;
248:   PetscInt     cend_orig = mat->cmap->rend, bs = mat->rmap->bs;

250:   /* Some Variables required in the macro */
251:   Mat          A     = baij->A;
252:   Mat_SeqBAIJ *a     = (Mat_SeqBAIJ *)(A)->data;
253:   PetscInt    *aimax = a->imax, *ai = a->i, *ailen = a->ilen, *aj = a->j;
254:   MatScalar   *aa = a->a;

256:   Mat          B     = baij->B;
257:   Mat_SeqBAIJ *b     = (Mat_SeqBAIJ *)(B)->data;
258:   PetscInt    *bimax = b->imax, *bi = b->i, *bilen = b->ilen, *bj = b->j;
259:   MatScalar   *ba = b->a;

261:   PetscInt  *rp, ii, nrow, _i, rmax, N, brow, bcol;
262:   PetscInt   low, high, t, ridx, cidx, bs2 = a->bs2;
263:   MatScalar *ap, *bap;

265:   PetscFunctionBegin;
266:   for (i = 0; i < m; i++) {
267:     if (im[i] < 0) continue;
268:     PetscCheck(im[i] < mat->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, im[i], mat->rmap->N - 1);
269:     if (im[i] >= rstart_orig && im[i] < rend_orig) {
270:       row = im[i] - rstart_orig;
271:       for (j = 0; j < n; j++) {
272:         if (in[j] >= cstart_orig && in[j] < cend_orig) {
273:           col = in[j] - cstart_orig;
274:           if (roworiented) value = v[i * n + j];
275:           else value = v[i + j * m];
276:           MatSetValues_SeqBAIJ_A_Private(row, col, value, addv, im[i], in[j]);
277:         } else if (in[j] < 0) {
278:           continue;
279:         } else {
280:           PetscCheck(in[j] < mat->cmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, in[j], mat->cmap->N - 1);
281:           if (mat->was_assembled) {
282:             if (!baij->colmap) PetscCall(MatCreateColmap_MPIBAIJ_Private(mat));
283: #if defined(PETSC_USE_CTABLE)
284:             PetscCall(PetscHMapIGetWithDefault(baij->colmap, in[j] / bs + 1, 0, &col));
285:             col = col - 1;
286: #else
287:             col = baij->colmap[in[j] / bs] - 1;
288: #endif
289:             if (col < 0 && !((Mat_SeqBAIJ *)baij->B->data)->nonew) {
290:               PetscCall(MatDisAssemble_MPIBAIJ(mat));
291:               col = in[j];
292:               /* Reinitialize the variables required by MatSetValues_SeqBAIJ_B_Private() */
293:               B     = baij->B;
294:               b     = (Mat_SeqBAIJ *)(B)->data;
295:               bimax = b->imax;
296:               bi    = b->i;
297:               bilen = b->ilen;
298:               bj    = b->j;
299:               ba    = b->a;
300:             } else {
301:               PetscCheck(col >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero (%" PetscInt_FMT ", %" PetscInt_FMT ") into matrix", im[i], in[j]);
302:               col += in[j] % bs;
303:             }
304:           } else col = in[j];
305:           if (roworiented) value = v[i * n + j];
306:           else value = v[i + j * m];
307:           MatSetValues_SeqBAIJ_B_Private(row, col, value, addv, im[i], in[j]);
308:           /* PetscCall(MatSetValues_SeqBAIJ(baij->B,1,&row,1,&col,&value,addv)); */
309:         }
310:       }
311:     } else {
312:       PetscCheck(!mat->nooffprocentries, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Setting off process row %" PetscInt_FMT " even though MatSetOption(,MAT_NO_OFF_PROC_ENTRIES,PETSC_TRUE) was set", im[i]);
313:       if (!baij->donotstash) {
314:         mat->assembled = PETSC_FALSE;
315:         if (roworiented) {
316:           PetscCall(MatStashValuesRow_Private(&mat->stash, im[i], n, in, v + i * n, PETSC_FALSE));
317:         } else {
318:           PetscCall(MatStashValuesCol_Private(&mat->stash, im[i], n, in, v + i, m, PETSC_FALSE));
319:         }
320:       }
321:     }
322:   }
323:   PetscFunctionReturn(PETSC_SUCCESS);
324: }

326: static inline PetscErrorCode MatSetValuesBlocked_SeqBAIJ_Inlined(Mat A, PetscInt row, PetscInt col, const PetscScalar v[], InsertMode is, PetscInt orow, PetscInt ocol)
327: {
328:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ *)A->data;
329:   PetscInt          *rp, low, high, t, ii, jj, nrow, i, rmax, N;
330:   PetscInt          *imax = a->imax, *ai = a->i, *ailen = a->ilen;
331:   PetscInt          *aj = a->j, nonew = a->nonew, bs2 = a->bs2, bs = A->rmap->bs;
332:   PetscBool          roworiented = a->roworiented;
333:   const PetscScalar *value       = v;
334:   MatScalar         *ap, *aa = a->a, *bap;

336:   PetscFunctionBegin;
337:   rp    = aj + ai[row];
338:   ap    = aa + bs2 * ai[row];
339:   rmax  = imax[row];
340:   nrow  = ailen[row];
341:   value = v;
342:   low   = 0;
343:   high  = nrow;
344:   while (high - low > 7) {
345:     t = (low + high) / 2;
346:     if (rp[t] > col) high = t;
347:     else low = t;
348:   }
349:   for (i = low; i < high; i++) {
350:     if (rp[i] > col) break;
351:     if (rp[i] == col) {
352:       bap = ap + bs2 * i;
353:       if (roworiented) {
354:         if (is == ADD_VALUES) {
355:           for (ii = 0; ii < bs; ii++) {
356:             for (jj = ii; jj < bs2; jj += bs) bap[jj] += *value++;
357:           }
358:         } else {
359:           for (ii = 0; ii < bs; ii++) {
360:             for (jj = ii; jj < bs2; jj += bs) bap[jj] = *value++;
361:           }
362:         }
363:       } else {
364:         if (is == ADD_VALUES) {
365:           for (ii = 0; ii < bs; ii++, value += bs) {
366:             for (jj = 0; jj < bs; jj++) bap[jj] += value[jj];
367:             bap += bs;
368:           }
369:         } else {
370:           for (ii = 0; ii < bs; ii++, value += bs) {
371:             for (jj = 0; jj < bs; jj++) bap[jj] = value[jj];
372:             bap += bs;
373:           }
374:         }
375:       }
376:       goto noinsert2;
377:     }
378:   }
379:   if (nonew == 1) goto noinsert2;
380:   PetscCheck(nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new global block indexed nonzero block (%" PetscInt_FMT ", %" PetscInt_FMT ") in the matrix", orow, ocol);
381:   MatSeqXAIJReallocateAIJ(A, a->mbs, bs2, nrow, row, col, rmax, aa, ai, aj, rp, ap, imax, nonew, MatScalar);
382:   N = nrow++ - 1;
383:   high++;
384:   /* shift up all the later entries in this row */
385:   PetscCall(PetscArraymove(rp + i + 1, rp + i, N - i + 1));
386:   PetscCall(PetscArraymove(ap + bs2 * (i + 1), ap + bs2 * i, bs2 * (N - i + 1)));
387:   rp[i] = col;
388:   bap   = ap + bs2 * i;
389:   if (roworiented) {
390:     for (ii = 0; ii < bs; ii++) {
391:       for (jj = ii; jj < bs2; jj += bs) bap[jj] = *value++;
392:     }
393:   } else {
394:     for (ii = 0; ii < bs; ii++) {
395:       for (jj = 0; jj < bs; jj++) *bap++ = *value++;
396:     }
397:   }
398: noinsert2:;
399:   ailen[row] = nrow;
400:   PetscFunctionReturn(PETSC_SUCCESS);
401: }

403: /*
404:     This routine should be optimized so that the block copy at ** Here a copy is required ** below is not needed
405:     by passing additional stride information into the MatSetValuesBlocked_SeqBAIJ_Inlined() routine
406: */
407: static PetscErrorCode MatSetValuesBlocked_MPIBAIJ(Mat mat, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode addv)
408: {
409:   Mat_MPIBAIJ       *baij = (Mat_MPIBAIJ *)mat->data;
410:   const PetscScalar *value;
411:   MatScalar         *barray      = baij->barray;
412:   PetscBool          roworiented = baij->roworiented;
413:   PetscInt           i, j, ii, jj, row, col, rstart = baij->rstartbs;
414:   PetscInt           rend = baij->rendbs, cstart = baij->cstartbs, stepval;
415:   PetscInt           cend = baij->cendbs, bs = mat->rmap->bs, bs2 = baij->bs2;

417:   PetscFunctionBegin;
418:   if (!barray) {
419:     PetscCall(PetscMalloc1(bs2, &barray));
420:     baij->barray = barray;
421:   }

423:   if (roworiented) stepval = (n - 1) * bs;
424:   else stepval = (m - 1) * bs;

426:   for (i = 0; i < m; i++) {
427:     if (im[i] < 0) continue;
428:     PetscCheck(im[i] < baij->Mbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Block indexed row too large %" PetscInt_FMT " max %" PetscInt_FMT, im[i], baij->Mbs - 1);
429:     if (im[i] >= rstart && im[i] < rend) {
430:       row = im[i] - rstart;
431:       for (j = 0; j < n; j++) {
432:         /* If NumCol = 1 then a copy is not required */
433:         if ((roworiented) && (n == 1)) {
434:           barray = (MatScalar *)v + i * bs2;
435:         } else if ((!roworiented) && (m == 1)) {
436:           barray = (MatScalar *)v + j * bs2;
437:         } else { /* Here a copy is required */
438:           if (roworiented) {
439:             value = v + (i * (stepval + bs) + j) * bs;
440:           } else {
441:             value = v + (j * (stepval + bs) + i) * bs;
442:           }
443:           for (ii = 0; ii < bs; ii++, value += bs + stepval) {
444:             for (jj = 0; jj < bs; jj++) barray[jj] = value[jj];
445:             barray += bs;
446:           }
447:           barray -= bs2;
448:         }

450:         if (in[j] >= cstart && in[j] < cend) {
451:           col = in[j] - cstart;
452:           PetscCall(MatSetValuesBlocked_SeqBAIJ_Inlined(baij->A, row, col, barray, addv, im[i], in[j]));
453:         } else if (in[j] < 0) {
454:           continue;
455:         } else {
456:           PetscCheck(in[j] < baij->Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Block indexed column too large %" PetscInt_FMT " max %" PetscInt_FMT, in[j], baij->Nbs - 1);
457:           if (mat->was_assembled) {
458:             if (!baij->colmap) PetscCall(MatCreateColmap_MPIBAIJ_Private(mat));

460: #if defined(PETSC_USE_DEBUG)
461:   #if defined(PETSC_USE_CTABLE)
462:             {
463:               PetscInt data;
464:               PetscCall(PetscHMapIGetWithDefault(baij->colmap, in[j] + 1, 0, &data));
465:               PetscCheck((data - 1) % bs == 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Incorrect colmap");
466:             }
467:   #else
468:             PetscCheck((baij->colmap[in[j]] - 1) % bs == 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Incorrect colmap");
469:   #endif
470: #endif
471: #if defined(PETSC_USE_CTABLE)
472:             PetscCall(PetscHMapIGetWithDefault(baij->colmap, in[j] + 1, 0, &col));
473:             col = (col - 1) / bs;
474: #else
475:             col = (baij->colmap[in[j]] - 1) / bs;
476: #endif
477:             if (col < 0 && !((Mat_SeqBAIJ *)baij->B->data)->nonew) {
478:               PetscCall(MatDisAssemble_MPIBAIJ(mat));
479:               col = in[j];
480:             } else PetscCheck(col >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new blocked indexed nonzero block (%" PetscInt_FMT ", %" PetscInt_FMT ") into matrix", im[i], in[j]);
481:           } else col = in[j];
482:           PetscCall(MatSetValuesBlocked_SeqBAIJ_Inlined(baij->B, row, col, barray, addv, im[i], in[j]));
483:         }
484:       }
485:     } else {
486:       PetscCheck(!mat->nooffprocentries, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Setting off process block indexed row %" PetscInt_FMT " even though MatSetOption(,MAT_NO_OFF_PROC_ENTRIES,PETSC_TRUE) was set", im[i]);
487:       if (!baij->donotstash) {
488:         if (roworiented) {
489:           PetscCall(MatStashValuesRowBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
490:         } else {
491:           PetscCall(MatStashValuesColBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
492:         }
493:       }
494:     }
495:   }
496:   PetscFunctionReturn(PETSC_SUCCESS);
497: }

499: #define HASH_KEY             0.6180339887
500: #define HASH(size, key, tmp) (tmp = (key) * HASH_KEY, (PetscInt)((size) * (tmp - (PetscInt)tmp)))
501: /* #define HASH(size,key) ((PetscInt)((size)*fmod(((key)*HASH_KEY),1))) */
502: /* #define HASH(size,key,tmp) ((PetscInt)((size)*fmod(((key)*HASH_KEY),1))) */
503: static PetscErrorCode MatSetValues_MPIBAIJ_HT(Mat mat, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode addv)
504: {
505:   Mat_MPIBAIJ *baij        = (Mat_MPIBAIJ *)mat->data;
506:   PetscBool    roworiented = baij->roworiented;
507:   PetscInt     i, j, row, col;
508:   PetscInt     rstart_orig = mat->rmap->rstart;
509:   PetscInt     rend_orig = mat->rmap->rend, Nbs = baij->Nbs;
510:   PetscInt     h1, key, size = baij->ht_size, bs = mat->rmap->bs, *HT = baij->ht, idx;
511:   PetscReal    tmp;
512:   MatScalar  **HD       = baij->hd, value;
513:   PetscInt     total_ct = baij->ht_total_ct, insert_ct = baij->ht_insert_ct;

515:   PetscFunctionBegin;
516:   for (i = 0; i < m; i++) {
517:     if (PetscDefined(USE_DEBUG)) {
518:       PetscCheck(im[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative row");
519:       PetscCheck(im[i] < mat->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, im[i], mat->rmap->N - 1);
520:     }
521:     row = im[i];
522:     if (row >= rstart_orig && row < rend_orig) {
523:       for (j = 0; j < n; j++) {
524:         col = in[j];
525:         if (roworiented) value = v[i * n + j];
526:         else value = v[i + j * m];
527:         /* Look up PetscInto the Hash Table */
528:         key = (row / bs) * Nbs + (col / bs) + 1;
529:         h1  = HASH(size, key, tmp);

531:         idx = h1;
532:         if (PetscDefined(USE_DEBUG)) {
533:           insert_ct++;
534:           total_ct++;
535:           if (HT[idx] != key) {
536:             for (idx = h1; (idx < size) && (HT[idx] != key); idx++, total_ct++);
537:             if (idx == size) {
538:               for (idx = 0; (idx < h1) && (HT[idx] != key); idx++, total_ct++);
539:               PetscCheck(idx != h1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "(%" PetscInt_FMT ",%" PetscInt_FMT ") has no entry in the hash table", row, col);
540:             }
541:           }
542:         } else if (HT[idx] != key) {
543:           for (idx = h1; (idx < size) && (HT[idx] != key); idx++);
544:           if (idx == size) {
545:             for (idx = 0; (idx < h1) && (HT[idx] != key); idx++);
546:             PetscCheck(idx != h1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "(%" PetscInt_FMT ",%" PetscInt_FMT ") has no entry in the hash table", row, col);
547:           }
548:         }
549:         /* A HASH table entry is found, so insert the values at the correct address */
550:         if (addv == ADD_VALUES) *(HD[idx] + (col % bs) * bs + (row % bs)) += value;
551:         else *(HD[idx] + (col % bs) * bs + (row % bs)) = value;
552:       }
553:     } else if (!baij->donotstash) {
554:       if (roworiented) {
555:         PetscCall(MatStashValuesRow_Private(&mat->stash, im[i], n, in, v + i * n, PETSC_FALSE));
556:       } else {
557:         PetscCall(MatStashValuesCol_Private(&mat->stash, im[i], n, in, v + i, m, PETSC_FALSE));
558:       }
559:     }
560:   }
561:   if (PetscDefined(USE_DEBUG)) {
562:     baij->ht_total_ct += total_ct;
563:     baij->ht_insert_ct += insert_ct;
564:   }
565:   PetscFunctionReturn(PETSC_SUCCESS);
566: }

568: static PetscErrorCode MatSetValuesBlocked_MPIBAIJ_HT(Mat mat, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode addv)
569: {
570:   Mat_MPIBAIJ       *baij        = (Mat_MPIBAIJ *)mat->data;
571:   PetscBool          roworiented = baij->roworiented;
572:   PetscInt           i, j, ii, jj, row, col;
573:   PetscInt           rstart = baij->rstartbs;
574:   PetscInt           rend = mat->rmap->rend, stepval, bs = mat->rmap->bs, bs2 = baij->bs2, nbs2 = n * bs2;
575:   PetscInt           h1, key, size = baij->ht_size, idx, *HT = baij->ht, Nbs = baij->Nbs;
576:   PetscReal          tmp;
577:   MatScalar        **HD = baij->hd, *baij_a;
578:   const PetscScalar *v_t, *value;
579:   PetscInt           total_ct = baij->ht_total_ct, insert_ct = baij->ht_insert_ct;

581:   PetscFunctionBegin;
582:   if (roworiented) stepval = (n - 1) * bs;
583:   else stepval = (m - 1) * bs;

585:   for (i = 0; i < m; i++) {
586:     if (PetscDefined(USE_DEBUG)) {
587:       PetscCheck(im[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative row: %" PetscInt_FMT, im[i]);
588:       PetscCheck(im[i] < baij->Mbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, im[i], baij->Mbs - 1);
589:     }
590:     row = im[i];
591:     v_t = v + i * nbs2;
592:     if (row >= rstart && row < rend) {
593:       for (j = 0; j < n; j++) {
594:         col = in[j];

596:         /* Look up into the Hash Table */
597:         key = row * Nbs + col + 1;
598:         h1  = HASH(size, key, tmp);

600:         idx = h1;
601:         if (PetscDefined(USE_DEBUG)) {
602:           total_ct++;
603:           insert_ct++;
604:           if (HT[idx] != key) {
605:             for (idx = h1; (idx < size) && (HT[idx] != key); idx++, total_ct++);
606:             if (idx == size) {
607:               for (idx = 0; (idx < h1) && (HT[idx] != key); idx++, total_ct++);
608:               PetscCheck(idx != h1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "(%" PetscInt_FMT ",%" PetscInt_FMT ") has no entry in the hash table", row, col);
609:             }
610:           }
611:         } else if (HT[idx] != key) {
612:           for (idx = h1; (idx < size) && (HT[idx] != key); idx++);
613:           if (idx == size) {
614:             for (idx = 0; (idx < h1) && (HT[idx] != key); idx++);
615:             PetscCheck(idx != h1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "(%" PetscInt_FMT ",%" PetscInt_FMT ") has no entry in the hash table", row, col);
616:           }
617:         }
618:         baij_a = HD[idx];
619:         if (roworiented) {
620:           /*value = v + i*(stepval+bs)*bs + j*bs;*/
621:           /* value = v + (i*(stepval+bs)+j)*bs; */
622:           value = v_t;
623:           v_t += bs;
624:           if (addv == ADD_VALUES) {
625:             for (ii = 0; ii < bs; ii++, value += stepval) {
626:               for (jj = ii; jj < bs2; jj += bs) baij_a[jj] += *value++;
627:             }
628:           } else {
629:             for (ii = 0; ii < bs; ii++, value += stepval) {
630:               for (jj = ii; jj < bs2; jj += bs) baij_a[jj] = *value++;
631:             }
632:           }
633:         } else {
634:           value = v + j * (stepval + bs) * bs + i * bs;
635:           if (addv == ADD_VALUES) {
636:             for (ii = 0; ii < bs; ii++, value += stepval, baij_a += bs) {
637:               for (jj = 0; jj < bs; jj++) baij_a[jj] += *value++;
638:             }
639:           } else {
640:             for (ii = 0; ii < bs; ii++, value += stepval, baij_a += bs) {
641:               for (jj = 0; jj < bs; jj++) baij_a[jj] = *value++;
642:             }
643:           }
644:         }
645:       }
646:     } else {
647:       if (!baij->donotstash) {
648:         if (roworiented) {
649:           PetscCall(MatStashValuesRowBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
650:         } else {
651:           PetscCall(MatStashValuesColBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
652:         }
653:       }
654:     }
655:   }
656:   if (PetscDefined(USE_DEBUG)) {
657:     baij->ht_total_ct += total_ct;
658:     baij->ht_insert_ct += insert_ct;
659:   }
660:   PetscFunctionReturn(PETSC_SUCCESS);
661: }

663: static PetscErrorCode MatGetValues_MPIBAIJ(Mat mat, PetscInt m, const PetscInt idxm[], PetscInt n, const PetscInt idxn[], PetscScalar v[])
664: {
665:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
666:   PetscInt     bs = mat->rmap->bs, i, j, bsrstart = mat->rmap->rstart, bsrend = mat->rmap->rend;
667:   PetscInt     bscstart = mat->cmap->rstart, bscend = mat->cmap->rend, row, col, data;

669:   PetscFunctionBegin;
670:   for (i = 0; i < m; i++) {
671:     if (idxm[i] < 0) continue; /* negative row */
672:     PetscCheck(idxm[i] < mat->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, idxm[i], mat->rmap->N - 1);
673:     if (idxm[i] >= bsrstart && idxm[i] < bsrend) {
674:       row = idxm[i] - bsrstart;
675:       for (j = 0; j < n; j++) {
676:         if (idxn[j] < 0) continue; /* negative column */
677:         PetscCheck(idxn[j] < mat->cmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, idxn[j], mat->cmap->N - 1);
678:         if (idxn[j] >= bscstart && idxn[j] < bscend) {
679:           col = idxn[j] - bscstart;
680:           PetscCall(MatGetValues_SeqBAIJ(baij->A, 1, &row, 1, &col, v + i * n + j));
681:         } else {
682:           if (!baij->colmap) PetscCall(MatCreateColmap_MPIBAIJ_Private(mat));
683: #if defined(PETSC_USE_CTABLE)
684:           PetscCall(PetscHMapIGetWithDefault(baij->colmap, idxn[j] / bs + 1, 0, &data));
685:           data--;
686: #else
687:           data = baij->colmap[idxn[j] / bs] - 1;
688: #endif
689:           if ((data < 0) || (baij->garray[data / bs] != idxn[j] / bs)) *(v + i * n + j) = 0.0;
690:           else {
691:             col = data + idxn[j] % bs;
692:             PetscCall(MatGetValues_SeqBAIJ(baij->B, 1, &row, 1, &col, v + i * n + j));
693:           }
694:         }
695:       }
696:     } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "Only local values currently supported");
697:   }
698:   PetscFunctionReturn(PETSC_SUCCESS);
699: }

