Actual source code: matrix.c

petsc-master 2015-08-31
Report Typos and Errors
  2: /*
  3:    This is where the abstract matrix operations are defined
  4: */

  6: #include <petsc/private/matimpl.h>        /*I "petscmat.h" I*/
  7: #include <petsc/private/vecimpl.h>
  8: #include <petsc/private/isimpl.h>

 10: /* Logging support */
 11: PetscClassId MAT_CLASSID;
 12: PetscClassId MAT_COLORING_CLASSID;
 13: PetscClassId MAT_FDCOLORING_CLASSID;
 14: PetscClassId MAT_TRANSPOSECOLORING_CLASSID;

 16: PetscLogEvent MAT_Mult, MAT_Mults, MAT_MultConstrained, MAT_MultAdd, MAT_MultTranspose;
 17: PetscLogEvent MAT_MultTransposeConstrained, MAT_MultTransposeAdd, MAT_Solve, MAT_Solves, MAT_SolveAdd, MAT_SolveTranspose, MAT_MatSolve;
 18: PetscLogEvent MAT_SolveTransposeAdd, MAT_SOR, MAT_ForwardSolve, MAT_BackwardSolve, MAT_LUFactor, MAT_LUFactorSymbolic;
 19: PetscLogEvent MAT_LUFactorNumeric, MAT_CholeskyFactor, MAT_CholeskyFactorSymbolic, MAT_CholeskyFactorNumeric, MAT_ILUFactor;
 20: PetscLogEvent MAT_ILUFactorSymbolic, MAT_ICCFactorSymbolic, MAT_Copy, MAT_Convert, MAT_Scale, MAT_AssemblyBegin;
 21: PetscLogEvent MAT_AssemblyEnd, MAT_SetValues, MAT_GetValues, MAT_GetRow, MAT_GetRowIJ, MAT_GetSubMatrices, MAT_GetOrdering, MAT_RedundantMat, MAT_GetSeqNonzeroStructure;
 22: PetscLogEvent MAT_IncreaseOverlap, MAT_Partitioning, MAT_Coarsen, MAT_ZeroEntries, MAT_Load, MAT_View, MAT_AXPY, MAT_FDColoringCreate;
 23: PetscLogEvent MAT_FDColoringSetUp, MAT_FDColoringApply,MAT_Transpose,MAT_FDColoringFunction, MAT_GetSubMatrix;
 24: PetscLogEvent MAT_TransposeColoringCreate;
 25: PetscLogEvent MAT_MatMult, MAT_MatMultSymbolic, MAT_MatMultNumeric;
 26: PetscLogEvent MAT_PtAP, MAT_PtAPSymbolic, MAT_PtAPNumeric,MAT_RARt, MAT_RARtSymbolic, MAT_RARtNumeric;
 27: PetscLogEvent MAT_MatTransposeMult, MAT_MatTransposeMultSymbolic, MAT_MatTransposeMultNumeric;
 28: PetscLogEvent MAT_TransposeMatMult, MAT_TransposeMatMultSymbolic, MAT_TransposeMatMultNumeric;
 29: PetscLogEvent MAT_MatMatMult, MAT_MatMatMultSymbolic, MAT_MatMatMultNumeric;
 30: PetscLogEvent MAT_MultHermitianTranspose,MAT_MultHermitianTransposeAdd;
 31: PetscLogEvent MAT_Getsymtranspose, MAT_Getsymtransreduced, MAT_Transpose_SeqAIJ, MAT_GetBrowsOfAcols;
 32: PetscLogEvent MAT_GetBrowsOfAocols, MAT_Getlocalmat, MAT_Getlocalmatcondensed, MAT_Seqstompi, MAT_Seqstompinum, MAT_Seqstompisym;
 33: PetscLogEvent MAT_Applypapt, MAT_Applypapt_numeric, MAT_Applypapt_symbolic, MAT_GetSequentialNonzeroStructure;
 34: PetscLogEvent MAT_GetMultiProcBlock;
 35: PetscLogEvent MAT_CUSPCopyToGPU, MAT_CUSPARSECopyToGPU, MAT_SetValuesBatch, MAT_SetValuesBatchI, MAT_SetValuesBatchII, MAT_SetValuesBatchIII, MAT_SetValuesBatchIV;
 36: PetscLogEvent MAT_ViennaCLCopyToGPU;
 37: PetscLogEvent MAT_Merge,MAT_Residual;
 38: PetscLogEvent Mat_Coloring_Apply,Mat_Coloring_Comm,Mat_Coloring_Local,Mat_Coloring_ISCreate,Mat_Coloring_SetUp,Mat_Coloring_Weights;

 40: const char *const MatFactorTypes[] = {"NONE","LU","CHOLESKY","ILU","ICC","ILUDT","MatFactorType","MAT_FACTOR_",0};

 44: /*@
 45:    MatSetRandom - Sets all components of a matrix to random numbers. For sparse matrices that have been preallocated it randomly selects appropriate locations

 47:    Logically Collective on Vec

 49:    Input Parameters:
 50: +  x  - the vector
 51: -  rctx - the random number context, formed by PetscRandomCreate(), or NULL and
 52:           it will create one internally.