701: static PetscErrorCode MatNorm_MPIBAIJ(Mat mat, NormType type, PetscReal *nrm)
702: {
703:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
704:   Mat_SeqBAIJ *amat = (Mat_SeqBAIJ *)baij->A->data, *bmat = (Mat_SeqBAIJ *)baij->B->data;
705:   PetscInt     i, j, bs2 = baij->bs2, bs = baij->A->rmap->bs, nz, row, col;
706:   PetscReal    sum = 0.0;
707:   MatScalar   *v;

709:   PetscFunctionBegin;
710:   if (baij->size == 1) {
711:     PetscCall(MatNorm(baij->A, type, nrm));
712:   } else {
713:     if (type == NORM_FROBENIUS) {
714:       v  = amat->a;
715:       nz = amat->nz * bs2;
716:       for (i = 0; i < nz; i++) {
717:         sum += PetscRealPart(PetscConj(*v) * (*v));
718:         v++;
719:       }
720:       v  = bmat->a;
721:       nz = bmat->nz * bs2;
722:       for (i = 0; i < nz; i++) {
723:         sum += PetscRealPart(PetscConj(*v) * (*v));
724:         v++;
725:       }
726:       PetscCall(MPIU_Allreduce(&sum, nrm, 1, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)mat)));
727:       *nrm = PetscSqrtReal(*nrm);
728:     } else if (type == NORM_1) { /* max column sum */
729:       PetscReal *tmp, *tmp2;
730:       PetscInt  *jj, *garray = baij->garray, cstart = baij->rstartbs;
731:       PetscCall(PetscCalloc1(mat->cmap->N, &tmp));
732:       PetscCall(PetscMalloc1(mat->cmap->N, &tmp2));
733:       v  = amat->a;
734:       jj = amat->j;
735:       for (i = 0; i < amat->nz; i++) {
736:         for (j = 0; j < bs; j++) {
737:           col = bs * (cstart + *jj) + j; /* column index */
738:           for (row = 0; row < bs; row++) {
739:             tmp[col] += PetscAbsScalar(*v);
740:             v++;
741:           }
742:         }
743:         jj++;
744:       }
745:       v  = bmat->a;
746:       jj = bmat->j;
747:       for (i = 0; i < bmat->nz; i++) {
748:         for (j = 0; j < bs; j++) {
749:           col = bs * garray[*jj] + j;
750:           for (row = 0; row < bs; row++) {
751:             tmp[col] += PetscAbsScalar(*v);
752:             v++;
753:           }
754:         }
755:         jj++;
756:       }
757:       PetscCall(MPIU_Allreduce(tmp, tmp2, mat->cmap->N, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)mat)));
758:       *nrm = 0.0;
759:       for (j = 0; j < mat->cmap->N; j++) {
760:         if (tmp2[j] > *nrm) *nrm = tmp2[j];
761:       }
762:       PetscCall(PetscFree(tmp));
763:       PetscCall(PetscFree(tmp2));
764:     } else if (type == NORM_INFINITY) { /* max row sum */
765:       PetscReal *sums;
766:       PetscCall(PetscMalloc1(bs, &sums));
767:       sum = 0.0;
768:       for (j = 0; j < amat->mbs; j++) {
769:         for (row = 0; row < bs; row++) sums[row] = 0.0;
770:         v  = amat->a + bs2 * amat->i[j];
771:         nz = amat->i[j + 1] - amat->i[j];
772:         for (i = 0; i < nz; i++) {
773:           for (col = 0; col < bs; col++) {
774:             for (row = 0; row < bs; row++) {
775:               sums[row] += PetscAbsScalar(*v);
776:               v++;
777:             }
778:           }
779:         }
780:         v  = bmat->a + bs2 * bmat->i[j];
781:         nz = bmat->i[j + 1] - bmat->i[j];
782:         for (i = 0; i < nz; i++) {
783:           for (col = 0; col < bs; col++) {
784:             for (row = 0; row < bs; row++) {
785:               sums[row] += PetscAbsScalar(*v);
786:               v++;
787:             }
788:           }
789:         }
790:         for (row = 0; row < bs; row++) {
791:           if (sums[row] > sum) sum = sums[row];
792:         }
793:       }
794:       PetscCall(MPIU_Allreduce(&sum, nrm, 1, MPIU_REAL, MPIU_MAX, PetscObjectComm((PetscObject)mat)));
795:       PetscCall(PetscFree(sums));
796:     } else SETERRQ(PetscObjectComm((PetscObject)mat), PETSC_ERR_SUP, "No support for this norm yet");
797:   }
798:   PetscFunctionReturn(PETSC_SUCCESS);
799: }

801: /*
802:   Creates the hash table, and sets the table
803:   This table is created only once.
804:   If new entried need to be added to the matrix
805:   then the hash table has to be destroyed and
806:   recreated.
807: */
808: static PetscErrorCode MatCreateHashTable_MPIBAIJ_Private(Mat mat, PetscReal factor)
809: {
810:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
811:   Mat          A = baij->A, B = baij->B;
812:   Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)A->data, *b = (Mat_SeqBAIJ *)B->data;
813:   PetscInt     i, j, k, nz = a->nz + b->nz, h1, *ai = a->i, *aj = a->j, *bi = b->i, *bj = b->j;
814:   PetscInt     ht_size, bs2 = baij->bs2, rstart = baij->rstartbs;
815:   PetscInt     cstart = baij->cstartbs, *garray = baij->garray, row, col, Nbs = baij->Nbs;
816:   PetscInt    *HT, key;
817:   MatScalar  **HD;
818:   PetscReal    tmp;
819: #if defined(PETSC_USE_INFO)
820:   PetscInt ct = 0, max = 0;
821: #endif

823:   PetscFunctionBegin;
824:   if (baij->ht) PetscFunctionReturn(PETSC_SUCCESS);

826:   baij->ht_size = (PetscInt)(factor * nz);
827:   ht_size       = baij->ht_size;

829:   /* Allocate Memory for Hash Table */
830:   PetscCall(PetscCalloc2(ht_size, &baij->hd, ht_size, &baij->ht));
831:   HD = baij->hd;
832:   HT = baij->ht;

834:   /* Loop Over A */
835:   for (i = 0; i < a->mbs; i++) {
836:     for (j = ai[i]; j < ai[i + 1]; j++) {
837:       row = i + rstart;
838:       col = aj[j] + cstart;

840:       key = row * Nbs + col + 1;
841:       h1  = HASH(ht_size, key, tmp);
842:       for (k = 0; k < ht_size; k++) {
843:         if (!HT[(h1 + k) % ht_size]) {
844:           HT[(h1 + k) % ht_size] = key;
845:           HD[(h1 + k) % ht_size] = a->a + j * bs2;
846:           break;
847: #if defined(PETSC_USE_INFO)
848:         } else {
849:           ct++;
850: #endif
851:         }
852:       }
853: #if defined(PETSC_USE_INFO)
854:       if (k > max) max = k;
855: #endif
856:     }
857:   }
858:   /* Loop Over B */
859:   for (i = 0; i < b->mbs; i++) {
860:     for (j = bi[i]; j < bi[i + 1]; j++) {
861:       row = i + rstart;
862:       col = garray[bj[j]];
863:       key = row * Nbs + col + 1;
864:       h1  = HASH(ht_size, key, tmp);
865:       for (k = 0; k < ht_size; k++) {
866:         if (!HT[(h1 + k) % ht_size]) {
867:           HT[(h1 + k) % ht_size] = key;
868:           HD[(h1 + k) % ht_size] = b->a + j * bs2;
869:           break;
870: #if defined(PETSC_USE_INFO)
871:         } else {
872:           ct++;
873: #endif
874:         }
875:       }
876: #if defined(PETSC_USE_INFO)
877:       if (k > max) max = k;
878: #endif
879:     }
880:   }

882:   /* Print Summary */
883: #if defined(PETSC_USE_INFO)
884:   for (i = 0, j = 0; i < ht_size; i++) {
885:     if (HT[i]) j++;
886:   }
887:   PetscCall(PetscInfo(mat, "Average Search = %5.2g,max search = %" PetscInt_FMT "\n", (!j) ? (double)0.0 : (double)(((PetscReal)(ct + j)) / (double)j), max));
888: #endif
889:   PetscFunctionReturn(PETSC_SUCCESS);
890: }

892: static PetscErrorCode MatAssemblyBegin_MPIBAIJ(Mat mat, MatAssemblyType mode)
893: {
894:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
895:   PetscInt     nstash, reallocs;

897:   PetscFunctionBegin;
898:   if (baij->donotstash || mat->nooffprocentries) PetscFunctionReturn(PETSC_SUCCESS);

900:   PetscCall(MatStashScatterBegin_Private(mat, &mat->stash, mat->rmap->range));
901:   PetscCall(MatStashScatterBegin_Private(mat, &mat->bstash, baij->rangebs));
902:   PetscCall(MatStashGetInfo_Private(&mat->stash, &nstash, &reallocs));
903:   PetscCall(PetscInfo(mat, "Stash has %" PetscInt_FMT " entries,uses %" PetscInt_FMT " mallocs.\n", nstash, reallocs));
904:   PetscCall(MatStashGetInfo_Private(&mat->bstash, &nstash, &reallocs));
905:   PetscCall(PetscInfo(mat, "Block-Stash has %" PetscInt_FMT " entries, uses %" PetscInt_FMT " mallocs.\n", nstash, reallocs));
906:   PetscFunctionReturn(PETSC_SUCCESS);
907: }

909: static PetscErrorCode MatAssemblyEnd_MPIBAIJ(Mat mat, MatAssemblyType mode)
910: {
911:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
912:   Mat_SeqBAIJ *a    = (Mat_SeqBAIJ *)baij->A->data;
913:   PetscInt     i, j, rstart, ncols, flg, bs2 = baij->bs2;
914:   PetscInt    *row, *col;
915:   PetscBool    r1, r2, r3, other_disassembled;
916:   MatScalar   *val;
917:   PetscMPIInt  n;

919:   PetscFunctionBegin;
920:   /* do not use 'b=(Mat_SeqBAIJ*)baij->B->data' as B can be reset in disassembly */
921:   if (!baij->donotstash && !mat->nooffprocentries) {
922:     while (1) {
923:       PetscCall(MatStashScatterGetMesg_Private(&mat->stash, &n, &row, &col, &val, &flg));
924:       if (!flg) break;

926:       for (i = 0; i < n;) {
927:         /* Now identify the consecutive vals belonging to the same row */
928:         for (j = i, rstart = row[j]; j < n; j++) {
929:           if (row[j] != rstart) break;
930:         }
931:         if (j < n) ncols = j - i;
932:         else ncols = n - i;
933:         /* Now assemble all these values with a single function call */
934:         PetscCall(MatSetValues_MPIBAIJ(mat, 1, row + i, ncols, col + i, val + i, mat->insertmode));
935:         i = j;
936:       }
937:     }
938:     PetscCall(MatStashScatterEnd_Private(&mat->stash));
939:     /* Now process the block-stash. Since the values are stashed column-oriented,
940:        set the row-oriented flag to column-oriented, and after MatSetValues()
941:        restore the original flags */
942:     r1 = baij->roworiented;
943:     r2 = a->roworiented;
944:     r3 = ((Mat_SeqBAIJ *)baij->B->data)->roworiented;

946:     baij->roworiented                           = PETSC_FALSE;
947:     a->roworiented                              = PETSC_FALSE;
948:     ((Mat_SeqBAIJ *)baij->B->data)->roworiented = PETSC_FALSE;
949:     while (1) {
950:       PetscCall(MatStashScatterGetMesg_Private(&mat->bstash, &n, &row, &col, &val, &flg));
951:       if (!flg) break;

953:       for (i = 0; i < n;) {
954:         /* Now identify the consecutive vals belonging to the same row */
955:         for (j = i, rstart = row[j]; j < n; j++) {
956:           if (row[j] != rstart) break;
957:         }
958:         if (j < n) ncols = j - i;
959:         else ncols = n - i;
960:         PetscCall(MatSetValuesBlocked_MPIBAIJ(mat, 1, row + i, ncols, col + i, val + i * bs2, mat->insertmode));
961:         i = j;
962:       }
963:     }
964:     PetscCall(MatStashScatterEnd_Private(&mat->bstash));

966:     baij->roworiented                           = r1;
967:     a->roworiented                              = r2;
968:     ((Mat_SeqBAIJ *)baij->B->data)->roworiented = r3;
969:   }

971:   PetscCall(MatAssemblyBegin(baij->A, mode));
972:   PetscCall(MatAssemblyEnd(baij->A, mode));

974:   /* determine if any processor has disassembled, if so we must
975:      also disassemble ourselves, in order that we may reassemble. */
976:   /*
977:      if nonzero structure of submatrix B cannot change then we know that
978:      no processor disassembled thus we can skip this stuff
979:   */
980:   if (!((Mat_SeqBAIJ *)baij->B->data)->nonew) {
981:     PetscCall(MPIU_Allreduce(&mat->was_assembled, &other_disassembled, 1, MPIU_BOOL, MPI_LAND, PetscObjectComm((PetscObject)mat)));
982:     if (mat->was_assembled && !other_disassembled) PetscCall(MatDisAssemble_MPIBAIJ(mat));
983:   }

985:   if (!mat->was_assembled && mode == MAT_FINAL_ASSEMBLY) PetscCall(MatSetUpMultiply_MPIBAIJ(mat));
986:   PetscCall(MatAssemblyBegin(baij->B, mode));
987:   PetscCall(MatAssemblyEnd(baij->B, mode));

989: #if defined(PETSC_USE_INFO)
990:   if (baij->ht && mode == MAT_FINAL_ASSEMBLY) {
991:     PetscCall(PetscInfo(mat, "Average Hash Table Search in MatSetValues = %5.2f\n", (double)((PetscReal)baij->ht_total_ct) / baij->ht_insert_ct));

993:     baij->ht_total_ct  = 0;
994:     baij->ht_insert_ct = 0;
995:   }
996: #endif
997:   if (baij->ht_flag && !baij->ht && mode == MAT_FINAL_ASSEMBLY) {
998:     PetscCall(MatCreateHashTable_MPIBAIJ_Private(mat, baij->ht_fact));

1000:     mat->ops->setvalues        = MatSetValues_MPIBAIJ_HT;
1001:     mat->ops->setvaluesblocked = MatSetValuesBlocked_MPIBAIJ_HT;
1002:   }

1004:   PetscCall(PetscFree2(baij->rowvalues, baij->rowindices));

1006:   baij->rowvalues = NULL;

1008:   /* if no new nonzero locations are allowed in matrix then only set the matrix state the first time through */
1009:   if ((!mat->was_assembled && mode == MAT_FINAL_ASSEMBLY) || !((Mat_SeqBAIJ *)baij->A->data)->nonew) {
1010:     PetscObjectState state = baij->A->nonzerostate + baij->B->nonzerostate;
1011:     PetscCall(MPIU_Allreduce(&state, &mat->nonzerostate, 1, MPIU_INT64, MPI_SUM, PetscObjectComm((PetscObject)mat)));
1012:   }
1013:   PetscFunctionReturn(PETSC_SUCCESS);
1014: }

1016: extern PetscErrorCode MatView_SeqBAIJ(Mat, PetscViewer);
1017: #include <petscdraw.h>
1018: static PetscErrorCode MatView_MPIBAIJ_ASCIIorDraworSocket(Mat mat, PetscViewer viewer)
1019: {
1020:   Mat_MPIBAIJ      *baij = (Mat_MPIBAIJ *)mat->data;
1021:   PetscMPIInt       rank = baij->rank;
1022:   PetscInt          bs   = mat->rmap->bs;
1023:   PetscBool         iascii, isdraw;
1024:   PetscViewer       sviewer;
1025:   PetscViewerFormat format;

1027:   PetscFunctionBegin;
1028:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1029:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1030:   if (iascii) {
1031:     PetscCall(PetscViewerGetFormat(viewer, &format));
1032:     if (format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
1033:       MatInfo info;
1034:       PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)mat), &rank));
1035:       PetscCall(MatGetInfo(mat, MAT_LOCAL, &info));
1036:       PetscCall(PetscViewerASCIIPushSynchronized(viewer));
1037:       PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] Local rows %" PetscInt_FMT " nz %" PetscInt_FMT " nz alloced %" PetscInt_FMT " bs %" PetscInt_FMT " mem %g\n", rank, mat->rmap->n, (PetscInt)info.nz_used, (PetscInt)info.nz_allocated,
1038:                                                    mat->rmap->bs, (double)info.memory));
1039:       PetscCall(MatGetInfo(baij->A, MAT_LOCAL, &info));
1040:       PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] on-diagonal part: nz %" PetscInt_FMT " \n", rank, (PetscInt)info.nz_used));
1041:       PetscCall(MatGetInfo(baij->B, MAT_LOCAL, &info));
1042:       PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] off-diagonal part: nz %" PetscInt_FMT " \n", rank, (PetscInt)info.nz_used));
1043:       PetscCall(PetscViewerFlush(viewer));
1044:       PetscCall(PetscViewerASCIIPopSynchronized(viewer));
1045:       PetscCall(PetscViewerASCIIPrintf(viewer, "Information on VecScatter used in matrix-vector product: \n"));
1046:       PetscCall(VecScatterView(baij->Mvctx, viewer));
1047:       PetscFunctionReturn(PETSC_SUCCESS);
1048:     } else if (format == PETSC_VIEWER_ASCII_INFO) {
1049:       PetscCall(PetscViewerASCIIPrintf(viewer, "  block size is %" PetscInt_FMT "\n", bs));
1050:       PetscFunctionReturn(PETSC_SUCCESS);
1051:     } else if (format == PETSC_VIEWER_ASCII_FACTOR_INFO) {
1052:       PetscFunctionReturn(PETSC_SUCCESS);
1053:     }
1054:   }

1056:   if (isdraw) {
1057:     PetscDraw draw;
1058:     PetscBool isnull;
1059:     PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
1060:     PetscCall(PetscDrawIsNull(draw, &isnull));
1061:     if (isnull) PetscFunctionReturn(PETSC_SUCCESS);
1062:   }

1064:   {
1065:     /* assemble the entire matrix onto first processor. */
1066:     Mat          A;
1067:     Mat_SeqBAIJ *Aloc;
1068:     PetscInt     M = mat->rmap->N, N = mat->cmap->N, *ai, *aj, col, i, j, k, *rvals, mbs = baij->mbs;
1069:     MatScalar   *a;
1070:     const char  *matname;

1072:     /* Here we are creating a temporary matrix, so will assume MPIBAIJ is acceptable */
1073:     /* Perhaps this should be the type of mat? */
1074:     PetscCall(MatCreate(PetscObjectComm((PetscObject)mat), &A));
1075:     if (rank == 0) {
1076:       PetscCall(MatSetSizes(A, M, N, M, N));
1077:     } else {
1078:       PetscCall(MatSetSizes(A, 0, 0, M, N));
1079:     }
1080:     PetscCall(MatSetType(A, MATMPIBAIJ));
1081:     PetscCall(MatMPIBAIJSetPreallocation(A, mat->rmap->bs, 0, NULL, 0, NULL));
1082:     PetscCall(MatSetOption(A, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_FALSE));

1084:     /* copy over the A part */
1085:     Aloc = (Mat_SeqBAIJ *)baij->A->data;
1086:     ai   = Aloc->i;
1087:     aj   = Aloc->j;
1088:     a    = Aloc->a;
1089:     PetscCall(PetscMalloc1(bs, &rvals));

1091:     for (i = 0; i < mbs; i++) {
1092:       rvals[0] = bs * (baij->rstartbs + i);
1093:       for (j = 1; j < bs; j++) rvals[j] = rvals[j - 1] + 1;
1094:       for (j = ai[i]; j < ai[i + 1]; j++) {
1095:         col = (baij->cstartbs + aj[j]) * bs;
1096:         for (k = 0; k < bs; k++) {
1097:           PetscCall(MatSetValues_MPIBAIJ(A, bs, rvals, 1, &col, a, INSERT_VALUES));
1098:           col++;
1099:           a += bs;
1100:         }
1101:       }
1102:     }
1103:     /* copy over the B part */
1104:     Aloc = (Mat_SeqBAIJ *)baij->B->data;
1105:     ai   = Aloc->i;
1106:     aj   = Aloc->j;
1107:     a    = Aloc->a;
1108:     for (i = 0; i < mbs; i++) {
1109:       rvals[0] = bs * (baij->rstartbs + i);
1110:       for (j = 1; j < bs; j++) rvals[j] = rvals[j - 1] + 1;
1111:       for (j = ai[i]; j < ai[i + 1]; j++) {
1112:         col = baij->garray[aj[j]] * bs;
1113:         for (k = 0; k < bs; k++) {
1114:           PetscCall(MatSetValues_MPIBAIJ(A, bs, rvals, 1, &col, a, INSERT_VALUES));
1115:           col++;
1116:           a += bs;
1117:         }
1118:       }
1119:     }
1120:     PetscCall(PetscFree(rvals));
1121:     PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
1122:     PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
1123:     /*
1124:        Everyone has to call to draw the matrix since the graphics waits are
1125:        synchronized across all processors that share the PetscDraw object
1126:     */
1127:     PetscCall(PetscViewerGetSubViewer(viewer, PETSC_COMM_SELF, &sviewer));
1128:     if (((PetscObject)mat)->name) PetscCall(PetscObjectGetName((PetscObject)mat, &matname));
1129:     if (rank == 0) {
1130:       if (((PetscObject)mat)->name) PetscCall(PetscObjectSetName((PetscObject)((Mat_MPIBAIJ *)A->data)->A, matname));
1131:       PetscCall(MatView_SeqBAIJ(((Mat_MPIBAIJ *)A->data)->A, sviewer));
1132:     }
1133:     PetscCall(PetscViewerRestoreSubViewer(viewer, PETSC_COMM_SELF, &sviewer));
1134:     PetscCall(MatDestroy(&A));
1135:   }
1136:   PetscFunctionReturn(PETSC_SUCCESS);
1137: }

1139: /* Used for both MPIBAIJ and MPISBAIJ matrices */
1140: PetscErrorCode MatView_MPIBAIJ_Binary(Mat mat, PetscViewer viewer)
1141: {
1142:   Mat_MPIBAIJ    *aij    = (Mat_MPIBAIJ *)mat->data;
1143:   Mat_SeqBAIJ    *A      = (Mat_SeqBAIJ *)aij->A->data;
1144:   Mat_SeqBAIJ    *B      = (Mat_SeqBAIJ *)aij->B->data;
1145:   const PetscInt *garray = aij->garray;
1146:   PetscInt        header[4], M, N, m, rs, cs, bs, cnt, i, j, ja, jb, k, l;
1147:   PetscInt64      nz, hnz;
1148:   PetscInt       *rowlens, *colidxs;
1149:   PetscScalar    *matvals;
1150:   PetscMPIInt     rank;

1152:   PetscFunctionBegin;
1153:   PetscCall(PetscViewerSetUp(viewer));