 54:    Output Parameter:
 55: .  x  - the vector

 57:    Example of Usage:
 58: .vb
 59:      PetscRandomCreate(PETSC_COMM_WORLD,&rctx);
 60:      VecSetRandom(x,rctx);
 61:      PetscRandomDestroy(rctx);
 62: .ve

 64:    Level: intermediate

 66:    Concepts: vector^setting to random
 67:    Concepts: random^vector

 69: .seealso: MatZeroEntries(), MatSetValues(), PetscRandomCreate(), PetscRandomDestroy()
 70: @*/
 71: PetscErrorCode  MatSetRandom(Mat x,PetscRandom rctx)
 72: {
 74:   PetscRandom    randObj = NULL;


 81:   if (!rctx) {
 82:     MPI_Comm comm;
 83:     PetscObjectGetComm((PetscObject)x,&comm);
 84:     PetscRandomCreate(comm,&randObj);
 85:     PetscRandomSetFromOptions(randObj);
 86:     rctx = randObj;
 87:   }

 89:   PetscLogEventBegin(VEC_SetRandom,x,rctx,0,0);
 90:   (*x->ops->setrandom)(x,rctx);
 91:   PetscLogEventEnd(VEC_SetRandom,x,rctx,0,0);

 93:   x->assembled = PETSC_TRUE;
 94:   PetscRandomDestroy(&randObj);
 95:   return(0);
 96: }


101: /*@
102:       MatFindNonzeroRows - Locate all rows that are not completely zero in the matrix

104:   Input Parameter:
105: .    A  - the matrix

107:   Output Parameter:
108: .    keptrows - the rows that are not completely zero

110:   Level: intermediate

112:  @*/
113: PetscErrorCode MatFindNonzeroRows(Mat mat,IS *keptrows)
114: {

119:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
120:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
121:   if (!mat->ops->findnonzerorows) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Not coded for this matrix type");
122:   (*mat->ops->findnonzerorows)(mat,keptrows);
123:   return(0);
124: }

128: /*@
129:    MatGetDiagonalBlock - Returns the part of the matrix associated with the on-process coupling

131:    Not Collective

133:    Input Parameters:
134: .   A - the matrix

136:    Output Parameters:
137: .   a - the diagonal part (which is a SEQUENTIAL matrix)

139:    Notes: see the manual page for MatCreateAIJ() for more information on the "diagonal part" of the matrix.
140:           Use caution, as the reference count on the returned matrix is not incremented and it is used as
141:           part of the containing MPI Mat's normal operation.

143:    Level: advanced

145: @*/
146: PetscErrorCode  MatGetDiagonalBlock(Mat A,Mat *a)
147: {
148:   PetscErrorCode ierr,(*f)(Mat,Mat*);
149:   PetscMPIInt    size;

155:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
156:   MPI_Comm_size(PetscObjectComm((PetscObject)A),&size);
157:   PetscObjectQueryFunction((PetscObject)A,"MatGetDiagonalBlock_C",&f);
158:   if (f) {
159:     (*f)(A,a);
160:     return(0);
161:   } else if (size == 1) {
162:     *a = A;
163:   } else {
164:     MatType mattype;
165:     MatGetType(A,&mattype);
166:     SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"Matrix type %s does not support getting diagonal block",mattype);
167:   }
168:   return(0);
169: }

173: /*@
174:    MatGetTrace - Gets the trace of a matrix. The sum of the diagonal entries.

176:    Collective on Mat

178:    Input Parameters:
179: .  mat - the matrix

181:    Output Parameter:
182: .   trace - the sum of the diagonal entries

184:    Level: advanced

186: @*/
187: PetscErrorCode  MatGetTrace(Mat mat,PetscScalar *trace)
188: {
190:   Vec            diag;

193:   MatCreateVecs(mat,&diag,NULL);
194:   MatGetDiagonal(mat,diag);
195:   VecSum(diag,trace);
196:   VecDestroy(&diag);
197:   return(0);
198: }

202: /*@
203:    MatRealPart - Zeros out the imaginary part of the matrix

205:    Logically Collective on Mat

207:    Input Parameters:
208: .  mat - the matrix

210:    Level: advanced


213: .seealso: MatImaginaryPart()
214: @*/
215: PetscErrorCode  MatRealPart(Mat mat)
216: {

222:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
223:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
224:   if (!mat->ops->realpart) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
225:   MatCheckPreallocated(mat,1);
226:   (*mat->ops->realpart)(mat);
227: #if defined(PETSC_HAVE_CUSP)
228:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
229:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
230:   }
231: #endif
232: #if defined(PETSC_HAVE_VIENNACL)
233:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
234:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
235:   }
236: #endif
237:   return(0);
238: }

242: /*@C
243:    MatGetGhosts - Get the global index of all ghost nodes defined by the sparse matrix

245:    Collective on Mat

247:    Input Parameter:
248: .  mat - the matrix

250:    Output Parameters:
251: +   nghosts - number of ghosts (note for BAIJ matrices there is one ghost for each block)
252: -   ghosts - the global indices of the ghost points