1155:   M  = mat->rmap->N;
1156:   N  = mat->cmap->N;
1157:   m  = mat->rmap->n;
1158:   rs = mat->rmap->rstart;
1159:   cs = mat->cmap->rstart;
1160:   bs = mat->rmap->bs;
1161:   nz = bs * bs * (A->nz + B->nz);

1163:   /* write matrix header */
1164:   header[0] = MAT_FILE_CLASSID;
1165:   header[1] = M;
1166:   header[2] = N;
1167:   PetscCallMPI(MPI_Reduce(&nz, &hnz, 1, MPIU_INT64, MPI_SUM, 0, PetscObjectComm((PetscObject)mat)));
1168:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)mat), &rank));
1169:   if (rank == 0) PetscCall(PetscIntCast(hnz, &header[3]));
1170:   PetscCall(PetscViewerBinaryWrite(viewer, header, 4, PETSC_INT));

1172:   /* fill in and store row lengths */
1173:   PetscCall(PetscMalloc1(m, &rowlens));
1174:   for (cnt = 0, i = 0; i < A->mbs; i++)
1175:     for (j = 0; j < bs; j++) rowlens[cnt++] = bs * (A->i[i + 1] - A->i[i] + B->i[i + 1] - B->i[i]);
1176:   PetscCall(PetscViewerBinaryWriteAll(viewer, rowlens, m, rs, M, PETSC_INT));
1177:   PetscCall(PetscFree(rowlens));

1179:   /* fill in and store column indices */
1180:   PetscCall(PetscMalloc1(nz, &colidxs));
1181:   for (cnt = 0, i = 0; i < A->mbs; i++) {
1182:     for (k = 0; k < bs; k++) {
1183:       for (jb = B->i[i]; jb < B->i[i + 1]; jb++) {
1184:         if (garray[B->j[jb]] > cs / bs) break;
1185:         for (l = 0; l < bs; l++) colidxs[cnt++] = bs * garray[B->j[jb]] + l;
1186:       }
1187:       for (ja = A->i[i]; ja < A->i[i + 1]; ja++)
1188:         for (l = 0; l < bs; l++) colidxs[cnt++] = bs * A->j[ja] + l + cs;
1189:       for (; jb < B->i[i + 1]; jb++)
1190:         for (l = 0; l < bs; l++) colidxs[cnt++] = bs * garray[B->j[jb]] + l;
1191:     }
1192:   }
1193:   PetscCheck(cnt == nz, PETSC_COMM_SELF, PETSC_ERR_LIB, "Internal PETSc error: cnt = %" PetscInt_FMT " nz = %" PetscInt64_FMT, cnt, nz);
1194:   PetscCall(PetscViewerBinaryWriteAll(viewer, colidxs, nz, PETSC_DECIDE, PETSC_DECIDE, PETSC_INT));
1195:   PetscCall(PetscFree(colidxs));

1197:   /* fill in and store nonzero values */
1198:   PetscCall(PetscMalloc1(nz, &matvals));
1199:   for (cnt = 0, i = 0; i < A->mbs; i++) {
1200:     for (k = 0; k < bs; k++) {
1201:       for (jb = B->i[i]; jb < B->i[i + 1]; jb++) {
1202:         if (garray[B->j[jb]] > cs / bs) break;
1203:         for (l = 0; l < bs; l++) matvals[cnt++] = B->a[bs * (bs * jb + l) + k];
1204:       }
1205:       for (ja = A->i[i]; ja < A->i[i + 1]; ja++)
1206:         for (l = 0; l < bs; l++) matvals[cnt++] = A->a[bs * (bs * ja + l) + k];
1207:       for (; jb < B->i[i + 1]; jb++)
1208:         for (l = 0; l < bs; l++) matvals[cnt++] = B->a[bs * (bs * jb + l) + k];
1209:     }
1210:   }
1211:   PetscCall(PetscViewerBinaryWriteAll(viewer, matvals, nz, PETSC_DECIDE, PETSC_DECIDE, PETSC_SCALAR));
1212:   PetscCall(PetscFree(matvals));

1214:   /* write block size option to the viewer's .info file */
1215:   PetscCall(MatView_Binary_BlockSizes(mat, viewer));
1216:   PetscFunctionReturn(PETSC_SUCCESS);
1217: }

1219: PetscErrorCode MatView_MPIBAIJ(Mat mat, PetscViewer viewer)
1220: {
1221:   PetscBool iascii, isdraw, issocket, isbinary;

1223:   PetscFunctionBegin;
1224:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1225:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1226:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERSOCKET, &issocket));
1227:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1228:   if (iascii || isdraw || issocket) {
1229:     PetscCall(MatView_MPIBAIJ_ASCIIorDraworSocket(mat, viewer));
1230:   } else if (isbinary) PetscCall(MatView_MPIBAIJ_Binary(mat, viewer));
1231:   PetscFunctionReturn(PETSC_SUCCESS);
1232: }

1234: static PetscErrorCode MatMult_MPIBAIJ(Mat A, Vec xx, Vec yy)
1235: {
1236:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;
1237:   PetscInt     nt;

1239:   PetscFunctionBegin;
1240:   PetscCall(VecGetLocalSize(xx, &nt));
1241:   PetscCheck(nt == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Incompatible partition of A and xx");
1242:   PetscCall(VecGetLocalSize(yy, &nt));
1243:   PetscCheck(nt == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Incompatible partition of A and yy");
1244:   PetscCall(VecScatterBegin(a->Mvctx, xx, a->lvec, INSERT_VALUES, SCATTER_FORWARD));
1245:   PetscCall((*a->A->ops->mult)(a->A, xx, yy));
1246:   PetscCall(VecScatterEnd(a->Mvctx, xx, a->lvec, INSERT_VALUES, SCATTER_FORWARD));
1247:   PetscCall((*a->B->ops->multadd)(a->B, a->lvec, yy, yy));
1248:   PetscFunctionReturn(PETSC_SUCCESS);
1249: }

1251: static PetscErrorCode MatMultAdd_MPIBAIJ(Mat A, Vec xx, Vec yy, Vec zz)
1252: {
1253:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1255:   PetscFunctionBegin;
1256:   PetscCall(VecScatterBegin(a->Mvctx, xx, a->lvec, INSERT_VALUES, SCATTER_FORWARD));
1257:   PetscCall((*a->A->ops->multadd)(a->A, xx, yy, zz));
1258:   PetscCall(VecScatterEnd(a->Mvctx, xx, a->lvec, INSERT_VALUES, SCATTER_FORWARD));
1259:   PetscCall((*a->B->ops->multadd)(a->B, a->lvec, zz, zz));
1260:   PetscFunctionReturn(PETSC_SUCCESS);
1261: }

1263: static PetscErrorCode MatMultTranspose_MPIBAIJ(Mat A, Vec xx, Vec yy)
1264: {
1265:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1267:   PetscFunctionBegin;
1268:   /* do nondiagonal part */
1269:   PetscCall((*a->B->ops->multtranspose)(a->B, xx, a->lvec));
1270:   /* do local part */
1271:   PetscCall((*a->A->ops->multtranspose)(a->A, xx, yy));
1272:   /* add partial results together */
1273:   PetscCall(VecScatterBegin(a->Mvctx, a->lvec, yy, ADD_VALUES, SCATTER_REVERSE));
1274:   PetscCall(VecScatterEnd(a->Mvctx, a->lvec, yy, ADD_VALUES, SCATTER_REVERSE));
1275:   PetscFunctionReturn(PETSC_SUCCESS);
1276: }

1278: static PetscErrorCode MatMultTransposeAdd_MPIBAIJ(Mat A, Vec xx, Vec yy, Vec zz)
1279: {
1280:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1282:   PetscFunctionBegin;
1283:   /* do nondiagonal part */
1284:   PetscCall((*a->B->ops->multtranspose)(a->B, xx, a->lvec));
1285:   /* do local part */
1286:   PetscCall((*a->A->ops->multtransposeadd)(a->A, xx, yy, zz));
1287:   /* add partial results together */
1288:   PetscCall(VecScatterBegin(a->Mvctx, a->lvec, zz, ADD_VALUES, SCATTER_REVERSE));
1289:   PetscCall(VecScatterEnd(a->Mvctx, a->lvec, zz, ADD_VALUES, SCATTER_REVERSE));
1290:   PetscFunctionReturn(PETSC_SUCCESS);
1291: }

1293: /*
1294:   This only works correctly for square matrices where the subblock A->A is the
1295:    diagonal block
1296: */
1297: static PetscErrorCode MatGetDiagonal_MPIBAIJ(Mat A, Vec v)
1298: {
1299:   PetscFunctionBegin;
1300:   PetscCheck(A->rmap->N == A->cmap->N, PETSC_COMM_SELF, PETSC_ERR_SUP, "Supports only square matrix where A->A is diag block");
1301:   PetscCall(MatGetDiagonal(((Mat_MPIBAIJ *)A->data)->A, v));
1302:   PetscFunctionReturn(PETSC_SUCCESS);
1303: }

1305: static PetscErrorCode MatScale_MPIBAIJ(Mat A, PetscScalar aa)
1306: {
1307:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1309:   PetscFunctionBegin;
1310:   PetscCall(MatScale(a->A, aa));
1311:   PetscCall(MatScale(a->B, aa));
1312:   PetscFunctionReturn(PETSC_SUCCESS);
1313: }

1315: PetscErrorCode MatGetRow_MPIBAIJ(Mat matin, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
1316: {
1317:   Mat_MPIBAIJ *mat = (Mat_MPIBAIJ *)matin->data;
1318:   PetscScalar *vworkA, *vworkB, **pvA, **pvB, *v_p;
1319:   PetscInt     bs = matin->rmap->bs, bs2 = mat->bs2, i, *cworkA, *cworkB, **pcA, **pcB;
1320:   PetscInt     nztot, nzA, nzB, lrow, brstart = matin->rmap->rstart, brend = matin->rmap->rend;
1321:   PetscInt    *cmap, *idx_p, cstart = mat->cstartbs;

1323:   PetscFunctionBegin;
1324:   PetscCheck(row >= brstart && row < brend, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only local rows");
1325:   PetscCheck(!mat->getrowactive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Already active");
1326:   mat->getrowactive = PETSC_TRUE;

1328:   if (!mat->rowvalues && (idx || v)) {
1329:     /*
1330:         allocate enough space to hold information from the longest row.
1331:     */
1332:     Mat_SeqBAIJ *Aa = (Mat_SeqBAIJ *)mat->A->data, *Ba = (Mat_SeqBAIJ *)mat->B->data;
1333:     PetscInt     max = 1, mbs = mat->mbs, tmp;
1334:     for (i = 0; i < mbs; i++) {
1335:       tmp = Aa->i[i + 1] - Aa->i[i] + Ba->i[i + 1] - Ba->i[i];
1336:       if (max < tmp) max = tmp;
1337:     }
1338:     PetscCall(PetscMalloc2(max * bs2, &mat->rowvalues, max * bs2, &mat->rowindices));
1339:   }
1340:   lrow = row - brstart;

1342:   pvA = &vworkA;
1343:   pcA = &cworkA;
1344:   pvB = &vworkB;
1345:   pcB = &cworkB;
1346:   if (!v) {
1347:     pvA = NULL;
1348:     pvB = NULL;
1349:   }
1350:   if (!idx) {
1351:     pcA = NULL;
1352:     if (!v) pcB = NULL;
1353:   }
1354:   PetscCall((*mat->A->ops->getrow)(mat->A, lrow, &nzA, pcA, pvA));
1355:   PetscCall((*mat->B->ops->getrow)(mat->B, lrow, &nzB, pcB, pvB));
1356:   nztot = nzA + nzB;

1358:   cmap = mat->garray;
1359:   if (v || idx) {
1360:     if (nztot) {
1361:       /* Sort by increasing column numbers, assuming A and B already sorted */
1362:       PetscInt imark = -1;
1363:       if (v) {
1364:         *v = v_p = mat->rowvalues;
1365:         for (i = 0; i < nzB; i++) {
1366:           if (cmap[cworkB[i] / bs] < cstart) v_p[i] = vworkB[i];
1367:           else break;
1368:         }
1369:         imark = i;
1370:         for (i = 0; i < nzA; i++) v_p[imark + i] = vworkA[i];
1371:         for (i = imark; i < nzB; i++) v_p[nzA + i] = vworkB[i];
1372:       }
1373:       if (idx) {
1374:         *idx = idx_p = mat->rowindices;
1375:         if (imark > -1) {
1376:           for (i = 0; i < imark; i++) idx_p[i] = cmap[cworkB[i] / bs] * bs + cworkB[i] % bs;
1377:         } else {
1378:           for (i = 0; i < nzB; i++) {
1379:             if (cmap[cworkB[i] / bs] < cstart) idx_p[i] = cmap[cworkB[i] / bs] * bs + cworkB[i] % bs;
1380:             else break;
1381:           }
1382:           imark = i;
1383:         }
1384:         for (i = 0; i < nzA; i++) idx_p[imark + i] = cstart * bs + cworkA[i];
1385:         for (i = imark; i < nzB; i++) idx_p[nzA + i] = cmap[cworkB[i] / bs] * bs + cworkB[i] % bs;
1386:       }
1387:     } else {
1388:       if (idx) *idx = NULL;
1389:       if (v) *v = NULL;
1390:     }
1391:   }
1392:   *nz = nztot;
1393:   PetscCall((*mat->A->ops->restorerow)(mat->A, lrow, &nzA, pcA, pvA));
1394:   PetscCall((*mat->B->ops->restorerow)(mat->B, lrow, &nzB, pcB, pvB));
1395:   PetscFunctionReturn(PETSC_SUCCESS);
1396: }

1398: PetscErrorCode MatRestoreRow_MPIBAIJ(Mat mat, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
1399: {
1400:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;

1402:   PetscFunctionBegin;
1403:   PetscCheck(baij->getrowactive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "MatGetRow not called");
1404:   baij->getrowactive = PETSC_FALSE;
1405:   PetscFunctionReturn(PETSC_SUCCESS);
1406: }

1408: static PetscErrorCode MatZeroEntries_MPIBAIJ(Mat A)
1409: {
1410:   Mat_MPIBAIJ *l = (Mat_MPIBAIJ *)A->data;

1412:   PetscFunctionBegin;
1413:   PetscCall(MatZeroEntries(l->A));
1414:   PetscCall(MatZeroEntries(l->B));
1415:   PetscFunctionReturn(PETSC_SUCCESS);
1416: }

1418: static PetscErrorCode MatGetInfo_MPIBAIJ(Mat matin, MatInfoType flag, MatInfo *info)
1419: {
1420:   Mat_MPIBAIJ   *a = (Mat_MPIBAIJ *)matin->data;
1421:   Mat            A = a->A, B = a->B;
1422:   PetscLogDouble isend[5], irecv[5];

1424:   PetscFunctionBegin;
1425:   info->block_size = (PetscReal)matin->rmap->bs;

1427:   PetscCall(MatGetInfo(A, MAT_LOCAL, info));

1429:   isend[0] = info->nz_used;
1430:   isend[1] = info->nz_allocated;
1431:   isend[2] = info->nz_unneeded;
1432:   isend[3] = info->memory;
1433:   isend[4] = info->mallocs;

1435:   PetscCall(MatGetInfo(B, MAT_LOCAL, info));

1437:   isend[0] += info->nz_used;
1438:   isend[1] += info->nz_allocated;
1439:   isend[2] += info->nz_unneeded;
1440:   isend[3] += info->memory;
1441:   isend[4] += info->mallocs;

1443:   if (flag == MAT_LOCAL) {
1444:     info->nz_used      = isend[0];
1445:     info->nz_allocated = isend[1];
1446:     info->nz_unneeded  = isend[2];
1447:     info->memory       = isend[3];
1448:     info->mallocs      = isend[4];
1449:   } else if (flag == MAT_GLOBAL_MAX) {
1450:     PetscCall(MPIU_Allreduce(isend, irecv, 5, MPIU_PETSCLOGDOUBLE, MPI_MAX, PetscObjectComm((PetscObject)matin)));

1452:     info->nz_used      = irecv[0];
1453:     info->nz_allocated = irecv[1];
1454:     info->nz_unneeded  = irecv[2];
1455:     info->memory       = irecv[3];
1456:     info->mallocs      = irecv[4];
1457:   } else if (flag == MAT_GLOBAL_SUM) {
1458:     PetscCall(MPIU_Allreduce(isend, irecv, 5, MPIU_PETSCLOGDOUBLE, MPI_SUM, PetscObjectComm((PetscObject)matin)));

1460:     info->nz_used      = irecv[0];
1461:     info->nz_allocated = irecv[1];
1462:     info->nz_unneeded  = irecv[2];
1463:     info->memory       = irecv[3];
1464:     info->mallocs      = irecv[4];
1465:   } else SETERRQ(PetscObjectComm((PetscObject)matin), PETSC_ERR_ARG_WRONG, "Unknown MatInfoType argument %d", (int)flag);
1466:   info->fill_ratio_given  = 0; /* no parallel LU/ILU/Cholesky */
1467:   info->fill_ratio_needed = 0;
1468:   info->factor_mallocs    = 0;
1469:   PetscFunctionReturn(PETSC_SUCCESS);
1470: }

1472: static PetscErrorCode MatSetOption_MPIBAIJ(Mat A, MatOption op, PetscBool flg)
1473: {
1474:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1476:   PetscFunctionBegin;
1477:   switch (op) {
1478:   case MAT_NEW_NONZERO_LOCATIONS:
1479:   case MAT_NEW_NONZERO_ALLOCATION_ERR:
1480:   case MAT_UNUSED_NONZERO_LOCATION_ERR:
1481:   case MAT_KEEP_NONZERO_PATTERN:
1482:   case MAT_NEW_NONZERO_LOCATION_ERR:
1483:     MatCheckPreallocated(A, 1);
1484:     PetscCall(MatSetOption(a->A, op, flg));
1485:     PetscCall(MatSetOption(a->B, op, flg));
1486:     break;
1487:   case MAT_ROW_ORIENTED:
1488:     MatCheckPreallocated(A, 1);
1489:     a->roworiented = flg;

1491:     PetscCall(MatSetOption(a->A, op, flg));
1492:     PetscCall(MatSetOption(a->B, op, flg));
1493:     break;
1494:   case MAT_FORCE_DIAGONAL_ENTRIES:
1495:   case MAT_SORTED_FULL:
1496:     PetscCall(PetscInfo(A, "Option %s ignored\n", MatOptions[op]));
1497:     break;
1498:   case MAT_IGNORE_OFF_PROC_ENTRIES:
1499:     a->donotstash = flg;
1500:     break;
1501:   case MAT_USE_HASH_TABLE:
1502:     a->ht_flag = flg;
1503:     a->ht_fact = 1.39;
1504:     break;
1505:   case MAT_SYMMETRIC:
1506:   case MAT_STRUCTURALLY_SYMMETRIC:
1507:   case MAT_HERMITIAN:
1508:   case MAT_SUBMAT_SINGLEIS:
1509:   case MAT_SYMMETRY_ETERNAL:
1510:   case MAT_STRUCTURAL_SYMMETRY_ETERNAL:
1511:   case MAT_SPD_ETERNAL:
1512:     /* if the diagonal matrix is square it inherits some of the properties above */
1513:     break;
1514:   default:
1515:     SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "unknown option %d", op);
1516:   }
1517:   PetscFunctionReturn(PETSC_SUCCESS);
1518: }

1520: static PetscErrorCode MatTranspose_MPIBAIJ(Mat A, MatReuse reuse, Mat *matout)
1521: {
1522:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)A->data;
1523:   Mat_SeqBAIJ *Aloc;
1524:   Mat          B;
1525:   PetscInt     M = A->rmap->N, N = A->cmap->N, *ai, *aj, i, *rvals, j, k, col;
1526:   PetscInt     bs = A->rmap->bs, mbs = baij->mbs;
1527:   MatScalar   *a;

1529:   PetscFunctionBegin;
1530:   if (reuse == MAT_REUSE_MATRIX) PetscCall(MatTransposeCheckNonzeroState_Private(A, *matout));
1531:   if (reuse == MAT_INITIAL_MATRIX || reuse == MAT_INPLACE_MATRIX) {
1532:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
1533:     PetscCall(MatSetSizes(B, A->cmap->n, A->rmap->n, N, M));
1534:     PetscCall(MatSetType(B, ((PetscObject)A)->type_name));
1535:     /* Do not know preallocation information, but must set block size */
1536:     PetscCall(MatMPIBAIJSetPreallocation(B, A->rmap->bs, PETSC_DECIDE, NULL, PETSC_DECIDE, NULL));
1537:   } else {
1538:     B = *matout;
1539:   }

1541:   /* copy over the A part */
1542:   Aloc = (Mat_SeqBAIJ *)baij->A->data;
1543:   ai   = Aloc->i;
1544:   aj   = Aloc->j;
1545:   a    = Aloc->a;
1546:   PetscCall(PetscMalloc1(bs, &rvals));

1548:   for (i = 0; i < mbs; i++) {
1549:     rvals[0] = bs * (baij->rstartbs + i);
1550:     for (j = 1; j < bs; j++) rvals[j] = rvals[j - 1] + 1;
1551:     for (j = ai[i]; j < ai[i + 1]; j++) {
1552:       col = (baij->cstartbs + aj[j]) * bs;
1553:       for (k = 0; k < bs; k++) {
1554:         PetscCall(MatSetValues_MPIBAIJ(B, 1, &col, bs, rvals, a, INSERT_VALUES));

1556:         col++;
1557:         a += bs;
1558:       }
1559:     }
1560:   }
1561:   /* copy over the B part */
1562:   Aloc = (Mat_SeqBAIJ *)baij->B->data;
1563:   ai   = Aloc->i;
1564:   aj   = Aloc->j;
1565:   a    = Aloc->a;
1566:   for (i = 0; i < mbs; i++) {
1567:     rvals[0] = bs * (baij->rstartbs + i);
1568:     for (j = 1; j < bs; j++) rvals[j] = rvals[j - 1] + 1;
1569:     for (j = ai[i]; j < ai[i + 1]; j++) {
1570:       col = baij->garray[aj[j]] * bs;
1571:       for (k = 0; k < bs; k++) {
1572:         PetscCall(MatSetValues_MPIBAIJ(B, 1, &col, bs, rvals, a, INSERT_VALUES));
1573:         col++;
1574:         a += bs;
1575:       }
1576:     }
1577:   }
1578:   PetscCall(PetscFree(rvals));
1579:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
1580:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));

1582:   if (reuse == MAT_INITIAL_MATRIX || reuse == MAT_REUSE_MATRIX) *matout = B;
1583:   else PetscCall(MatHeaderMerge(A, &B));
1584:   PetscFunctionReturn(PETSC_SUCCESS);
1585: }

1587: static PetscErrorCode MatDiagonalScale_MPIBAIJ(Mat mat, Vec ll, Vec rr)
1588: {
1589:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
1590:   Mat          a = baij->A, b = baij->B;
1591:   PetscInt     s1, s2, s3;

1593:   PetscFunctionBegin;
1594:   PetscCall(MatGetLocalSize(mat, &s2, &s3));
1595:   if (rr) {
1596:     PetscCall(VecGetLocalSize(rr, &s1));
1597:     PetscCheck(s1 == s3, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "right vector non-conforming local size");
1598:     /* Overlap communication with computation. */
1599:     PetscCall(VecScatterBegin(baij->Mvctx, rr, baij->lvec, INSERT_VALUES, SCATTER_FORWARD));
1600:   }
1601:   if (ll) {
1602:     PetscCall(VecGetLocalSize(ll, &s1));
1603:     PetscCheck(s1 == s2, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "left vector non-conforming local size");
1604:     PetscUseTypeMethod(b, diagonalscale, ll, NULL);
1605:   }
1606:   /* scale  the diagonal block */
1607:   PetscUseTypeMethod(a, diagonalscale, ll, rr);

1609:   if (rr) {
1610:     /* Do a scatter end and then right scale the off-diagonal block */
1611:     PetscCall(VecScatterEnd(baij->Mvctx, rr, baij->lvec, INSERT_VALUES, SCATTER_FORWARD));
1612:     PetscUseTypeMethod(b, diagonalscale, NULL, baij->lvec);
1613:   }
1614:   PetscFunctionReturn(PETSC_SUCCESS);
1615: }

1617: static PetscErrorCode MatZeroRows_MPIBAIJ(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
1618: {
1619:   Mat_MPIBAIJ *l = (Mat_MPIBAIJ *)A->data;
1620:   PetscInt    *lrows;
1621:   PetscInt     r, len;
1622:   PetscBool    cong;

1624:   PetscFunctionBegin;
1625:   /* get locally owned rows */
1626:   PetscCall(MatZeroRowsMapLocal_Private(A, N, rows, &len, &lrows));
1627:   /* fix right-hand side if needed */
1628:   if (x && b) {
1629:     const PetscScalar *xx;
1630:     PetscScalar       *bb;

1632:     PetscCall(VecGetArrayRead(x, &xx));
1633:     PetscCall(VecGetArray(b, &bb));
1634:     for (r = 0; r < len; ++r) bb[lrows[r]] = diag * xx[lrows[r]];
1635:     PetscCall(VecRestoreArrayRead(x, &xx));
1636:     PetscCall(VecRestoreArray(b, &bb));
1637:   }

1639:   /* actually zap the local rows */
1640:   /*
1641:         Zero the required rows. If the "diagonal block" of the matrix
1642:      is square and the user wishes to set the diagonal we use separate
1643:      code so that MatSetValues() is not called for each diagonal allocating
1644:      new memory, thus calling lots of mallocs and slowing things down.

1646:   */
1647:   /* must zero l->B before l->A because the (diag) case below may put values into l->B*/
1648:   PetscCall(MatZeroRows_SeqBAIJ(l->B, len, lrows, 0.0, NULL, NULL));
1649:   PetscCall(MatHasCongruentLayouts(A, &cong));
1650:   if ((diag != 0.0) && cong) {
1651:     PetscCall(MatZeroRows_SeqBAIJ(l->A, len, lrows, diag, NULL, NULL));
1652:   } else if (diag != 0.0) {
1653:     PetscCall(MatZeroRows_SeqBAIJ(l->A, len, lrows, 0.0, NULL, NULL));
1654:     PetscCheck(!((Mat_SeqBAIJ *)l->A->data)->nonew, PETSC_COMM_SELF, PETSC_ERR_SUP, "MatZeroRows() on rectangular matrices cannot be used with the Mat options MAT_NEW_NONZERO_LOCATIONS, MAT_NEW_NONZERO_LOCATION_ERR, and MAT_NEW_NONZERO_ALLOCATION_ERR");
1655:     for (r = 0; r < len; ++r) {
1656:       const PetscInt row = lrows[r] + A->rmap->rstart;
1657:       PetscCall(MatSetValues(A, 1, &row, 1, &row, &diag, INSERT_VALUES));
1658:     }
1659:     PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
1660:     PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
1661:   } else {
1662:     PetscCall(MatZeroRows_SeqBAIJ(l->A, len, lrows, 0.0, NULL, NULL));
1663:   }
1664:   PetscCall(PetscFree(lrows));

1666:   /* only change matrix nonzero state if pattern was allowed to be changed */
1667:   if (!((Mat_SeqBAIJ *)l->A->data)->keepnonzeropattern || !((Mat_SeqBAIJ *)l->A->data)->nonew) {
1668:     PetscObjectState state = l->A->nonzerostate + l->B->nonzerostate;
1669:     PetscCall(MPIU_Allreduce(&state, &A->nonzerostate, 1, MPIU_INT64, MPI_SUM, PetscObjectComm((PetscObject)A)));
1670:   }
1671:   PetscFunctionReturn(PETSC_SUCCESS);
1672: }

1674: static PetscErrorCode MatZeroRowsColumns_MPIBAIJ(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
1675: {
1676:   Mat_MPIBAIJ       *l = (Mat_MPIBAIJ *)A->data;
1677:   PetscMPIInt        n = A->rmap->n, p = 0;
1678:   PetscInt           i, j, k, r, len = 0, row, col, count;
1679:   PetscInt          *lrows, *owners = A->rmap->range;
1680:   PetscSFNode       *rrows;
1681:   PetscSF            sf;
1682:   const PetscScalar *xx;
1683:   PetscScalar       *bb, *mask;
1684:   Vec                xmask, lmask;
1685:   Mat_SeqBAIJ       *baij = (Mat_SeqBAIJ *)l->B->data;
1686:   PetscInt           bs = A->rmap->bs, bs2 = baij->bs2;
1687:   PetscScalar       *aa;

1689:   PetscFunctionBegin;
1690:   /* Create SF where leaves are input rows and roots are owned rows */
1691:   PetscCall(PetscMalloc1(n, &lrows));
1692:   for (r = 0; r < n; ++r) lrows[r] = -1;
1693:   PetscCall(PetscMalloc1(N, &rrows));
1694:   for (r = 0; r < N; ++r) {
1695:     const PetscInt idx = rows[r];
1696:     PetscCheck(idx >= 0 && A->rmap->N > idx, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row %" PetscInt_FMT " out of range [0,%" PetscInt_FMT ")", idx, A->rmap->N);
1697:     if (idx < owners[p] || owners[p + 1] <= idx) { /* short-circuit the search if the last p owns this row too */
1698:       PetscCall(PetscLayoutFindOwner(A->rmap, idx, &p));
1699:     }
1700:     rrows[r].rank  = p;
1701:     rrows[r].index = rows[r] - owners[p];
1702:   }
1703:   PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)A), &sf));
1704:   PetscCall(PetscSFSetGraph(sf, n, N, NULL, PETSC_OWN_POINTER, rrows, PETSC_OWN_POINTER));
1705:   /* Collect flags for rows to be zeroed */
1706:   PetscCall(PetscSFReduceBegin(sf, MPIU_INT, (PetscInt *)rows, lrows, MPI_LOR));
1707:   PetscCall(PetscSFReduceEnd(sf, MPIU_INT, (PetscInt *)rows, lrows, MPI_LOR));
1708:   PetscCall(PetscSFDestroy(&sf));
1709:   /* Compress and put in row numbers */
1710:   for (r = 0; r < n; ++r)
1711:     if (lrows[r] >= 0) lrows[len++] = r;
1712:   /* zero diagonal part of matrix */
1713:   PetscCall(MatZeroRowsColumns(l->A, len, lrows, diag, x, b));
1714:   /* handle off-diagonal part of matrix */
1715:   PetscCall(MatCreateVecs(A, &xmask, NULL));
1716:   PetscCall(VecDuplicate(l->lvec, &lmask));
1717:   PetscCall(VecGetArray(xmask, &bb));
1718:   for (i = 0; i < len; i++) bb[lrows[i]] = 1;
1719:   PetscCall(VecRestoreArray(xmask, &bb));
1720:   PetscCall(VecScatterBegin(l->Mvctx, xmask, lmask, ADD_VALUES, SCATTER_FORWARD));
1721:   PetscCall(VecScatterEnd(l->Mvctx, xmask, lmask, ADD_VALUES, SCATTER_FORWARD));
1722:   PetscCall(VecDestroy(&xmask));
1723:   if (x) {
1724:     PetscCall(VecScatterBegin(l->Mvctx, x, l->lvec, INSERT_VALUES, SCATTER_FORWARD));
1725:     PetscCall(VecScatterEnd(l->Mvctx, x, l->lvec, INSERT_VALUES, SCATTER_FORWARD));
1726:     PetscCall(VecGetArrayRead(l->lvec, &xx));
1727:     PetscCall(VecGetArray(b, &bb));
1728:   }
1729:   PetscCall(VecGetArray(lmask, &mask));
1730:   /* remove zeroed rows of off-diagonal matrix */
1731:   for (i = 0; i < len; ++i) {
1732:     row   = lrows[i];
1733:     count = (baij->i[row / bs + 1] - baij->i[row / bs]) * bs;
1734:     aa    = ((MatScalar *)baij->a) + baij->i[row / bs] * bs2 + (row % bs);
1735:     for (k = 0; k < count; ++k) {
1736:       aa[0] = 0.0;
1737:       aa += bs;
1738:     }
1739:   }
1740:   /* loop over all elements of off process part of matrix zeroing removed columns*/
1741:   for (i = 0; i < l->B->rmap->N; ++i) {
1742:     row = i / bs;
1743:     for (j = baij->i[row]; j < baij->i[row + 1]; ++j) {
1744:       for (k = 0; k < bs; ++k) {
1745:         col = bs * baij->j[j] + k;
1746:         if (PetscAbsScalar(mask[col])) {
1747:           aa = ((MatScalar *)baij->a) + j * bs2 + (i % bs) + bs * k;
1748:           if (x) bb[i] -= aa[0] * xx[col];
1749:           aa[0] = 0.0;
1750:         }
1751:       }
1752:     }
1753:   }
1754:   if (x) {
1755:     PetscCall(VecRestoreArray(b, &bb));
1756:     PetscCall(VecRestoreArrayRead(l->lvec, &xx));
1757:   }
1758:   PetscCall(VecRestoreArray(lmask, &mask));
1759:   PetscCall(VecDestroy(&lmask));
1760:   PetscCall(PetscFree(lrows));

1762:   /* only change matrix nonzero state if pattern was allowed to be changed */
1763:   if (!((Mat_SeqBAIJ *)l->A->data)->nonew) {
1764:     PetscObjectState state = l->A->nonzerostate + l->B->nonzerostate;
1765:     PetscCall(MPIU_Allreduce(&state, &A->nonzerostate, 1, MPIU_INT64, MPI_SUM, PetscObjectComm((PetscObject)A)));
1766:   }
1767:   PetscFunctionReturn(PETSC_SUCCESS);
1768: }

1770: static PetscErrorCode MatSetUnfactored_MPIBAIJ(Mat A)
1771: {
1772:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1774:   PetscFunctionBegin;
1775:   PetscCall(MatSetUnfactored(a->A));
1776:   PetscFunctionReturn(PETSC_SUCCESS);
1777: }

1779: static PetscErrorCode MatDuplicate_MPIBAIJ(Mat, MatDuplicateOption, Mat *);

1781: static PetscErrorCode MatEqual_MPIBAIJ(Mat A, Mat B, PetscBool *flag)
1782: {
1783:   Mat_MPIBAIJ *matB = (Mat_MPIBAIJ *)B->data, *matA = (Mat_MPIBAIJ *)A->data;
1784:   Mat          a, b, c, d;
1785:   PetscBool    flg;

1787:   PetscFunctionBegin;
1788:   a = matA->A;
1789:   b = matA->B;
1790:   c = matB->A;
1791:   d = matB->B;

1793:   PetscCall(MatEqual(a, c, &flg));
1794:   if (flg) PetscCall(MatEqual(b, d, &flg));
1795:   PetscCall(MPIU_Allreduce(&flg, flag, 1, MPIU_BOOL, MPI_LAND, PetscObjectComm((PetscObject)A)));
1796:   PetscFunctionReturn(PETSC_SUCCESS);
1797: }

1799: static PetscErrorCode MatCopy_MPIBAIJ(Mat A, Mat B, MatStructure str)
1800: {
1801:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;
1802:   Mat_MPIBAIJ *b = (Mat_MPIBAIJ *)B->data;

1804:   PetscFunctionBegin;
1805:   /* If the two matrices don't have the same copy implementation, they aren't compatible for fast copy. */
1806:   if ((str != SAME_NONZERO_PATTERN) || (A->ops->copy != B->ops->copy)) {
1807:     PetscCall(MatCopy_Basic(A, B, str));
1808:   } else {
1809:     PetscCall(MatCopy(a->A, b->A, str));
1810:     PetscCall(MatCopy(a->B, b->B, str));
1811:   }
1812:   PetscCall(PetscObjectStateIncrease((PetscObject)B));
1813:   PetscFunctionReturn(PETSC_SUCCESS);
1814: }

1816: PetscErrorCode MatAXPYGetPreallocation_MPIBAIJ(Mat Y, const PetscInt *yltog, Mat X, const PetscInt *xltog, PetscInt *nnz)
1817: {
1818:   PetscInt     bs = Y->rmap->bs, m = Y->rmap->N / bs;
1819:   Mat_SeqBAIJ *x = (Mat_SeqBAIJ *)X->data;
1820:   Mat_SeqBAIJ *y = (Mat_SeqBAIJ *)Y->data;

1822:   PetscFunctionBegin;
1823:   PetscCall(MatAXPYGetPreallocation_MPIX_private(m, x->i, x->j, xltog, y->i, y->j, yltog, nnz));
1824:   PetscFunctionReturn(PETSC_SUCCESS);
1825: }

1827: static PetscErrorCode MatAXPY_MPIBAIJ(Mat Y, PetscScalar a, Mat X, MatStructure str)
1828: {
1829:   Mat_MPIBAIJ *xx = (Mat_MPIBAIJ *)X->data, *yy = (Mat_MPIBAIJ *)Y->data;
1830:   PetscBLASInt bnz, one                         = 1;
1831:   Mat_SeqBAIJ *x, *y;
1832:   PetscInt     bs2 = Y->rmap->bs * Y->rmap->bs;

1834:   PetscFunctionBegin;
1835:   if (str == SAME_NONZERO_PATTERN) {
1836:     PetscScalar alpha = a;
1837:     x                 = (Mat_SeqBAIJ *)xx->A->data;
1838:     y                 = (Mat_SeqBAIJ *)yy->A->data;
1839:     PetscCall(PetscBLASIntCast(x->nz * bs2, &bnz));
1840:     PetscCallBLAS("BLASaxpy", BLASaxpy_(&bnz, &alpha, x->a, &one, y->a, &one));
1841:     x = (Mat_SeqBAIJ *)xx->B->data;
1842:     y = (Mat_SeqBAIJ *)yy->B->data;
1843:     PetscCall(PetscBLASIntCast(x->nz * bs2, &bnz));
1844:     PetscCallBLAS("BLASaxpy", BLASaxpy_(&bnz, &alpha, x->a, &one, y->a, &one));
1845:     PetscCall(PetscObjectStateIncrease((PetscObject)Y));
1846:   } else if (str == SUBSET_NONZERO_PATTERN) { /* nonzeros of X is a subset of Y's */
1847:     PetscCall(MatAXPY_Basic(Y, a, X, str));
1848:   } else {
1849:     Mat       B;
1850:     PetscInt *nnz_d, *nnz_o, bs = Y->rmap->bs;
1851:     PetscCall(PetscMalloc1(yy->A->rmap->N, &nnz_d));
1852:     PetscCall(PetscMalloc1(yy->B->rmap->N, &nnz_o));
1853:     PetscCall(MatCreate(PetscObjectComm((PetscObject)Y), &B));
1854:     PetscCall(PetscObjectSetName((PetscObject)B, ((PetscObject)Y)->name));
1855:     PetscCall(MatSetSizes(B, Y->rmap->n, Y->cmap->n, Y->rmap->N, Y->cmap->N));
1856:     PetscCall(MatSetBlockSizesFromMats(B, Y, Y));
1857:     PetscCall(MatSetType(B, MATMPIBAIJ));
1858:     PetscCall(MatAXPYGetPreallocation_SeqBAIJ(yy->A, xx->A, nnz_d));
1859:     PetscCall(MatAXPYGetPreallocation_MPIBAIJ(yy->B, yy->garray, xx->B, xx->garray, nnz_o));
1860:     PetscCall(MatMPIBAIJSetPreallocation(B, bs, 0, nnz_d, 0, nnz_o));
1861:     /* MatAXPY_BasicWithPreallocation() for BAIJ matrix is much slower than AIJ, even for bs=1 ! */
1862:     PetscCall(MatAXPY_BasicWithPreallocation(B, Y, a, X, str));
1863:     PetscCall(MatHeaderMerge(Y, &B));
1864:     PetscCall(PetscFree(nnz_d));
1865:     PetscCall(PetscFree(nnz_o));
1866:   }
1867:   PetscFunctionReturn(PETSC_SUCCESS);
1868: }

1870: static PetscErrorCode MatConjugate_MPIBAIJ(Mat mat)
1871: {
1872:   PetscFunctionBegin;
1873:   if (PetscDefined(USE_COMPLEX)) {
1874:     Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)mat->data;

1876:     PetscCall(MatConjugate_SeqBAIJ(a->A));
1877:     PetscCall(MatConjugate_SeqBAIJ(a->B));
1878:   }
1879:   PetscFunctionReturn(PETSC_SUCCESS);
1880: }

1882: static PetscErrorCode MatRealPart_MPIBAIJ(Mat A)
1883: {
1884:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1886:   PetscFunctionBegin;
1887:   PetscCall(MatRealPart(a->A));
1888:   PetscCall(MatRealPart(a->B));
1889:   PetscFunctionReturn(PETSC_SUCCESS);
1890: }

1892: static PetscErrorCode MatImaginaryPart_MPIBAIJ(Mat A)
1893: {
1894:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1896:   PetscFunctionBegin;
1897:   PetscCall(MatImaginaryPart(a->A));
1898:   PetscCall(MatImaginaryPart(a->B));
1899:   PetscFunctionReturn(PETSC_SUCCESS);
1900: }

1902: static PetscErrorCode MatCreateSubMatrix_MPIBAIJ(Mat mat, IS isrow, IS iscol, MatReuse call, Mat *newmat)
1903: {
1904:   IS       iscol_local;
1905:   PetscInt csize;

1907:   PetscFunctionBegin;
1908:   PetscCall(ISGetLocalSize(iscol, &csize));
1909:   if (call == MAT_REUSE_MATRIX) {
1910:     PetscCall(PetscObjectQuery((PetscObject)*newmat, "ISAllGather", (PetscObject *)&iscol_local));
1911:     PetscCheck(iscol_local, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Submatrix passed in was not used before, cannot reuse");
1912:   } else {
1913:     PetscCall(ISAllGather(iscol, &iscol_local));
1914:   }
1915:   PetscCall(MatCreateSubMatrix_MPIBAIJ_Private(mat, isrow, iscol_local, csize, call, newmat, PETSC_FALSE));
1916:   if (call == MAT_INITIAL_MATRIX) {
1917:     PetscCall(PetscObjectCompose((PetscObject)*newmat, "ISAllGather", (PetscObject)iscol_local));
1918:     PetscCall(ISDestroy(&iscol_local));
1919:   }
1920:   PetscFunctionReturn(PETSC_SUCCESS);
1921: }

1923: /*
1924:   Not great since it makes two copies of the submatrix, first an SeqBAIJ
1925:   in local and then by concatenating the local matrices the end result.
1926:   Writing it directly would be much like MatCreateSubMatrices_MPIBAIJ().
1927:   This routine is used for BAIJ and SBAIJ matrices (unfortunate dependency).
1928: */
1929: PetscErrorCode MatCreateSubMatrix_MPIBAIJ_Private(Mat mat, IS isrow, IS iscol, PetscInt csize, MatReuse call, Mat *newmat, PetscBool sym)
1930: {
1931:   PetscMPIInt  rank, size;
1932:   PetscInt     i, m, n, rstart, row, rend, nz, *cwork, j, bs;
1933:   PetscInt    *ii, *jj, nlocal, *dlens, *olens, dlen, olen, jend, mglobal;
1934:   Mat          M, Mreuse;
1935:   MatScalar   *vwork, *aa;
1936:   MPI_Comm     comm;
1937:   IS           isrow_new, iscol_new;
1938:   Mat_SeqBAIJ *aij;

1940:   PetscFunctionBegin;
1941:   PetscCall(PetscObjectGetComm((PetscObject)mat, &comm));
1942:   PetscCallMPI(MPI_Comm_rank(comm, &rank));
1943:   PetscCallMPI(MPI_Comm_size(comm, &size));
1944:   /* The compression and expansion should be avoided. Doesn't point
1945:      out errors, might change the indices, hence buggey */
1946:   PetscCall(ISCompressIndicesGeneral(mat->rmap->N, mat->rmap->n, mat->rmap->bs, 1, &isrow, &isrow_new));
1947:   if (isrow == iscol) {
1948:     iscol_new = isrow_new;
1949:     PetscCall(PetscObjectReference((PetscObject)iscol_new));
1950:   } else PetscCall(ISCompressIndicesGeneral(mat->cmap->N, mat->cmap->n, mat->cmap->bs, 1, &iscol, &iscol_new));

1952:   if (call == MAT_REUSE_MATRIX) {
1953:     PetscCall(PetscObjectQuery((PetscObject)*newmat, "SubMatrix", (PetscObject *)&Mreuse));
1954:     PetscCheck(Mreuse, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Submatrix passed in was not used before, cannot reuse");
1955:     PetscCall(MatCreateSubMatrices_MPIBAIJ_local(mat, 1, &isrow_new, &iscol_new, MAT_REUSE_MATRIX, &Mreuse, sym));
1956:   } else {
1957:     PetscCall(MatCreateSubMatrices_MPIBAIJ_local(mat, 1, &isrow_new, &iscol_new, MAT_INITIAL_MATRIX, &Mreuse, sym));
1958:   }
1959:   PetscCall(ISDestroy(&isrow_new));
1960:   PetscCall(ISDestroy(&iscol_new));
1961:   /*
1962:       m - number of local rows
1963:       n - number of columns (same on all processors)
1964:       rstart - first row in new global matrix generated
1965:   */
1966:   PetscCall(MatGetBlockSize(mat, &bs));
1967:   PetscCall(MatGetSize(Mreuse, &m, &n));
1968:   m = m / bs;
1969:   n = n / bs;

1971:   if (call == MAT_INITIAL_MATRIX) {
1972:     aij = (Mat_SeqBAIJ *)(Mreuse)->data;
1973:     ii  = aij->i;
1974:     jj  = aij->j;

1976:     /*
1977:         Determine the number of non-zeros in the diagonal and off-diagonal
1978:         portions of the matrix in order to do correct preallocation
1979:     */

1981:     /* first get start and end of "diagonal" columns */
1982:     if (csize == PETSC_DECIDE) {
1983:       PetscCall(ISGetSize(isrow, &mglobal));
1984:       if (mglobal == n * bs) { /* square matrix */
1985:         nlocal = m;
1986:       } else {
1987:         nlocal = n / size + ((n % size) > rank);
1988:       }
1989:     } else {
1990:       nlocal = csize / bs;
1991:     }
1992:     PetscCallMPI(MPI_Scan(&nlocal, &rend, 1, MPIU_INT, MPI_SUM, comm));
1993:     rstart = rend - nlocal;
1994:     PetscCheck(rank != size - 1 || rend == n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Local column sizes %" PetscInt_FMT " do not add up to total number of columns %" PetscInt_FMT, rend, n);

1996:     /* next, compute all the lengths */
1997:     PetscCall(PetscMalloc2(m + 1, &dlens, m + 1, &olens));
1998:     for (i = 0; i < m; i++) {
1999:       jend = ii[i + 1] - ii[i];
2000:       olen = 0;
2001:       dlen = 0;
2002:       for (j = 0; j < jend; j++) {
2003:         if (*jj < rstart || *jj >= rend) olen++;
2004:         else dlen++;
2005:         jj++;
2006:       }
2007:       olens[i] = olen;
2008:       dlens[i] = dlen;
2009:     }
2010:     PetscCall(MatCreate(comm, &M));
2011:     PetscCall(MatSetSizes(M, bs * m, bs * nlocal, PETSC_DECIDE, bs * n));
2012:     PetscCall(MatSetType(M, sym ? ((PetscObject)mat)->type_name : MATMPIBAIJ));
2013:     PetscCall(MatMPIBAIJSetPreallocation(M, bs, 0, dlens, 0, olens));
2014:     PetscCall(MatMPISBAIJSetPreallocation(M, bs, 0, dlens, 0, olens));
2015:     PetscCall(PetscFree2(dlens, olens));
2016:   } else {
2017:     PetscInt ml, nl;

2019:     M = *newmat;
2020:     PetscCall(MatGetLocalSize(M, &ml, &nl));
2021:     PetscCheck(ml == m, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Previous matrix must be same size/layout as request");
2022:     PetscCall(MatZeroEntries(M));
2023:     /*
2024:          The next two lines are needed so we may call MatSetValues_MPIAIJ() below directly,
2025:        rather than the slower MatSetValues().
2026:     */
2027:     M->was_assembled = PETSC_TRUE;
2028:     M->assembled     = PETSC_FALSE;
2029:   }
2030:   PetscCall(MatSetOption(M, MAT_ROW_ORIENTED, PETSC_FALSE));
2031:   PetscCall(MatGetOwnershipRange(M, &rstart, &rend));
2032:   aij = (Mat_SeqBAIJ *)(Mreuse)->data;
2033:   ii  = aij->i;
2034:   jj  = aij->j;
2035:   aa  = aij->a;
2036:   for (i = 0; i < m; i++) {
2037:     row   = rstart / bs + i;
2038:     nz    = ii[i + 1] - ii[i];
2039:     cwork = jj;
2040:     jj    = PetscSafePointerPlusOffset(jj, nz);
2041:     vwork = aa;
2042:     aa    = PetscSafePointerPlusOffset(aa, nz * bs * bs);
2043:     PetscCall(MatSetValuesBlocked_MPIBAIJ(M, 1, &row, nz, cwork, vwork, INSERT_VALUES));
2044:   }

2046:   PetscCall(MatAssemblyBegin(M, MAT_FINAL_ASSEMBLY));
2047:   PetscCall(MatAssemblyEnd(M, MAT_FINAL_ASSEMBLY));
2048:   *newmat = M;

2050:   /* save submatrix used in processor for next request */
2051:   if (call == MAT_INITIAL_MATRIX) {
2052:     PetscCall(PetscObjectCompose((PetscObject)M, "SubMatrix", (PetscObject)Mreuse));
2053:     PetscCall(PetscObjectDereference((PetscObject)Mreuse));
2054:   }
2055:   PetscFunctionReturn(PETSC_SUCCESS);
2056: }

2058: static PetscErrorCode MatPermute_MPIBAIJ(Mat A, IS rowp, IS colp, Mat *B)
2059: {
2060:   MPI_Comm        comm, pcomm;
2061:   PetscInt        clocal_size, nrows;
2062:   const PetscInt *rows;
2063:   PetscMPIInt     size;
2064:   IS              crowp, lcolp;

2066:   PetscFunctionBegin;
2067:   PetscCall(PetscObjectGetComm((PetscObject)A, &comm));
2068:   /* make a collective version of 'rowp' */
2069:   PetscCall(PetscObjectGetComm((PetscObject)rowp, &pcomm));
2070:   if (pcomm == comm) {
2071:     crowp = rowp;
2072:   } else {
2073:     PetscCall(ISGetSize(rowp, &nrows));
2074:     PetscCall(ISGetIndices(rowp, &rows));
2075:     PetscCall(ISCreateGeneral(comm, nrows, rows, PETSC_COPY_VALUES, &crowp));
2076:     PetscCall(ISRestoreIndices(rowp, &rows));
2077:   }
2078:   PetscCall(ISSetPermutation(crowp));
2079:   /* make a local version of 'colp' */
2080:   PetscCall(PetscObjectGetComm((PetscObject)colp, &pcomm));
2081:   PetscCallMPI(MPI_Comm_size(pcomm, &size));
2082:   if (size == 1) {
2083:     lcolp = colp;
2084:   } else {
2085:     PetscCall(ISAllGather(colp, &lcolp));
2086:   }
2087:   PetscCall(ISSetPermutation(lcolp));
2088:   /* now we just get the submatrix */
2089:   PetscCall(MatGetLocalSize(A, NULL, &clocal_size));
2090:   PetscCall(MatCreateSubMatrix_MPIBAIJ_Private(A, crowp, lcolp, clocal_size, MAT_INITIAL_MATRIX, B, PETSC_FALSE));
2091:   /* clean up */
2092:   if (pcomm != comm) PetscCall(ISDestroy(&crowp));
2093:   if (size > 1) PetscCall(ISDestroy(&lcolp));
2094:   PetscFunctionReturn(PETSC_SUCCESS);
2095: }

2097: static PetscErrorCode MatGetGhosts_MPIBAIJ(Mat mat, PetscInt *nghosts, const PetscInt *ghosts[])
2098: {
2099:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
2100:   Mat_SeqBAIJ *B    = (Mat_SeqBAIJ *)baij->B->data;

2102:   PetscFunctionBegin;
2103:   if (nghosts) *nghosts = B->nbs;
2104:   if (ghosts) *ghosts = baij->garray;
2105:   PetscFunctionReturn(PETSC_SUCCESS);
2106: }

2108: static PetscErrorCode MatGetSeqNonzeroStructure_MPIBAIJ(Mat A, Mat *newmat)
2109: {
2110:   Mat          B;
2111:   Mat_MPIBAIJ *a  = (Mat_MPIBAIJ *)A->data;
2112:   Mat_SeqBAIJ *ad = (Mat_SeqBAIJ *)a->A->data, *bd = (Mat_SeqBAIJ *)a->B->data;
2113:   Mat_SeqAIJ  *b;
2114:   PetscMPIInt  size, rank, *recvcounts = NULL, *displs = NULL;
2115:   PetscInt     sendcount, i, *rstarts = A->rmap->range, n, cnt, j, bs = A->rmap->bs;
2116:   PetscInt     m, *garray = a->garray, *lens, *jsendbuf, *a_jsendbuf, *b_jsendbuf;

2118:   PetscFunctionBegin;
2119:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)A), &size));
2120:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)A), &rank));

2122:   /*   Tell every processor the number of nonzeros per row  */
2123:   PetscCall(PetscMalloc1(A->rmap->N / bs, &lens));
2124:   for (i = A->rmap->rstart / bs; i < A->rmap->rend / bs; i++) lens[i] = ad->i[i - A->rmap->rstart / bs + 1] - ad->i[i - A->rmap->rstart / bs] + bd->i[i - A->rmap->rstart / bs + 1] - bd->i[i - A->rmap->rstart / bs];
2125:   PetscCall(PetscMalloc1(2 * size, &recvcounts));
2126:   displs = recvcounts + size;
2127:   for (i = 0; i < size; i++) {
2128:     recvcounts[i] = A->rmap->range[i + 1] / bs - A->rmap->range[i] / bs;
2129:     displs[i]     = A->rmap->range[i] / bs;
2130:   }
2131:   PetscCallMPI(MPI_Allgatherv(MPI_IN_PLACE, 0, MPI_DATATYPE_NULL, lens, recvcounts, displs, MPIU_INT, PetscObjectComm((PetscObject)A)));
2132:   /* Create the sequential matrix of the same type as the local block diagonal  */
2133:   PetscCall(MatCreate(PETSC_COMM_SELF, &B));
2134:   PetscCall(MatSetSizes(B, A->rmap->N / bs, A->cmap->N / bs, PETSC_DETERMINE, PETSC_DETERMINE));
2135:   PetscCall(MatSetType(B, MATSEQAIJ));
2136:   PetscCall(MatSeqAIJSetPreallocation(B, 0, lens));
2137:   b = (Mat_SeqAIJ *)B->data;

2139:   /*     Copy my part of matrix column indices over  */
2140:   sendcount  = ad->nz + bd->nz;
2141:   jsendbuf   = b->j + b->i[rstarts[rank] / bs];
2142:   a_jsendbuf = ad->j;
2143:   b_jsendbuf = bd->j;
2144:   n          = A->rmap->rend / bs - A->rmap->rstart / bs;
2145:   cnt        = 0;
2146:   for (i = 0; i < n; i++) {
2147:     /* put in lower diagonal portion */
2148:     m = bd->i[i + 1] - bd->i[i];
2149:     while (m > 0) {
2150:       /* is it above diagonal (in bd (compressed) numbering) */
2151:       if (garray[*b_jsendbuf] > A->rmap->rstart / bs + i) break;
2152:       jsendbuf[cnt++] = garray[*b_jsendbuf++];
2153:       m--;
2154:     }

2156:     /* put in diagonal portion */
2157:     for (j = ad->i[i]; j < ad->i[i + 1]; j++) jsendbuf[cnt++] = A->rmap->rstart / bs + *a_jsendbuf++;

2159:     /* put in upper diagonal portion */
2160:     while (m-- > 0) jsendbuf[cnt++] = garray[*b_jsendbuf++];
2161:   }
2162:   PetscCheck(cnt == sendcount, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Corrupted PETSc matrix: nz given %" PetscInt_FMT " actual nz %" PetscInt_FMT, sendcount, cnt);

2164:   /*  Gather all column indices to all processors  */
2165:   for (i = 0; i < size; i++) {
2166:     recvcounts[i] = 0;
2167:     for (j = A->rmap->range[i] / bs; j < A->rmap->range[i + 1] / bs; j++) recvcounts[i] += lens[j];
2168:   }
2169:   displs[0] = 0;
2170:   for (i = 1; i < size; i++) displs[i] = displs[i - 1] + recvcounts[i - 1];
2171:   PetscCallMPI(MPI_Allgatherv(MPI_IN_PLACE, 0, MPI_DATATYPE_NULL, b->j, recvcounts, displs, MPIU_INT, PetscObjectComm((PetscObject)A)));
2172:   /*  Assemble the matrix into usable form (note numerical values not yet set)  */
2173:   /* set the b->ilen (length of each row) values */
2174:   PetscCall(PetscArraycpy(b->ilen, lens, A->rmap->N / bs));
2175:   /* set the b->i indices */
2176:   b->i[0] = 0;
2177:   for (i = 1; i <= A->rmap->N / bs; i++) b->i[i] = b->i[i - 1] + lens[i - 1];
2178:   PetscCall(PetscFree(lens));
2179:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
2180:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
2181:   PetscCall(PetscFree(recvcounts));

2183:   PetscCall(MatPropagateSymmetryOptions(A, B));
2184:   *newmat = B;
2185:   PetscFunctionReturn(PETSC_SUCCESS);
2186: }

2188: static PetscErrorCode MatSOR_MPIBAIJ(Mat matin, Vec bb, PetscReal omega, MatSORType flag, PetscReal fshift, PetscInt its, PetscInt lits, Vec xx)
2189: {
2190:   Mat_MPIBAIJ *mat = (Mat_MPIBAIJ *)matin->data;
2191:   Vec          bb1 = NULL;

2193:   PetscFunctionBegin;
2194:   if (flag == SOR_APPLY_UPPER) {
2195:     PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
2196:     PetscFunctionReturn(PETSC_SUCCESS);
2197:   }

2199:   if (its > 1 || ~flag & SOR_ZERO_INITIAL_GUESS) PetscCall(VecDuplicate(bb, &bb1));

2201:   if ((flag & SOR_LOCAL_SYMMETRIC_SWEEP) == SOR_LOCAL_SYMMETRIC_SWEEP) {
2202:     if (flag & SOR_ZERO_INITIAL_GUESS) {
2203:       PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
2204:       its--;
2205:     }

2207:     while (its--) {
2208:       PetscCall(VecScatterBegin(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));
2209:       PetscCall(VecScatterEnd(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));

2211:       /* update rhs: bb1 = bb - B*x */
2212:       PetscCall(VecScale(mat->lvec, -1.0));
2213:       PetscCall((*mat->B->ops->multadd)(mat->B, mat->lvec, bb, bb1));

2215:       /* local sweep */
2216:       PetscCall((*mat->A->ops->sor)(mat->A, bb1, omega, SOR_SYMMETRIC_SWEEP, fshift, lits, 1, xx));
2217:     }
2218:   } else if (flag & SOR_LOCAL_FORWARD_SWEEP) {
2219:     if (flag & SOR_ZERO_INITIAL_GUESS) {
2220:       PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
2221:       its--;
2222:     }
2223:     while (its--) {
2224:       PetscCall(VecScatterBegin(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));
2225:       PetscCall(VecScatterEnd(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));

2227:       /* update rhs: bb1 = bb - B*x */
2228:       PetscCall(VecScale(mat->lvec, -1.0));
2229:       PetscCall((*mat->B->ops->multadd)(mat->B, mat->lvec, bb, bb1));

2231:       /* local sweep */
2232:       PetscCall((*mat->A->ops->sor)(mat->A, bb1, omega, SOR_FORWARD_SWEEP, fshift, lits, 1, xx));
2233:     }
2234:   } else if (flag & SOR_LOCAL_BACKWARD_SWEEP) {
2235:     if (flag & SOR_ZERO_INITIAL_GUESS) {
2236:       PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
2237:       its--;
2238:     }
2239:     while (its--) {
2240:       PetscCall(VecScatterBegin(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));
2241:       PetscCall(VecScatterEnd(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));

2243:       /* update rhs: bb1 = bb - B*x */
2244:       PetscCall(VecScale(mat->lvec, -1.0));
2245:       PetscCall((*mat->B->ops->multadd)(mat->B, mat->lvec, bb, bb1));

2247:       /* local sweep */
2248:       PetscCall((*mat->A->ops->sor)(mat->A, bb1, omega, SOR_BACKWARD_SWEEP, fshift, lits, 1, xx));
2249:     }
2250:   } else SETERRQ(PetscObjectComm((PetscObject)matin), PETSC_ERR_SUP, "Parallel version of SOR requested not supported");

2252:   PetscCall(VecDestroy(&bb1));
2253:   PetscFunctionReturn(PETSC_SUCCESS);
2254: }

2256: static PetscErrorCode MatGetColumnReductions_MPIBAIJ(Mat A, PetscInt type, PetscReal *reductions)
2257: {
2258:   Mat_MPIBAIJ *aij = (Mat_MPIBAIJ *)A->data;
2259:   PetscInt     m, N, i, *garray = aij->garray;
2260:   PetscInt     ib, jb, bs = A->rmap->bs;
2261:   Mat_SeqBAIJ *a_aij = (Mat_SeqBAIJ *)aij->A->data;
2262:   MatScalar   *a_val = a_aij->a;
2263:   Mat_SeqBAIJ *b_aij = (Mat_SeqBAIJ *)aij->B->data;
2264:   MatScalar   *b_val = b_aij->a;
2265:   PetscReal   *work;

2267:   PetscFunctionBegin;
2268:   PetscCall(MatGetSize(A, &m, &N));
2269:   PetscCall(PetscCalloc1(N, &work));
2270:   if (type == NORM_2) {
2271:     for (i = a_aij->i[0]; i < a_aij->i[aij->A->rmap->n / bs]; i++) {
2272:       for (jb = 0; jb < bs; jb++) {
2273:         for (ib = 0; ib < bs; ib++) {
2274:           work[A->cmap->rstart + a_aij->j[i] * bs + jb] += PetscAbsScalar(*a_val * *a_val);
2275:           a_val++;
2276:         }
2277:       }
2278:     }
2279:     for (i = b_aij->i[0]; i < b_aij->i[aij->B->rmap->n / bs]; i++) {
2280:       for (jb = 0; jb < bs; jb++) {
2281:         for (ib = 0; ib < bs; ib++) {
2282:           work[garray[b_aij->j[i]] * bs + jb] += PetscAbsScalar(*b_val * *b_val);
2283:           b_val++;
2284:         }
2285:       }
2286:     }
2287:   } else if (type == NORM_1) {
2288:     for (i = a_aij->i[0]; i < a_aij->i[aij->A->rmap->n / bs]; i++) {
2289:       for (jb = 0; jb < bs; jb++) {
2290:         for (ib = 0; ib < bs; ib++) {
2291:           work[A->cmap->rstart + a_aij->j[i] * bs + jb] += PetscAbsScalar(*a_val);
2292:           a_val++;
2293:         }
2294:       }
2295:     }
2296:     for (i = b_aij->i[0]; i < b_aij->i[aij->B->rmap->n / bs]; i++) {
2297:       for (jb = 0; jb < bs; jb++) {
2298:         for (ib = 0; ib < bs; ib++) {
2299:           work[garray[b_aij->j[i]] * bs + jb] += PetscAbsScalar(*b_val);
2300:           b_val++;
2301:         }
2302:       }
2303:     }
2304:   } else if (type == NORM_INFINITY) {
2305:     for (i = a_aij->i[0]; i < a_aij->i[aij->A->rmap->n / bs]; i++) {
2306:       for (jb = 0; jb < bs; jb++) {
2307:         for (ib = 0; ib < bs; ib++) {
2308:           int col   = A->cmap->rstart + a_aij->j[i] * bs + jb;
2309:           work[col] = PetscMax(PetscAbsScalar(*a_val), work[col]);
2310:           a_val++;
2311:         }
2312:       }
2313:     }
2314:     for (i = b_aij->i[0]; i < b_aij->i[aij->B->rmap->n / bs]; i++) {
2315:       for (jb = 0; jb < bs; jb++) {
2316:         for (ib = 0; ib < bs; ib++) {
2317:           int col   = garray[b_aij->j[i]] * bs + jb;
2318:           work[col] = PetscMax(PetscAbsScalar(*b_val), work[col]);
2319:           b_val++;
2320:         }
2321:       }
2322:     }
2323:   } else if (type == REDUCTION_SUM_REALPART || type == REDUCTION_MEAN_REALPART) {
2324:     for (i = a_aij->i[0]; i < a_aij->i[aij->A->rmap->n / bs]; i++) {
2325:       for (jb = 0; jb < bs; jb++) {
2326:         for (ib = 0; ib < bs; ib++) {
2327:           work[A->cmap->rstart + a_aij->j[i] * bs + jb] += PetscRealPart(*a_val);
2328:           a_val++;
2329:         }
2330:       }
2331:     }
2332:     for (i = b_aij->i[0]; i < b_aij->i[aij->B->rmap->n / bs]; i++) {
2333:       for (jb = 0; jb < bs; jb++) {
2334:         for (ib = 0; ib < bs; ib++) {
2335:           work[garray[b_aij->j[i]] * bs + jb] += PetscRealPart(*b_val);
2336:           b_val++;
2337:         }
2338:       }
2339:     }
2340:   } else if (type == REDUCTION_SUM_IMAGINARYPART || type == REDUCTION_MEAN_IMAGINARYPART) {
2341:     for (i = a_aij->i[0]; i < a_aij->i[aij->A->rmap->n / bs]; i++) {
2342:       for (jb = 0; jb < bs; jb++) {
2343:         for (ib = 0; ib < bs; ib++) {
2344:           work[A->cmap->rstart + a_aij->j[i] * bs + jb] += PetscImaginaryPart(*a_val);
2345:           a_val++;
2346:         }
2347:       }
2348:     }
2349:     for (i = b_aij->i[0]; i < b_aij->i[aij->B->rmap->n / bs]; i++) {
2350:       for (jb = 0; jb < bs; jb++) {
2351:         for (ib = 0; ib < bs; ib++) {
2352:           work[garray[b_aij->j[i]] * bs + jb] += PetscImaginaryPart(*b_val);
2353:           b_val++;
2354:         }
2355:       }
2356:     }
2357:   } else SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Unknown reduction type");
2358:   if (type == NORM_INFINITY) {
2359:     PetscCall(MPIU_Allreduce(work, reductions, N, MPIU_REAL, MPIU_MAX, PetscObjectComm((PetscObject)A)));
2360:   } else {
2361:     PetscCall(MPIU_Allreduce(work, reductions, N, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)A)));
2362:   }
2363:   PetscCall(PetscFree(work));
2364:   if (type == NORM_2) {
2365:     for (i = 0; i < N; i++) reductions[i] = PetscSqrtReal(reductions[i]);
2366:   } else if (type == REDUCTION_MEAN_REALPART || type == REDUCTION_MEAN_IMAGINARYPART) {
2367:     for (i = 0; i < N; i++) reductions[i] /= m;
2368:   }
2369:   PetscFunctionReturn(PETSC_SUCCESS);
2370: }

2372: static PetscErrorCode MatInvertBlockDiagonal_MPIBAIJ(Mat A, const PetscScalar **values)
2373: {
2374:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

2376:   PetscFunctionBegin;
2377:   PetscCall(MatInvertBlockDiagonal(a->A, values));
2378:   A->factorerrortype             = a->A->factorerrortype;
2379:   A->factorerror_zeropivot_value = a->A->factorerror_zeropivot_value;
2380:   A->factorerror_zeropivot_row   = a->A->factorerror_zeropivot_row;
2381:   PetscFunctionReturn(PETSC_SUCCESS);
2382: }

2384: static PetscErrorCode MatShift_MPIBAIJ(Mat Y, PetscScalar a)
2385: {
2386:   Mat_MPIBAIJ *maij = (Mat_MPIBAIJ *)Y->data;
2387:   Mat_SeqBAIJ *aij  = (Mat_SeqBAIJ *)maij->A->data;

2389:   PetscFunctionBegin;
2390:   if (!Y->preallocated) {
2391:     PetscCall(MatMPIBAIJSetPreallocation(Y, Y->rmap->bs, 1, NULL, 0, NULL));
2392:   } else if (!aij->nz) {
2393:     PetscInt nonew = aij->nonew;
2394:     PetscCall(MatSeqBAIJSetPreallocation(maij->A, Y->rmap->bs, 1, NULL));
2395:     aij->nonew = nonew;
2396:   }
2397:   PetscCall(MatShift_Basic(Y, a));
2398:   PetscFunctionReturn(PETSC_SUCCESS);
2399: }

2401: static PetscErrorCode MatMissingDiagonal_MPIBAIJ(Mat A, PetscBool *missing, PetscInt *d)
2402: {
2403:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

2405:   PetscFunctionBegin;
2406:   PetscCheck(A->rmap->n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only works for square matrices");
2407:   PetscCall(MatMissingDiagonal(a->A, missing, d));
2408:   if (d) {
2409:     PetscInt rstart;
2410:     PetscCall(MatGetOwnershipRange(A, &rstart, NULL));
2411:     *d += rstart / A->rmap->bs;
2412:   }
2413:   PetscFunctionReturn(PETSC_SUCCESS);
2414: }

2416: static PetscErrorCode MatGetDiagonalBlock_MPIBAIJ(Mat A, Mat *a)
2417: {
2418:   PetscFunctionBegin;
2419:   *a = ((Mat_MPIBAIJ *)A->data)->A;
2420:   PetscFunctionReturn(PETSC_SUCCESS);
2421: }

2423: static PetscErrorCode MatEliminateZeros_MPIBAIJ(Mat A, PetscBool keep)
2424: {
2425:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

2427:   PetscFunctionBegin;
2428:   PetscCall(MatEliminateZeros_SeqBAIJ(a->A, keep));        // possibly keep zero diagonal coefficients
2429:   PetscCall(MatEliminateZeros_SeqBAIJ(a->B, PETSC_FALSE)); // never keep zero diagonal coefficients
2430:   PetscFunctionReturn(PETSC_SUCCESS);
2431: }

2433: static struct _MatOps MatOps_Values = {MatSetValues_MPIBAIJ,
2434:                                        MatGetRow_MPIBAIJ,
2435:                                        MatRestoreRow_MPIBAIJ,
2436:                                        MatMult_MPIBAIJ,
2437:                                        /* 4*/ MatMultAdd_MPIBAIJ,
2438:                                        MatMultTranspose_MPIBAIJ,
2439:                                        MatMultTransposeAdd_MPIBAIJ,
2440:                                        NULL,
2441:                                        NULL,
2442:                                        NULL,
2443:                                        /*10*/ NULL,
2444:                                        NULL,
2445:                                        NULL,
2446:                                        MatSOR_MPIBAIJ,
2447:                                        MatTranspose_MPIBAIJ,
2448:                                        /*15*/ MatGetInfo_MPIBAIJ,
2449:                                        MatEqual_MPIBAIJ,
2450:                                        MatGetDiagonal_MPIBAIJ,
2451:                                        MatDiagonalScale_MPIBAIJ,
2452:                                        MatNorm_MPIBAIJ,
2453:                                        /*20*/ MatAssemblyBegin_MPIBAIJ,
2454:                                        MatAssemblyEnd_MPIBAIJ,
2455:                                        MatSetOption_MPIBAIJ,
2456:                                        MatZeroEntries_MPIBAIJ,
2457:                                        /*24*/ MatZeroRows_MPIBAIJ,
2458:                                        NULL,
2459:                                        NULL,
2460:                                        NULL,
2461:                                        NULL,
2462:                                        /*29*/ MatSetUp_MPI_Hash,
2463:                                        NULL,
2464:                                        NULL,
2465:                                        MatGetDiagonalBlock_MPIBAIJ,
2466:                                        NULL,
2467:                                        /*34*/ MatDuplicate_MPIBAIJ,
2468:                                        NULL,
2469:                                        NULL,
2470:                                        NULL,
2471:                                        NULL,
2472:                                        /*39*/ MatAXPY_MPIBAIJ,
2473:                                        MatCreateSubMatrices_MPIBAIJ,
2474:                                        MatIncreaseOverlap_MPIBAIJ,
2475:                                        MatGetValues_MPIBAIJ,
2476:                                        MatCopy_MPIBAIJ,
2477:                                        /*44*/ NULL,
2478:                                        MatScale_MPIBAIJ,
2479:                                        MatShift_MPIBAIJ,
2480:                                        NULL,
2481:                                        MatZeroRowsColumns_MPIBAIJ,
2482:                                        /*49*/ NULL,
2483:                                        NULL,
2484:                                        NULL,
2485:                                        NULL,
2486:                                        NULL,
2487:                                        /*54*/ MatFDColoringCreate_MPIXAIJ,
2488:                                        NULL,
2489:                                        MatSetUnfactored_MPIBAIJ,
2490:                                        MatPermute_MPIBAIJ,
2491:                                        MatSetValuesBlocked_MPIBAIJ,
2492:                                        /*59*/ MatCreateSubMatrix_MPIBAIJ,
2493:                                        MatDestroy_MPIBAIJ,
2494:                                        MatView_MPIBAIJ,
2495:                                        NULL,
2496:                                        NULL,
2497:                                        /*64*/ NULL,
2498:                                        NULL,
2499:                                        NULL,
2500:                                        NULL,
2501:                                        NULL,
2502:                                        /*69*/ MatGetRowMaxAbs_MPIBAIJ,
2503:                                        NULL,
2504:                                        NULL,
2505:                                        NULL,
2506:                                        NULL,
2507:                                        /*74*/ NULL,
2508:                                        MatFDColoringApply_BAIJ,
2509:                                        NULL,
2510:                                        NULL,
2511:                                        NULL,
2512:                                        /*79*/ NULL,
2513:                                        NULL,
2514:                                        NULL,
2515:                                        NULL,
2516:                                        MatLoad_MPIBAIJ,
2517:                                        /*84*/ NULL,
2518:                                        NULL,
2519:                                        NULL,
2520:                                        NULL,
2521:                                        NULL,
2522:                                        /*89*/ NULL,
2523:                                        NULL,
2524:                                        NULL,
2525:                                        NULL,
2526:                                        NULL,
2527:                                        /*94*/ NULL,
2528:                                        NULL,
2529:                                        NULL,
2530:                                        NULL,
2531:                                        NULL,
2532:                                        /*99*/ NULL,
2533:                                        NULL,
2534:                                        NULL,
2535:                                        MatConjugate_MPIBAIJ,
2536:                                        NULL,
2537:                                        /*104*/ NULL,
2538:                                        MatRealPart_MPIBAIJ,
2539:                                        MatImaginaryPart_MPIBAIJ,
2540:                                        NULL,
2541:                                        NULL,
2542:                                        /*109*/ NULL,
2543:                                        NULL,
2544:                                        NULL,
2545:                                        NULL,
2546:                                        MatMissingDiagonal_MPIBAIJ,
2547:                                        /*114*/ MatGetSeqNonzeroStructure_MPIBAIJ,
2548:                                        NULL,
2549:                                        MatGetGhosts_MPIBAIJ,
2550:                                        NULL,
2551:                                        NULL,
2552:                                        /*119*/ NULL,
2553:                                        NULL,
2554:                                        NULL,
2555:                                        NULL,
2556:                                        MatGetMultiProcBlock_MPIBAIJ,
2557:                                        /*124*/ NULL,
2558:                                        MatGetColumnReductions_MPIBAIJ,
2559:                                        MatInvertBlockDiagonal_MPIBAIJ,
2560:                                        NULL,
2561:                                        NULL,
2562:                                        /*129*/ NULL,
2563:                                        NULL,
2564:                                        NULL,
2565:                                        NULL,
2566:                                        NULL,
2567:                                        /*134*/ NULL,
2568:                                        NULL,
2569:                                        NULL,
2570:                                        NULL,
2571:                                        NULL,
2572:                                        /*139*/ MatSetBlockSizes_Default,
2573:                                        NULL,
2574:                                        NULL,
2575:                                        MatFDColoringSetUp_MPIXAIJ,
2576:                                        NULL,
2577:                                        /*144*/ MatCreateMPIMatConcatenateSeqMat_MPIBAIJ,
2578:                                        NULL,
2579:                                        NULL,
2580:                                        NULL,
2581:                                        NULL,
2582:                                        NULL,
2583:                                        /*150*/ NULL,
2584:                                        MatEliminateZeros_MPIBAIJ,
2585:                                        MatGetRowSumAbs_MPIBAIJ};

2587: PETSC_INTERN PetscErrorCode MatConvert_MPIBAIJ_MPISBAIJ(Mat, MatType, MatReuse, Mat *);
2588: PETSC_INTERN PetscErrorCode MatConvert_XAIJ_IS(Mat, MatType, MatReuse, Mat *);

2590: static PetscErrorCode MatMPIBAIJSetPreallocationCSR_MPIBAIJ(Mat B, PetscInt bs, const PetscInt ii[], const PetscInt jj[], const PetscScalar V[])
2591: {
2592:   PetscInt        m, rstart, cstart, cend;
2593:   PetscInt        i, j, dlen, olen, nz, nz_max = 0, *d_nnz = NULL, *o_nnz = NULL;
2594:   const PetscInt *JJ          = NULL;
2595:   PetscScalar    *values      = NULL;
2596:   PetscBool       roworiented = ((Mat_MPIBAIJ *)B->data)->roworiented;
2597:   PetscBool       nooffprocentries;

2599:   PetscFunctionBegin;
2600:   PetscCall(PetscLayoutSetBlockSize(B->rmap, bs));
2601:   PetscCall(PetscLayoutSetBlockSize(B->cmap, bs));
2602:   PetscCall(PetscLayoutSetUp(B->rmap));
2603:   PetscCall(PetscLayoutSetUp(B->cmap));
2604:   PetscCall(PetscLayoutGetBlockSize(B->rmap, &bs));
2605:   m      = B->rmap->n / bs;
2606:   rstart = B->rmap->rstart / bs;
2607:   cstart = B->cmap->rstart / bs;
2608:   cend   = B->cmap->rend / bs;

2610:   PetscCheck(!ii[0], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "ii[0] must be 0 but it is %" PetscInt_FMT, ii[0]);
2611:   PetscCall(PetscMalloc2(m, &d_nnz, m, &o_nnz));
2612:   for (i = 0; i < m; i++) {
2613:     nz = ii[i + 1] - ii[i];
2614:     PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Local row %" PetscInt_FMT " has a negative number of columns %" PetscInt_FMT, i, nz);
2615:     nz_max = PetscMax(nz_max, nz);
2616:     dlen   = 0;
2617:     olen   = 0;
2618:     JJ     = jj + ii[i];
2619:     for (j = 0; j < nz; j++) {
2620:       if (*JJ < cstart || *JJ >= cend) olen++;
2621:       else dlen++;
2622:       JJ++;
2623:     }
2624:     d_nnz[i] = dlen;
2625:     o_nnz[i] = olen;
2626:   }
2627:   PetscCall(MatMPIBAIJSetPreallocation(B, bs, 0, d_nnz, 0, o_nnz));
2628:   PetscCall(PetscFree2(d_nnz, o_nnz));

2630:   values = (PetscScalar *)V;
2631:   if (!values) PetscCall(PetscCalloc1(bs * bs * nz_max, &values));
2632:   for (i = 0; i < m; i++) {
2633:     PetscInt        row   = i + rstart;
2634:     PetscInt        ncols = ii[i + 1] - ii[i];
2635:     const PetscInt *icols = jj + ii[i];
2636:     if (bs == 1 || !roworiented) { /* block ordering matches the non-nested layout of MatSetValues so we can insert entire rows */
2637:       const PetscScalar *svals = values + (V ? (bs * bs * ii[i]) : 0);
2638:       PetscCall(MatSetValuesBlocked_MPIBAIJ(B, 1, &row, ncols, icols, svals, INSERT_VALUES));
2639:     } else { /* block ordering does not match so we can only insert one block at a time. */
2640:       PetscInt j;
2641:       for (j = 0; j < ncols; j++) {
2642:         const PetscScalar *svals = values + (V ? (bs * bs * (ii[i] + j)) : 0);
2643:         PetscCall(MatSetValuesBlocked_MPIBAIJ(B, 1, &row, 1, &icols[j], svals, INSERT_VALUES));
2644:       }
2645:     }
2646:   }

2648:   if (!V) PetscCall(PetscFree(values));
2649:   nooffprocentries    = B->nooffprocentries;
2650:   B->nooffprocentries = PETSC_TRUE;
2651:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
2652:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
2653:   B->nooffprocentries = nooffprocentries;

2655:   PetscCall(MatSetOption(B, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
2656:   PetscFunctionReturn(PETSC_SUCCESS);
2657: }

2659: /*@C
2660:   MatMPIBAIJSetPreallocationCSR - Creates a sparse parallel matrix in `MATBAIJ` format using the given nonzero structure and (optional) numerical values

2662:   Collective

2664:   Input Parameters:
2665: + B  - the matrix
2666: . bs - the block size
2667: . i  - the indices into `j` for the start of each local row (starts with zero)
2668: . j  - the column indices for each local row (starts with zero) these must be sorted for each row
2669: - v  - optional values in the matrix, use `NULL` if not provided

2671:   Level: advanced

2673:   Notes:
2674:   The `i`, `j`, and `v` arrays ARE copied by this routine into the internal format used by PETSc;
2675:   thus you CANNOT change the matrix entries by changing the values of `v` after you have
2676:   called this routine.

2678:   The order of the entries in values is specified by the `MatOption` `MAT_ROW_ORIENTED`.  For example, C programs
2679:   may want to use the default `MAT_ROW_ORIENTED` with value `PETSC_TRUE` and use an array v[nnz][bs][bs] where the second index is
2680:   over rows within a block and the last index is over columns within a block row.  Fortran programs will likely set
2681:   `MAT_ROW_ORIENTED` with value `PETSC_FALSE` and use a Fortran array v(bs,bs,nnz) in which the first index is over rows within a
2682:   block column and the second index is over columns within a block.

2684:   Though this routine has Preallocation() in the name it also sets the exact nonzero locations of the matrix entries and usually the numerical values as well

2686: .seealso: `Mat`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatMPIBAIJSetPreallocation()`, `MatCreateAIJ()`, `MATMPIAIJ`, `MatCreateMPIBAIJWithArrays()`, `MATMPIBAIJ`
2687: @*/
2688: PetscErrorCode MatMPIBAIJSetPreallocationCSR(Mat B, PetscInt bs, const PetscInt i[], const PetscInt j[], const PetscScalar v[])
2689: {
2690:   PetscFunctionBegin;
2694:   PetscTryMethod(B, "MatMPIBAIJSetPreallocationCSR_C", (Mat, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[]), (B, bs, i, j, v));
2695:   PetscFunctionReturn(PETSC_SUCCESS);
2696: }

2698: PetscErrorCode MatMPIBAIJSetPreallocation_MPIBAIJ(Mat B, PetscInt bs, PetscInt d_nz, const PetscInt *d_nnz, PetscInt o_nz, const PetscInt *o_nnz)
2699: {
2700:   Mat_MPIBAIJ *b = (Mat_MPIBAIJ *)B->data;
2701:   PetscInt     i;
2702:   PetscMPIInt  size;

2704:   PetscFunctionBegin;
2705:   if (B->hash_active) {
2706:     B->ops[0]      = b->cops;
2707:     B->hash_active = PETSC_FALSE;
2708:   }
2709:   if (!B->preallocated) PetscCall(MatStashCreate_Private(PetscObjectComm((PetscObject)B), bs, &B->bstash));
2710:   PetscCall(MatSetBlockSize(B, PetscAbs(bs)));
2711:   PetscCall(PetscLayoutSetUp(B->rmap));
2712:   PetscCall(PetscLayoutSetUp(B->cmap));
2713:   PetscCall(PetscLayoutGetBlockSize(B->rmap, &bs));

2715:   if (d_nnz) {
2716:     for (i = 0; i < B->rmap->n / bs; i++) PetscCheck(d_nnz[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "d_nnz cannot be less than -1: local row %" PetscInt_FMT " value %" PetscInt_FMT, i, d_nnz[i]);
2717:   }
2718:   if (o_nnz) {
2719:     for (i = 0; i < B->rmap->n / bs; i++) PetscCheck(o_nnz[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "o_nnz cannot be less than -1: local row %" PetscInt_FMT " value %" PetscInt_FMT, i, o_nnz[i]);
2720:   }

2722:   b->bs2 = bs * bs;
2723:   b->mbs = B->rmap->n / bs;
2724:   b->nbs = B->cmap->n / bs;
2725:   b->Mbs = B->rmap->N / bs;
2726:   b->Nbs = B->cmap->N / bs;

2728:   for (i = 0; i <= b->size; i++) b->rangebs[i] = B->rmap->range[i] / bs;
2729:   b->rstartbs = B->rmap->rstart / bs;
2730:   b->rendbs   = B->rmap->rend / bs;
2731:   b->cstartbs = B->cmap->rstart / bs;
2732:   b->cendbs   = B->cmap->rend / bs;

2734: #if defined(PETSC_USE_CTABLE)
2735:   PetscCall(PetscHMapIDestroy(&b->colmap));
2736: #else
2737:   PetscCall(PetscFree(b->colmap));
2738: #endif
2739:   PetscCall(PetscFree(b->garray));
2740:   PetscCall(VecDestroy(&b->lvec));
2741:   PetscCall(VecScatterDestroy(&b->Mvctx));

2743:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &size));

2745:   MatSeqXAIJGetOptions_Private(b->B);
2746:   PetscCall(MatDestroy(&b->B));
2747:   PetscCall(MatCreate(PETSC_COMM_SELF, &b->B));
2748:   PetscCall(MatSetSizes(b->B, B->rmap->n, size > 1 ? B->cmap->N : 0, B->rmap->n, size > 1 ? B->cmap->N : 0));
2749:   PetscCall(MatSetType(b->B, MATSEQBAIJ));
2750:   MatSeqXAIJRestoreOptions_Private(b->B);

2752:   MatSeqXAIJGetOptions_Private(b->A);
2753:   PetscCall(MatDestroy(&b->A));
2754:   PetscCall(MatCreate(PETSC_COMM_SELF, &b->A));
2755:   PetscCall(MatSetSizes(b->A, B->rmap->n, B->cmap->n, B->rmap->n, B->cmap->n));
2756:   PetscCall(MatSetType(b->A, MATSEQBAIJ));
2757:   MatSeqXAIJRestoreOptions_Private(b->A);

2759:   PetscCall(MatSeqBAIJSetPreallocation(b->A, bs, d_nz, d_nnz));
2760:   PetscCall(MatSeqBAIJSetPreallocation(b->B, bs, o_nz, o_nnz));
2761:   B->preallocated  = PETSC_TRUE;
2762:   B->was_assembled = PETSC_FALSE;
2763:   B->assembled     = PETSC_FALSE;
2764:   PetscFunctionReturn(PETSC_SUCCESS);
2765: }

2767: extern PetscErrorCode MatDiagonalScaleLocal_MPIBAIJ(Mat, Vec);
2768: extern PetscErrorCode MatSetHashTableFactor_MPIBAIJ(Mat, PetscReal);

2770: PETSC_INTERN PetscErrorCode MatConvert_MPIBAIJ_MPIAdj(Mat B, MatType newtype, MatReuse reuse, Mat *adj)
2771: {
2772:   Mat_MPIBAIJ    *b = (Mat_MPIBAIJ *)B->data;
2773:   Mat_SeqBAIJ    *d = (Mat_SeqBAIJ *)b->A->data, *o = (Mat_SeqBAIJ *)b->B->data;
2774:   PetscInt        M = B->rmap->n / B->rmap->bs, i, *ii, *jj, cnt, j, k, rstart = B->rmap->rstart / B->rmap->bs;
2775:   const PetscInt *id = d->i, *jd = d->j, *io = o->i, *jo = o->j, *garray = b->garray;

2777:   PetscFunctionBegin;
2778:   PetscCall(PetscMalloc1(M + 1, &ii));
2779:   ii[0] = 0;
2780:   for (i = 0; i < M; i++) {
2781:     PetscCheck((id[i + 1] - id[i]) >= 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Indices wrong %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT, i, id[i], id[i + 1]);
2782:     PetscCheck((io[i + 1] - io[i]) >= 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Indices wrong %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT, i, io[i], io[i + 1]);
2783:     ii[i + 1] = ii[i] + id[i + 1] - id[i] + io[i + 1] - io[i];
2784:     /* remove one from count of matrix has diagonal */
2785:     for (j = id[i]; j < id[i + 1]; j++) {
2786:       if (jd[j] == i) {
2787:         ii[i + 1]--;
2788:         break;
2789:       }
2790:     }
2791:   }
2792:   PetscCall(PetscMalloc1(ii[M], &jj));
2793:   cnt = 0;
2794:   for (i = 0; i < M; i++) {
2795:     for (j = io[i]; j < io[i + 1]; j++) {
2796:       if (garray[jo[j]] > rstart) break;
2797:       jj[cnt++] = garray[jo[j]];
2798:     }
2799:     for (k = id[i]; k < id[i + 1]; k++) {
2800:       if (jd[k] != i) jj[cnt++] = rstart + jd[k];
2801:     }
2802:     for (; j < io[i + 1]; j++) jj[cnt++] = garray[jo[j]];
2803:   }
2804:   PetscCall(MatCreateMPIAdj(PetscObjectComm((PetscObject)B), M, B->cmap->N / B->rmap->bs, ii, jj, NULL, adj));
2805:   PetscFunctionReturn(PETSC_SUCCESS);
2806: }

2808: #include <../src/mat/impls/aij/mpi/mpiaij.h>

2810: PETSC_INTERN PetscErrorCode MatConvert_SeqBAIJ_SeqAIJ(Mat, MatType, MatReuse, Mat *);

2812: PETSC_INTERN PetscErrorCode MatConvert_MPIBAIJ_MPIAIJ(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
2813: {
2814:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;
2815:   Mat_MPIAIJ  *b;
2816:   Mat          B;

2818:   PetscFunctionBegin;
2819:   PetscCheck(A->assembled, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Matrix must be assembled");

2821:   if (reuse == MAT_REUSE_MATRIX) {
2822:     B = *newmat;
2823:   } else {
2824:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
2825:     PetscCall(MatSetType(B, MATMPIAIJ));
2826:     PetscCall(MatSetSizes(B, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
2827:     PetscCall(MatSetBlockSizes(B, A->rmap->bs, A->cmap->bs));
2828:     PetscCall(MatSeqAIJSetPreallocation(B, 0, NULL));
2829:     PetscCall(MatMPIAIJSetPreallocation(B, 0, NULL, 0, NULL));
2830:   }
2831:   b = (Mat_MPIAIJ *)B->data;

2833:   if (reuse == MAT_REUSE_MATRIX) {
2834:     PetscCall(MatConvert_SeqBAIJ_SeqAIJ(a->A, MATSEQAIJ, MAT_REUSE_MATRIX, &b->A));
2835:     PetscCall(MatConvert_SeqBAIJ_SeqAIJ(a->B, MATSEQAIJ, MAT_REUSE_MATRIX, &b->B));
2836:   } else {
2837:     PetscInt   *garray = a->garray;
2838:     Mat_SeqAIJ *bB;
2839:     PetscInt    bs, nnz;
2840:     PetscCall(MatDestroy(&b->A));
2841:     PetscCall(MatDestroy(&b->B));
2842:     /* just clear out the data structure */
2843:     PetscCall(MatDisAssemble_MPIAIJ(B));
2844:     PetscCall(MatConvert_SeqBAIJ_SeqAIJ(a->A, MATSEQAIJ, MAT_INITIAL_MATRIX, &b->A));
2845:     PetscCall(MatConvert_SeqBAIJ_SeqAIJ(a->B, MATSEQAIJ, MAT_INITIAL_MATRIX, &b->B));

2847:     /* Global numbering for b->B columns */
2848:     bB  = (Mat_SeqAIJ *)b->B->data;
2849:     bs  = A->rmap->bs;
2850:     nnz = bB->i[A->rmap->n];
2851:     for (PetscInt k = 0; k < nnz; k++) {
2852:       PetscInt bj = bB->j[k] / bs;
2853:       PetscInt br = bB->j[k] % bs;
2854:       bB->j[k]    = garray[bj] * bs + br;
2855:     }
2856:   }
2857:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
2858:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));

2860:   if (reuse == MAT_INPLACE_MATRIX) {
2861:     PetscCall(MatHeaderReplace(A, &B));
2862:   } else {
2863:     *newmat = B;
2864:   }
2865:   PetscFunctionReturn(PETSC_SUCCESS);
2866: }

2868: /*MC
2869:    MATMPIBAIJ - MATMPIBAIJ = "mpibaij" - A matrix type to be used for distributed block sparse matrices.

2871:    Options Database Keys:
2872: + -mat_type mpibaij - sets the matrix type to `MATMPIBAIJ` during a call to `MatSetFromOptions()`
2873: . -mat_block_size <bs> - set the blocksize used to store the matrix
2874: . -mat_baij_mult_version version - indicate the version of the matrix-vector product to use  (0 often indicates using BLAS)
2875: - -mat_use_hash_table <fact> - set hash table factor

2877:    Level: beginner

2879:    Note:
2880:     `MatSetOption(A, MAT_STRUCTURE_ONLY, PETSC_TRUE)` may be called for this matrix type. In this no
2881:     space is allocated for the nonzero entries and any entries passed with `MatSetValues()` are ignored

2883: .seealso: `Mat`, `MATBAIJ`, `MATSEQBAIJ`, `MatCreateBAIJ`
2884: M*/

2886: PETSC_INTERN PetscErrorCode MatConvert_MPIBAIJ_MPIBSTRM(Mat, MatType, MatReuse, Mat *);

2888: PETSC_EXTERN PetscErrorCode MatCreate_MPIBAIJ(Mat B)
2889: {
2890:   Mat_MPIBAIJ *b;
2891:   PetscBool    flg = PETSC_FALSE;

2893:   PetscFunctionBegin;
2894:   PetscCall(PetscNew(&b));
2895:   B->data      = (void *)b;
2896:   B->ops[0]    = MatOps_Values;
2897:   B->assembled = PETSC_FALSE;

2899:   B->insertmode = NOT_SET_VALUES;
2900:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)B), &b->rank));
2901:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &b->size));

2903:   /* build local table of row and column ownerships */
2904:   PetscCall(PetscMalloc1(b->size + 1, &b->rangebs));

2906:   /* build cache for off array entries formed */
2907:   PetscCall(MatStashCreate_Private(PetscObjectComm((PetscObject)B), 1, &B->stash));

2909:   b->donotstash  = PETSC_FALSE;
2910:   b->colmap      = NULL;
2911:   b->garray      = NULL;
2912:   b->roworiented = PETSC_TRUE;

2914:   /* stuff used in block assembly */
2915:   b->barray = NULL;

2917:   /* stuff used for matrix vector multiply */
2918:   b->lvec  = NULL;
2919:   b->Mvctx = NULL;

2921:   /* stuff for MatGetRow() */
2922:   b->rowindices   = NULL;
2923:   b->rowvalues    = NULL;
2924:   b->getrowactive = PETSC_FALSE;

2926:   /* hash table stuff */
2927:   b->ht           = NULL;
2928:   b->hd           = NULL;
2929:   b->ht_size      = 0;
2930:   b->ht_flag      = PETSC_FALSE;
2931:   b->ht_fact      = 0;
2932:   b->ht_total_ct  = 0;
2933:   b->ht_insert_ct = 0;

2935:   /* stuff for MatCreateSubMatrices_MPIBAIJ_local() */
2936:   b->ijonly = PETSC_FALSE;

2938:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpibaij_mpiadj_C", MatConvert_MPIBAIJ_MPIAdj));
2939:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpibaij_mpiaij_C", MatConvert_MPIBAIJ_MPIAIJ));
2940:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpibaij_mpisbaij_C", MatConvert_MPIBAIJ_MPISBAIJ));
2941: #if defined(PETSC_HAVE_HYPRE)
2942:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpibaij_hypre_C", MatConvert_AIJ_HYPRE));
2943: #endif
2944:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatStoreValues_C", MatStoreValues_MPIBAIJ));
2945:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatRetrieveValues_C", MatRetrieveValues_MPIBAIJ));
2946:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMPIBAIJSetPreallocation_C", MatMPIBAIJSetPreallocation_MPIBAIJ));
2947:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMPIBAIJSetPreallocationCSR_C", MatMPIBAIJSetPreallocationCSR_MPIBAIJ));
2948:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDiagonalScaleLocal_C", MatDiagonalScaleLocal_MPIBAIJ));
2949:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSetHashTableFactor_C", MatSetHashTableFactor_MPIBAIJ));
2950:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpibaij_is_C", MatConvert_XAIJ_IS));
2951:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATMPIBAIJ));

2953:   PetscOptionsBegin(PetscObjectComm((PetscObject)B), NULL, "Options for loading MPIBAIJ matrix 1", "Mat");
2954:   PetscCall(PetscOptionsName("-mat_use_hash_table", "Use hash table to save time in constructing matrix", "MatSetOption", &flg));
2955:   if (flg) {
2956:     PetscReal fact = 1.39;
2957:     PetscCall(MatSetOption(B, MAT_USE_HASH_TABLE, PETSC_TRUE));
2958:     PetscCall(PetscOptionsReal("-mat_use_hash_table", "Use hash table factor", "MatMPIBAIJSetHashTableFactor", fact, &fact, NULL));
2959:     if (fact <= 1.0) fact = 1.39;
2960:     PetscCall(MatMPIBAIJSetHashTableFactor(B, fact));
2961:     PetscCall(PetscInfo(B, "Hash table Factor used %5.2g\n", (double)fact));
2962:   }
2963:   PetscOptionsEnd();
2964:   PetscFunctionReturn(PETSC_SUCCESS);
2965: }

2967: // PetscClangLinter pragma disable: -fdoc-section-header-unknown
2968: /*MC
2969:    MATBAIJ - MATBAIJ = "baij" - A matrix type to be used for block sparse matrices.

2971:    This matrix type is identical to `MATSEQBAIJ` when constructed with a single process communicator,
2972:    and `MATMPIBAIJ` otherwise.

2974:    Options Database Keys:
2975: . -mat_type baij - sets the matrix type to `MATBAIJ` during a call to `MatSetFromOptions()`

2977:   Level: beginner

2979: .seealso: `Mat`, `MatCreateBAIJ()`, `MATSEQBAIJ`, `MATMPIBAIJ`, `MatMPIBAIJSetPreallocation()`, `MatMPIBAIJSetPreallocationCSR()`
2980: M*/

2982: /*@C
2983:   MatMPIBAIJSetPreallocation - Allocates memory for a sparse parallel matrix in `MATMPIBAIJ` format
2984:   (block compressed row).

2986:   Collective

2988:   Input Parameters:
2989: + B     - the matrix
2990: . bs    - size of block, the blocks are ALWAYS square. One can use `MatSetBlockSizes()` to set a different row and column blocksize but the row
2991:           blocksize always defines the size of the blocks. The column blocksize sets the blocksize of the vectors obtained with `MatCreateVecs()`
2992: . d_nz  - number of block nonzeros per block row in diagonal portion of local
2993:            submatrix  (same for all local rows)
2994: . d_nnz - array containing the number of block nonzeros in the various block rows
2995:            of the in diagonal portion of the local (possibly different for each block
2996:            row) or `NULL`.  If you plan to factor the matrix you must leave room for the diagonal entry and
2997:            set it even if it is zero.
2998: . o_nz  - number of block nonzeros per block row in the off-diagonal portion of local
2999:            submatrix (same for all local rows).
3000: - o_nnz - array containing the number of nonzeros in the various block rows of the
3001:            off-diagonal portion of the local submatrix (possibly different for
3002:            each block row) or `NULL`.

3004:    If the *_nnz parameter is given then the *_nz parameter is ignored

3006:   Options Database Keys:
3007: + -mat_block_size            - size of the blocks to use
3008: - -mat_use_hash_table <fact> - set hash table factor

3010:   Level: intermediate

3012:   Notes:
3013:   For good matrix assembly performance
3014:   the user should preallocate the matrix storage by setting the parameters
3015:   `d_nz` (or `d_nnz`) and `o_nz` (or `o_nnz`).  By setting these parameters accurately,
3016:   performance can be increased by more than a factor of 50.

3018:   If `PETSC_DECIDE` or  `PETSC_DETERMINE` is used for a particular argument on one processor
3019:   than it must be used on all processors that share the object for that argument.

3021:   Storage Information:
3022:   For a square global matrix we define each processor's diagonal portion
3023:   to be its local rows and the corresponding columns (a square submatrix);
3024:   each processor's off-diagonal portion encompasses the remainder of the
3025:   local matrix (a rectangular submatrix).

3027:   The user can specify preallocated storage for the diagonal part of
3028:   the local submatrix with either `d_nz` or `d_nnz` (not both).  Set
3029:   `d_nz` = `PETSC_DEFAULT` and `d_nnz` = `NULL` for PETSc to control dynamic
3030:   memory allocation.  Likewise, specify preallocated storage for the
3031:   off-diagonal part of the local submatrix with `o_nz` or `o_nnz` (not both).

3033:   Consider a processor that owns rows 3, 4 and 5 of a parallel matrix. In
3034:   the figure below we depict these three local rows and all columns (0-11).

3036: .vb
3037:            0 1 2 3 4 5 6 7 8 9 10 11
3038:           --------------------------
3039:    row 3  |o o o d d d o o o o  o  o
3040:    row 4  |o o o d d d o o o o  o  o
3041:    row 5  |o o o d d d o o o o  o  o
3042:           --------------------------
3043: .ve

3045:   Thus, any entries in the d locations are stored in the d (diagonal)
3046:   submatrix, and any entries in the o locations are stored in the
3047:   o (off-diagonal) submatrix.  Note that the d and the o submatrices are
3048:   stored simply in the `MATSEQBAIJ` format for compressed row storage.

3050:   Now `d_nz` should indicate the number of block nonzeros per row in the d matrix,
3051:   and `o_nz` should indicate the number of block nonzeros per row in the o matrix.
3052:   In general, for PDE problems in which most nonzeros are near the diagonal,
3053:   one expects `d_nz` >> `o_nz`.

3055:   You can call `MatGetInfo()` to get information on how effective the preallocation was;
3056:   for example the fields mallocs,nz_allocated,nz_used,nz_unneeded;
3057:   You can also run with the option `-info` and look for messages with the string
3058:   malloc in them to see if additional memory allocation was needed.

3060: .seealso: `Mat`, `MATMPIBAIJ`, `MatCreate()`, `MatCreateSeqBAIJ()`, `MatSetValues()`, `MatCreateBAIJ()`, `MatMPIBAIJSetPreallocationCSR()`, `PetscSplitOwnership()`
3061: @*/
3062: PetscErrorCode MatMPIBAIJSetPreallocation(Mat B, PetscInt bs, PetscInt d_nz, const PetscInt d_nnz[], PetscInt o_nz, const PetscInt o_nnz[])
3063: {
3064:   PetscFunctionBegin;
3068:   PetscTryMethod(B, "MatMPIBAIJSetPreallocation_C", (Mat, PetscInt, PetscInt, const PetscInt[], PetscInt, const PetscInt[]), (B, bs, d_nz, d_nnz, o_nz, o_nnz));
3069:   PetscFunctionReturn(PETSC_SUCCESS);
3070: }

3072: // PetscClangLinter pragma disable: -fdoc-section-header-unknown
3073: /*@C
3074:   MatCreateBAIJ - Creates a sparse parallel matrix in `MATBAIJ` format
3075:   (block compressed row).

3077:   Collective

3079:   Input Parameters:
3080: + comm  - MPI communicator
3081: . bs    - size of block, the blocks are ALWAYS square. One can use `MatSetBlockSizes()` to set a different row and column blocksize but the row
3082:           blocksize always defines the size of the blocks. The column blocksize sets the blocksize of the vectors obtained with `MatCreateVecs()`
3083: . m     - number of local rows (or `PETSC_DECIDE` to have calculated if M is given)
3084:            This value should be the same as the local size used in creating the
3085:            y vector for the matrix-vector product y = Ax.
3086: . n     - number of local columns (or `PETSC_DECIDE` to have calculated if N is given)
3087:            This value should be the same as the local size used in creating the
3088:            x vector for the matrix-vector product y = Ax.
3089: . M     - number of global rows (or `PETSC_DETERMINE` to have calculated if m is given)
3090: . N     - number of global columns (or `PETSC_DETERMINE` to have calculated if n is given)
3091: . d_nz  - number of nonzero blocks per block row in diagonal portion of local
3092:            submatrix  (same for all local rows)
3093: . d_nnz - array containing the number of nonzero blocks in the various block rows
3094:            of the in diagonal portion of the local (possibly different for each block
3095:            row) or NULL.  If you plan to factor the matrix you must leave room for the diagonal entry
3096:            and set it even if it is zero.
3097: . o_nz  - number of nonzero blocks per block row in the off-diagonal portion of local
3098:            submatrix (same for all local rows).
3099: - o_nnz - array containing the number of nonzero blocks in the various block rows of the
3100:            off-diagonal portion of the local submatrix (possibly different for
3101:            each block row) or NULL.

3103:   Output Parameter:
3104: . A - the matrix

3106:   Options Database Keys:
3107: + -mat_block_size            - size of the blocks to use
3108: - -mat_use_hash_table <fact> - set hash table factor

3110:   Level: intermediate

3112:   Notes:
3113:   It is recommended that one use `MatCreateFromOptions()` or the `MatCreate()`, `MatSetType()` and/or `MatSetFromOptions()`,
3114:   MatXXXXSetPreallocation() paradigm instead of this routine directly.
3115:   [MatXXXXSetPreallocation() is, for example, `MatSeqBAIJSetPreallocation()`]

3117:   For good matrix assembly performance
3118:   the user should preallocate the matrix storage by setting the parameters
3119:   `d_nz` (or `d_nnz`) and `o_nz` (or `o_nnz`).  By setting these parameters accurately,
3120:   performance can be increased by more than a factor of 50.

3122:   If the *_nnz parameter is given then the *_nz parameter is ignored

3124:   A nonzero block is any block that as 1 or more nonzeros in it

3126:   The user MUST specify either the local or global matrix dimensions
3127:   (possibly both).

3129:   If `PETSC_DECIDE` or  `PETSC_DETERMINE` is used for a particular argument on one processor
3130:   than it must be used on all processors that share the object for that argument.

3132:   Storage Information:
3133:   For a square global matrix we define each processor's diagonal portion
3134:   to be its local rows and the corresponding columns (a square submatrix);
3135:   each processor's off-diagonal portion encompasses the remainder of the
3136:   local matrix (a rectangular submatrix).

3138:   The user can specify preallocated storage for the diagonal part of
3139:   the local submatrix with either d_nz or d_nnz (not both).  Set
3140:   `d_nz` = `PETSC_DEFAULT` and `d_nnz` = `NULL` for PETSc to control dynamic
3141:   memory allocation.  Likewise, specify preallocated storage for the
3142:   off-diagonal part of the local submatrix with `o_nz` or `o_nnz` (not both).

3144:   Consider a processor that owns rows 3, 4 and 5 of a parallel matrix. In
3145:   the figure below we depict these three local rows and all columns (0-11).

3147: .vb
3148:            0 1 2 3 4 5 6 7 8 9 10 11
3149:           --------------------------
3150:    row 3  |o o o d d d o o o o  o  o
3151:    row 4  |o o o d d d o o o o  o  o
3152:    row 5  |o o o d d d o o o o  o  o
3153:           --------------------------
3154: .ve

3156:   Thus, any entries in the d locations are stored in the d (diagonal)
3157:   submatrix, and any entries in the o locations are stored in the
3158:   o (off-diagonal) submatrix.  Note that the d and the o submatrices are
3159:   stored simply in the `MATSEQBAIJ` format for compressed row storage.

3161:   Now `d_nz` should indicate the number of block nonzeros per row in the d matrix,
3162:   and `o_nz` should indicate the number of block nonzeros per row in the o matrix.
3163:   In general, for PDE problems in which most nonzeros are near the diagonal,
3164:   one expects `d_nz` >> `o_nz`.

3166: .seealso: `Mat`, `MatCreate()`, `MatCreateSeqBAIJ()`, `MatSetValues()`, `MatMPIBAIJSetPreallocation()`, `MatMPIBAIJSetPreallocationCSR()`
3167: @*/
3168: PetscErrorCode MatCreateBAIJ(MPI_Comm comm, PetscInt bs, PetscInt m, PetscInt n, PetscInt M, PetscInt N, PetscInt d_nz, const PetscInt d_nnz[], PetscInt o_nz, const PetscInt o_nnz[], Mat *A)
3169: {
3170:   PetscMPIInt size;

3172:   PetscFunctionBegin;
3173:   PetscCall(MatCreate(comm, A));
3174:   PetscCall(MatSetSizes(*A, m, n, M, N));
3175:   PetscCallMPI(MPI_Comm_size(comm, &size));
3176:   if (size > 1) {
3177:     PetscCall(MatSetType(*A, MATMPIBAIJ));
3178:     PetscCall(MatMPIBAIJSetPreallocation(*A, bs, d_nz, d_nnz, o_nz, o_nnz));
3179:   } else {
3180:     PetscCall(MatSetType(*A, MATSEQBAIJ));
3181:     PetscCall(MatSeqBAIJSetPreallocation(*A, bs, d_nz, d_nnz));
3182:   }
3183:   PetscFunctionReturn(PETSC_SUCCESS);
3184: }

3186: static PetscErrorCode MatDuplicate_MPIBAIJ(Mat matin, MatDuplicateOption cpvalues, Mat *newmat)
3187: {
3188:   Mat          mat;
3189:   Mat_MPIBAIJ *a, *oldmat = (Mat_MPIBAIJ *)matin->data;
3190:   PetscInt     len = 0;

3192:   PetscFunctionBegin;
3193:   *newmat = NULL;
3194:   PetscCall(MatCreate(PetscObjectComm((PetscObject)matin), &mat));
3195:   PetscCall(MatSetSizes(mat, matin->rmap->n, matin->cmap->n, matin->rmap->N, matin->cmap->N));
3196:   PetscCall(MatSetType(mat, ((PetscObject)matin)->type_name));

3198:   PetscCall(PetscLayoutReference(matin->rmap, &mat->rmap));
3199:   PetscCall(PetscLayoutReference(matin->cmap, &mat->cmap));
3200:   if (matin->hash_active) {
3201:     PetscCall(MatSetUp(mat));
3202:   } else {
3203:     mat->factortype   = matin->factortype;
3204:     mat->preallocated = PETSC_TRUE;
3205:     mat->assembled    = PETSC_TRUE;
3206:     mat->insertmode   = NOT_SET_VALUES;

3208:     a             = (Mat_MPIBAIJ *)mat->data;
3209:     mat->rmap->bs = matin->rmap->bs;
3210:     a->bs2        = oldmat->bs2;
3211:     a->mbs        = oldmat->mbs;
3212:     a->nbs        = oldmat->nbs;
3213:     a->Mbs        = oldmat->Mbs;
3214:     a->Nbs        = oldmat->Nbs;

3216:     a->size         = oldmat->size;
3217:     a->rank         = oldmat->rank;
3218:     a->donotstash   = oldmat->donotstash;
3219:     a->roworiented  = oldmat->roworiented;
3220:     a->rowindices   = NULL;
3221:     a->rowvalues    = NULL;
3222:     a->getrowactive = PETSC_FALSE;
3223:     a->barray       = NULL;
3224:     a->rstartbs     = oldmat->rstartbs;
3225:     a->rendbs       = oldmat->rendbs;
3226:     a->cstartbs     = oldmat->cstartbs;
3227:     a->cendbs       = oldmat->cendbs;

3229:     /* hash table stuff */
3230:     a->ht           = NULL;
3231:     a->hd           = NULL;
3232:     a->ht_size      = 0;
3233:     a->ht_flag      = oldmat->ht_flag;
3234:     a->ht_fact      = oldmat->ht_fact;
3235:     a->ht_total_ct  = 0;
3236:     a->ht_insert_ct = 0;

3238:     PetscCall(PetscArraycpy(a->rangebs, oldmat->rangebs, a->size + 1));
3239:     if (oldmat->colmap) {
3240: #if defined(PETSC_USE_CTABLE)
3241:       PetscCall(PetscHMapIDuplicate(oldmat->colmap, &a->colmap));
3242: #else
3243:       PetscCall(PetscMalloc1(a->Nbs, &a->colmap));
3244:       PetscCall(PetscArraycpy(a->colmap, oldmat->colmap, a->Nbs));
3245: #endif
3246:     } else a->colmap = NULL;

3248:     if (oldmat->garray && (len = ((Mat_SeqBAIJ *)oldmat->B->data)->nbs)) {
3249:       PetscCall(PetscMalloc1(len, &a->garray));
3250:       PetscCall(PetscArraycpy(a->garray, oldmat->garray, len));
3251:     } else a->garray = NULL;

3253:     PetscCall(MatStashCreate_Private(PetscObjectComm((PetscObject)matin), matin->rmap->bs, &mat->bstash));
3254:     PetscCall(VecDuplicate(oldmat->lvec, &a->lvec));
3255:     PetscCall(VecScatterCopy(oldmat->Mvctx, &a->Mvctx));

3257:     PetscCall(MatDuplicate(oldmat->A, cpvalues, &a->A));
3258:     PetscCall(MatDuplicate(oldmat->B, cpvalues, &a->B));
3259:   }
3260:   PetscCall(PetscFunctionListDuplicate(((PetscObject)matin)->qlist, &((PetscObject)mat)->qlist));
3261:   *newmat = mat;
3262:   PetscFunctionReturn(PETSC_SUCCESS);
3263: }

3265: /* Used for both MPIBAIJ and MPISBAIJ matrices */
3266: PetscErrorCode MatLoad_MPIBAIJ_Binary(Mat mat, PetscViewer viewer)
3267: {
3268:   PetscInt     header[4], M, N, nz, bs, m, n, mbs, nbs, rows, cols, sum, i, j, k;
3269:   PetscInt    *rowidxs, *colidxs, rs, cs, ce;
3270:   PetscScalar *matvals;

3272:   PetscFunctionBegin;
3273:   PetscCall(PetscViewerSetUp(viewer));

3275:   /* read in matrix header */
3276:   PetscCall(PetscViewerBinaryRead(viewer, header, 4, NULL, PETSC_INT));
3277:   PetscCheck(header[0] == MAT_FILE_CLASSID, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Not a matrix object in file");
3278:   M  = header[1];
3279:   N  = header[2];
3280:   nz = header[3];
3281:   PetscCheck(M >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix row size (%" PetscInt_FMT ") in file is negative", M);
3282:   PetscCheck(N >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix column size (%" PetscInt_FMT ") in file is negative", N);
3283:   PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix stored in special format on disk, cannot load as MPIBAIJ");

3285:   /* set block sizes from the viewer's .info file */
3286:   PetscCall(MatLoad_Binary_BlockSizes(mat, viewer));
3287:   /* set local sizes if not set already */
3288:   if (mat->rmap->n < 0 && M == N) mat->rmap->n = mat->cmap->n;
3289:   if (mat->cmap->n < 0 && M == N) mat->cmap->n = mat->rmap->n;
3290:   /* set global sizes if not set already */
3291:   if (mat->rmap->N < 0) mat->rmap->N = M;
3292:   if (mat->cmap->N < 0) mat->cmap->N = N;
3293:   PetscCall(PetscLayoutSetUp(mat->rmap));
3294:   PetscCall(PetscLayoutSetUp(mat->cmap));

3296:   /* check if the matrix sizes are correct */
3297:   PetscCall(MatGetSize(mat, &rows, &cols));
3298:   PetscCheck(M == rows && N == cols, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix in file of different sizes (%" PetscInt_FMT ", %" PetscInt_FMT ") than the input matrix (%" PetscInt_FMT ", %" PetscInt_FMT ")", M, N, rows, cols);
3299:   PetscCall(MatGetBlockSize(mat, &bs));
3300:   PetscCall(MatGetLocalSize(mat, &m, &n));
3301:   PetscCall(PetscLayoutGetRange(mat->rmap, &rs, NULL));
3302:   PetscCall(PetscLayoutGetRange(mat->cmap, &cs, &ce));
3303:   mbs = m / bs;
3304:   nbs = n / bs;

3306:   /* read in row lengths and build row indices */
3307:   PetscCall(PetscMalloc1(m + 1, &rowidxs));
3308:   PetscCall(PetscViewerBinaryReadAll(viewer, rowidxs + 1, m, PETSC_DECIDE, M, PETSC_INT));
3309:   rowidxs[0] = 0;
3310:   for (i = 0; i < m; i++) rowidxs[i + 1] += rowidxs[i];
3311:   PetscCall(MPIU_Allreduce(&rowidxs[m], &sum, 1, MPIU_INT, MPI_SUM, PetscObjectComm((PetscObject)viewer)));
3312:   PetscCheck(sum == nz, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Inconsistent matrix data in file: nonzeros = %" PetscInt_FMT ", sum-row-lengths = %" PetscInt_FMT, nz, sum);

3314:   /* read in column indices and matrix values */
3315:   PetscCall(PetscMalloc2(rowidxs[m], &colidxs, rowidxs[m], &matvals));
3316:   PetscCall(PetscViewerBinaryReadAll(viewer, colidxs, rowidxs[m], PETSC_DETERMINE, PETSC_DETERMINE, PETSC_INT));
3317:   PetscCall(PetscViewerBinaryReadAll(viewer, matvals, rowidxs[m], PETSC_DETERMINE, PETSC_DETERMINE, PETSC_SCALAR));

3319:   {                /* preallocate matrix storage */
3320:     PetscBT    bt; /* helper bit set to count diagonal nonzeros */
3321:     PetscHSetI ht; /* helper hash set to count off-diagonal nonzeros */
3322:     PetscBool  sbaij, done;
3323:     PetscInt  *d_nnz, *o_nnz;

3325:     PetscCall(PetscBTCreate(nbs, &bt));
3326:     PetscCall(PetscHSetICreate(&ht));
3327:     PetscCall(PetscCalloc2(mbs, &d_nnz, mbs, &o_nnz));
3328:     PetscCall(PetscObjectTypeCompare((PetscObject)mat, MATMPISBAIJ, &sbaij));
3329:     for (i = 0; i < mbs; i++) {
3330:       PetscCall(PetscBTMemzero(nbs, bt));
3331:       PetscCall(PetscHSetIClear(ht));
3332:       for (k = 0; k < bs; k++) {
3333:         PetscInt row = bs * i + k;
3334:         for (j = rowidxs[row]; j < rowidxs[row + 1]; j++) {
3335:           PetscInt col = colidxs[j];
3336:           if (!sbaij || col >= row) {
3337:             if (col >= cs && col < ce) {
3338:               if (!PetscBTLookupSet(bt, (col - cs) / bs)) d_nnz[i]++;
3339:             } else {
3340:               PetscCall(PetscHSetIQueryAdd(ht, col / bs, &done));
3341:               if (done) o_nnz[i]++;
3342:             }
3343:           }
3344:         }
3345:       }
3346:     }
3347:     PetscCall(PetscBTDestroy(&bt));
3348:     PetscCall(PetscHSetIDestroy(&ht));
3349:     PetscCall(MatMPIBAIJSetPreallocation(mat, bs, 0, d_nnz, 0, o_nnz));
3350:     PetscCall(MatMPISBAIJSetPreallocation(mat, bs, 0, d_nnz, 0, o_nnz));
3351:     PetscCall(PetscFree2(d_nnz, o_nnz));
3352:   }

3354:   /* store matrix values */
3355:   for (i = 0; i < m; i++) {
3356:     PetscInt row = rs + i, s = rowidxs[i], e = rowidxs[i + 1];
3357:     PetscUseTypeMethod(mat, setvalues, 1, &row, e - s, colidxs + s, matvals + s, INSERT_VALUES);
3358:   }

3360:   PetscCall(PetscFree(rowidxs));
3361:   PetscCall(PetscFree2(colidxs, matvals));
3362:   PetscCall(MatAssemblyBegin(mat, MAT_FINAL_ASSEMBLY));
3363:   PetscCall(MatAssemblyEnd(mat, MAT_FINAL_ASSEMBLY));
3364:   PetscFunctionReturn(PETSC_SUCCESS);
3365: }

3367: PetscErrorCode MatLoad_MPIBAIJ(Mat mat, PetscViewer viewer)
3368: {
3369:   PetscBool isbinary;

3371:   PetscFunctionBegin;
3372:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
3373:   PetscCheck(isbinary, PetscObjectComm((PetscObject)viewer), PETSC_ERR_SUP, "Viewer type %s not yet supported for reading %s matrices", ((PetscObject)viewer)->type_name, ((PetscObject)mat)->type_name);
3374:   PetscCall(MatLoad_MPIBAIJ_Binary(mat, viewer));
3375:   PetscFunctionReturn(PETSC_SUCCESS);
3376: }

3378: /*@
3379:   MatMPIBAIJSetHashTableFactor - Sets the factor required to compute the size of the matrices hash table

3381:   Input Parameters:
3382: + mat  - the matrix
3383: - fact - factor

3385:   Options Database Key:
3386: . -mat_use_hash_table <fact> - provide the factor

3388:   Level: advanced

3390: .seealso: `Mat`, `MATMPIBAIJ`, `MatSetOption()`
3391: @*/
3392: PetscErrorCode MatMPIBAIJSetHashTableFactor(Mat mat, PetscReal fact)
3393: {
3394:   PetscFunctionBegin;
3395:   PetscTryMethod(mat, "MatSetHashTableFactor_C", (Mat, PetscReal), (mat, fact));
3396:   PetscFunctionReturn(PETSC_SUCCESS);
3397: }

3399: PetscErrorCode MatSetHashTableFactor_MPIBAIJ(Mat mat, PetscReal fact)
3400: {
3401:   Mat_MPIBAIJ *baij;

3403:   PetscFunctionBegin;
3404:   baij          = (Mat_MPIBAIJ *)mat->data;
3405:   baij->ht_fact = fact;
3406:   PetscFunctionReturn(PETSC_SUCCESS);
3407: }

3409: PetscErrorCode MatMPIBAIJGetSeqBAIJ(Mat A, Mat *Ad, Mat *Ao, const PetscInt *colmap[])
3410: {
3411:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;
3412:   PetscBool    flg;

3414:   PetscFunctionBegin;
3415:   PetscCall(PetscObjectTypeCompare((PetscObject)A, MATMPIBAIJ, &flg));
3416:   PetscCheck(flg, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "This function requires a MATMPIBAIJ matrix as input");
3417:   if (Ad) *Ad = a->A;
3418:   if (Ao) *Ao = a->B;
3419:   if (colmap) *colmap = a->garray;
3420:   PetscFunctionReturn(PETSC_SUCCESS);
3421: }

3423: /*
3424:     Special version for direct calls from Fortran (to eliminate two function call overheads
3425: */
3426: #if defined(PETSC_HAVE_FORTRAN_CAPS)
3427:   #define matmpibaijsetvaluesblocked_ MATMPIBAIJSETVALUESBLOCKED
3428: #elif !defined(PETSC_HAVE_FORTRAN_UNDERSCORE)
3429:   #define matmpibaijsetvaluesblocked_ matmpibaijsetvaluesblocked
3430: #endif

3432: // PetscClangLinter pragma disable: -fdoc-synopsis-matching-symbol-name
3433: /*@C
3434:   MatMPIBAIJSetValuesBlocked - Direct Fortran call to replace call to `MatSetValuesBlocked()`

3436:   Collective

3438:   Input Parameters:
3439: + matin  - the matrix
3440: . min    - number of input rows
3441: . im     - input rows
3442: . nin    - number of input columns
3443: . in     - input columns
3444: . v      - numerical values input
3445: - addvin - `INSERT_VALUES` or `ADD_VALUES`

3447:   Level: advanced

3449:   Developer Notes:
3450:   This has a complete copy of `MatSetValuesBlocked_MPIBAIJ()` which is terrible code un-reuse.

3452: .seealso: `Mat`, `MatSetValuesBlocked()`
3453: @*/
3454: PETSC_EXTERN PetscErrorCode matmpibaijsetvaluesblocked_(Mat *matin, PetscInt *min, const PetscInt im[], PetscInt *nin, const PetscInt in[], const MatScalar v[], InsertMode *addvin)
3455: {
3456:   /* convert input arguments to C version */
3457:   Mat        mat = *matin;
3458:   PetscInt   m = *min, n = *nin;
3459:   InsertMode addv = *addvin;

3461:   Mat_MPIBAIJ     *baij = (Mat_MPIBAIJ *)mat->data;
3462:   const MatScalar *value;
3463:   MatScalar       *barray      = baij->barray;
3464:   PetscBool        roworiented = baij->roworiented;
3465:   PetscInt         i, j, ii, jj, row, col, rstart = baij->rstartbs;
3466:   PetscInt         rend = baij->rendbs, cstart = baij->cstartbs, stepval;
3467:   PetscInt         cend = baij->cendbs, bs = mat->rmap->bs, bs2 = baij->bs2;

3469:   PetscFunctionBegin;
3470:   /* tasks normally handled by MatSetValuesBlocked() */
3471:   if (mat->insertmode == NOT_SET_VALUES) mat->insertmode = addv;
3472:   else PetscCheck(mat->insertmode == addv, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot mix add values and insert values");
3473:   PetscCheck(!mat->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3474:   if (mat->assembled) {
3475:     mat->was_assembled = PETSC_TRUE;
3476:     mat->assembled     = PETSC_FALSE;
3477:   }
3478:   PetscCall(PetscLogEventBegin(MAT_SetValues, mat, 0, 0, 0));

3480:   if (!barray) {
3481:     PetscCall(PetscMalloc1(bs2, &barray));
3482:     baij->barray = barray;
3483:   }

3485:   if (roworiented) stepval = (n - 1) * bs;
3486:   else stepval = (m - 1) * bs;

3488:   for (i = 0; i < m; i++) {
3489:     if (im[i] < 0) continue;
3490:     PetscCheck(im[i] < baij->Mbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large, row %" PetscInt_FMT " max %" PetscInt_FMT, im[i], baij->Mbs - 1);
3491:     if (im[i] >= rstart && im[i] < rend) {
3492:       row = im[i] - rstart;
3493:       for (j = 0; j < n; j++) {
3494:         /* If NumCol = 1 then a copy is not required */
3495:         if ((roworiented) && (n == 1)) {
3496:           barray = (MatScalar *)v + i * bs2;
3497:         } else if ((!roworiented) && (m == 1)) {
3498:           barray = (MatScalar *)v + j * bs2;
3499:         } else { /* Here a copy is required */
3500:           if (roworiented) {
3501:             value = v + i * (stepval + bs) * bs + j * bs;
3502:           } else {
3503:             value = v + j * (stepval + bs) * bs + i * bs;
3504:           }
3505:           for (ii = 0; ii < bs; ii++, value += stepval) {
3506:             for (jj = 0; jj < bs; jj++) *barray++ = *value++;
3507:           }
3508:           barray -= bs2;
3509:         }

3511:         if (in[j] >= cstart && in[j] < cend) {
3512:           col = in[j] - cstart;
3513:           PetscCall(MatSetValuesBlocked_SeqBAIJ_Inlined(baij->A, row, col, barray, addv, im[i], in[j]));
3514:         } else if (in[j] < 0) {
3515:           continue;
3516:         } else {
3517:           PetscCheck(in[j] < baij->Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large, col %" PetscInt_FMT " max %" PetscInt_FMT, in[j], baij->Nbs - 1);
3518:           if (mat->was_assembled) {
3519:             if (!baij->colmap) PetscCall(MatCreateColmap_MPIBAIJ_Private(mat));

3521: #if defined(PETSC_USE_DEBUG)
3522:   #if defined(PETSC_USE_CTABLE)
3523:             {
3524:               PetscInt data;
3525:               PetscCall(PetscHMapIGetWithDefault(baij->colmap, in[j] + 1, 0, &data));
3526:               PetscCheck((data - 1) % bs == 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Incorrect colmap");
3527:             }
3528:   #else
3529:             PetscCheck((baij->colmap[in[j]] - 1) % bs == 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Incorrect colmap");
3530:   #endif
3531: #endif
3532: #if defined(PETSC_USE_CTABLE)
3533:             PetscCall(PetscHMapIGetWithDefault(baij->colmap, in[j] + 1, 0, &col));
3534:             col = (col - 1) / bs;
3535: #else
3536:             col = (baij->colmap[in[j]] - 1) / bs;
3537: #endif
3538:             if (col < 0 && !((Mat_SeqBAIJ *)baij->A->data)->nonew) {
3539:               PetscCall(MatDisAssemble_MPIBAIJ(mat));
3540:               col = in[j];
3541:             }
3542:           } else col = in[j];
3543:           PetscCall(MatSetValuesBlocked_SeqBAIJ_Inlined(baij->B, row, col, barray, addv, im[i], in[j]));
3544:         }
3545:       }
3546:     } else {
3547:       if (!baij->donotstash) {
3548:         if (roworiented) {
3549:           PetscCall(MatStashValuesRowBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
3550:         } else {
3551:           PetscCall(MatStashValuesColBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
3552:         }
3553:       }
3554:     }
3555:   }

3557:   /* task normally handled by MatSetValuesBlocked() */
3558:   PetscCall(PetscLogEventEnd(MAT_SetValues, mat, 0, 0, 0));
3559:   PetscFunctionReturn(PETSC_SUCCESS);
3560: }

3562: /*@
3563:   MatCreateMPIBAIJWithArrays - creates a `MATMPIBAIJ` matrix using arrays that contain in standard block CSR format for the local rows.

3565:   Collective

3567:   Input Parameters:
3568: + comm - MPI communicator
3569: . bs   - the block size, only a block size of 1 is supported
3570: . m    - number of local rows (Cannot be `PETSC_DECIDE`)
3571: . n    - This value should be the same as the local size used in creating the
3572:          x vector for the matrix-vector product $ y = Ax $. (or `PETSC_DECIDE` to have
3573:          calculated if `N` is given) For square matrices `n` is almost always `m`.
3574: . M    - number of global rows (or `PETSC_DETERMINE` to have calculated if `m` is given)
3575: . N    - number of global columns (or `PETSC_DETERMINE` to have calculated if `n` is given)
3576: . i    - row indices; that is i[0] = 0, i[row] = i[row-1] + number of block elements in that rowth block row of the matrix
3577: . j    - column indices
3578: - a    - matrix values

3580:   Output Parameter:
3581: . mat - the matrix

3583:   Level: intermediate

3585:   Notes:
3586:   The `i`, `j`, and `a` arrays ARE copied by this routine into the internal format used by PETSc;
3587:   thus you CANNOT change the matrix entries by changing the values of a[] after you have
3588:   called this routine. Use `MatCreateMPIAIJWithSplitArrays()` to avoid needing to copy the arrays.

3590:   The order of the entries in values is the same as the block compressed sparse row storage format; that is, it is
3591:   the same as a three dimensional array in Fortran values(bs,bs,nnz) that contains the first column of the first
3592:   block, followed by the second column of the first block etc etc.  That is, the blocks are contiguous in memory
3593:   with column-major ordering within blocks.

3595:   The `i` and `j` indices are 0 based, and `i` indices are indices corresponding to the local `j` array.

3597: .seealso: `Mat`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatMPIAIJSetPreallocation()`, `MatMPIAIJSetPreallocationCSR()`,
3598:           `MATMPIAIJ`, `MatCreateAIJ()`, `MatCreateMPIAIJWithSplitArrays()`
3599: @*/
3600: PetscErrorCode MatCreateMPIBAIJWithArrays(MPI_Comm comm, PetscInt bs, PetscInt m, PetscInt n, PetscInt M, PetscInt N, const PetscInt i[], const PetscInt j[], const PetscScalar a[], Mat *mat)
3601: {
3602:   PetscFunctionBegin;
3603:   PetscCheck(!i[0], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "i (row indices) must start with 0");
3604:   PetscCheck(m >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "local number of rows (m) cannot be PETSC_DECIDE, or negative");
3605:   PetscCall(MatCreate(comm, mat));
3606:   PetscCall(MatSetSizes(*mat, m, n, M, N));
3607:   PetscCall(MatSetType(*mat, MATMPIBAIJ));
3608:   PetscCall(MatSetBlockSize(*mat, bs));
3609:   PetscCall(MatSetUp(*mat));
3610:   PetscCall(MatSetOption(*mat, MAT_ROW_ORIENTED, PETSC_FALSE));
3611:   PetscCall(MatMPIBAIJSetPreallocationCSR(*mat, bs, i, j, a));
3612:   PetscCall(MatSetOption(*mat, MAT_ROW_ORIENTED, PETSC_TRUE));
3613:   PetscFunctionReturn(PETSC_SUCCESS);
3614: }

3616: PetscErrorCode MatCreateMPIMatConcatenateSeqMat_MPIBAIJ(MPI_Comm comm, Mat inmat, PetscInt n, MatReuse scall, Mat *outmat)
3617: {
3618:   PetscInt     m, N, i, rstart, nnz, Ii, bs, cbs;
3619:   PetscInt    *indx;
3620:   PetscScalar *values;

3622:   PetscFunctionBegin;
3623:   PetscCall(MatGetSize(inmat, &m, &N));
3624:   if (scall == MAT_INITIAL_MATRIX) { /* symbolic phase */
3625:     Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)inmat->data;
3626:     PetscInt    *dnz, *onz, mbs, Nbs, nbs;
3627:     PetscInt    *bindx, rmax = a->rmax, j;
3628:     PetscMPIInt  rank, size;

3630:     PetscCall(MatGetBlockSizes(inmat, &bs, &cbs));
3631:     mbs = m / bs;
3632:     Nbs = N / cbs;
3633:     if (n == PETSC_DECIDE) PetscCall(PetscSplitOwnershipBlock(comm, cbs, &n, &N));
3634:     nbs = n / cbs;

3636:     PetscCall(PetscMalloc1(rmax, &bindx));
3637:     MatPreallocateBegin(comm, mbs, nbs, dnz, onz); /* inline function, output __end and __rstart are used below */

3639:     PetscCallMPI(MPI_Comm_rank(comm, &rank));
3640:     PetscCallMPI(MPI_Comm_rank(comm, &size));
3641:     if (rank == size - 1) {
3642:       /* Check sum(nbs) = Nbs */
3643:       PetscCheck(__end == Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Sum of local block columns %" PetscInt_FMT " != global block columns %" PetscInt_FMT, __end, Nbs);
3644:     }

3646:     rstart = __rstart; /* block rstart of *outmat; see inline function MatPreallocateBegin */
3647:     for (i = 0; i < mbs; i++) {
3648:       PetscCall(MatGetRow_SeqBAIJ(inmat, i * bs, &nnz, &indx, NULL)); /* non-blocked nnz and indx */
3649:       nnz = nnz / bs;
3650:       for (j = 0; j < nnz; j++) bindx[j] = indx[j * bs] / bs;
3651:       PetscCall(MatPreallocateSet(i + rstart, nnz, bindx, dnz, onz));
3652:       PetscCall(MatRestoreRow_SeqBAIJ(inmat, i * bs, &nnz, &indx, NULL));
3653:     }
3654:     PetscCall(PetscFree(bindx));

3656:     PetscCall(MatCreate(comm, outmat));
3657:     PetscCall(MatSetSizes(*outmat, m, n, PETSC_DETERMINE, PETSC_DETERMINE));
3658:     PetscCall(MatSetBlockSizes(*outmat, bs, cbs));
3659:     PetscCall(MatSetType(*outmat, MATBAIJ));
3660:     PetscCall(MatSeqBAIJSetPreallocation(*outmat, bs, 0, dnz));
3661:     PetscCall(MatMPIBAIJSetPreallocation(*outmat, bs, 0, dnz, 0, onz));
3662:     MatPreallocateEnd(dnz, onz);
3663:     PetscCall(MatSetOption(*outmat, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE));
3664:   }

3666:   /* numeric phase */
3667:   PetscCall(MatGetBlockSizes(inmat, &bs, &cbs));
3668:   PetscCall(MatGetOwnershipRange(*outmat, &rstart, NULL));

3670:   for (i = 0; i < m; i++) {
3671:     PetscCall(MatGetRow_SeqBAIJ(inmat, i, &nnz, &indx, &values));
3672:     Ii = i + rstart;
3673:     PetscCall(MatSetValues(*outmat, 1, &Ii, nnz, indx, values, INSERT_VALUES));
3674:     PetscCall(MatRestoreRow_SeqBAIJ(inmat, i, &nnz, &indx, &values));
3675:   }
3676:   PetscCall(MatAssemblyBegin(*outmat, MAT_FINAL_ASSEMBLY));
3677:   PetscCall(MatAssemblyEnd(*outmat, MAT_FINAL_ASSEMBLY));
3678:   PetscFunctionReturn(PETSC_SUCCESS);
3679: }