254:    Notes: the nghosts and ghosts are suitable to pass into VecCreateGhost()

256:    Level: advanced

258: @*/
259: PetscErrorCode  MatGetGhosts(Mat mat,PetscInt *nghosts,const PetscInt *ghosts[])
260: {

266:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
267:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
268:   if (!mat->ops->getghosts) {
269:     if (nghosts) *nghosts = 0;
270:     if (ghosts) *ghosts = 0;
271:   } else {
272:     (*mat->ops->getghosts)(mat,nghosts,ghosts);
273:   }
274:   return(0);
275: }


280: /*@
281:    MatImaginaryPart - Moves the imaginary part of the matrix to the real part and zeros the imaginary part

283:    Logically Collective on Mat

285:    Input Parameters:
286: .  mat - the matrix

288:    Level: advanced


291: .seealso: MatRealPart()
292: @*/
293: PetscErrorCode  MatImaginaryPart(Mat mat)
294: {

300:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
301:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
302:   if (!mat->ops->imaginarypart) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
303:   MatCheckPreallocated(mat,1);
304:   (*mat->ops->imaginarypart)(mat);
305: #if defined(PETSC_HAVE_CUSP)
306:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
307:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
308:   }
309: #endif
310: #if defined(PETSC_HAVE_VIENNACL)
311:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
312:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
313:   }
314: #endif
315:   return(0);
316: }

320: /*@
321:    MatMissingDiagonal - Determine if sparse matrix is missing a diagonal entry (or block entry for BAIJ matrices)

323:    Collective on Mat

325:    Input Parameter:
326: .  mat - the matrix

328:    Output Parameters:
329: +  missing - is any diagonal missing
330: -  dd - first diagonal entry that is missing (optional)

332:    Level: advanced


335: .seealso: MatRealPart()
336: @*/
337: PetscErrorCode  MatMissingDiagonal(Mat mat,PetscBool *missing,PetscInt *dd)
338: {

344:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
345:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
346:   if (!mat->ops->missingdiagonal) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
347:   (*mat->ops->missingdiagonal)(mat,missing,dd);
348:   return(0);
349: }

353: /*@C
354:    MatGetRow - Gets a row of a matrix.  You MUST call MatRestoreRow()
355:    for each row that you get to ensure that your application does
356:    not bleed memory.

358:    Not Collective

360:    Input Parameters:
361: +  mat - the matrix
362: -  row - the row to get

364:    Output Parameters:
365: +  ncols -  if not NULL, the number of nonzeros in the row
366: .  cols - if not NULL, the column numbers
367: -  vals - if not NULL, the values

369:    Notes:
370:    This routine is provided for people who need to have direct access
371:    to the structure of a matrix.  We hope that we provide enough
372:    high-level matrix routines that few users will need it.

374:    MatGetRow() always returns 0-based column indices, regardless of
375:    whether the internal representation is 0-based (default) or 1-based.

377:    For better efficiency, set cols and/or vals to NULL if you do
378:    not wish to extract these quantities.

380:    The user can only examine the values extracted with MatGetRow();
381:    the values cannot be altered.  To change the matrix entries, one
382:    must use MatSetValues().

384:    You can only have one call to MatGetRow() outstanding for a particular
385:    matrix at a time, per processor. MatGetRow() can only obtain rows
386:    associated with the given processor, it cannot get rows from the
387:    other processors; for that we suggest using MatGetSubMatrices(), then
388:    MatGetRow() on the submatrix. The row indix passed to MatGetRows()
389:    is in the global number of rows.

391:    Fortran Notes:
392:    The calling sequence from Fortran is
393: .vb
394:    MatGetRow(matrix,row,ncols,cols,values,ierr)
395:          Mat     matrix (input)
396:          integer row    (input)
397:          integer ncols  (output)
398:          integer cols(maxcols) (output)
399:          double precision (or double complex) values(maxcols) output
400: .ve
401:    where maxcols >= maximum nonzeros in any row of the matrix.


404:    Caution:
405:    Do not try to change the contents of the output arrays (cols and vals).
406:    In some cases, this may corrupt the matrix.

408:    Level: advanced

410:    Concepts: matrices^row access

412: .seealso: MatRestoreRow(), MatSetValues(), MatGetValues(), MatGetSubMatrices(), MatGetDiagonal()
413: @*/
414: PetscErrorCode MatGetRow(Mat mat,PetscInt row,PetscInt *ncols,const PetscInt *cols[],const PetscScalar *vals[])
415: {
417:   PetscInt       incols;

422:   if (!mat->assembled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
423:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
424:   if (!mat->ops->getrow) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
425:   MatCheckPreallocated(mat,1);
426:   PetscLogEventBegin(MAT_GetRow,mat,0,0,0);
427:   (*mat->ops->getrow)(mat,row,&incols,(PetscInt**)cols,(PetscScalar**)vals);
428:   if (ncols) *ncols = incols;
429:   PetscLogEventEnd(MAT_GetRow,mat,0,0,0);
430:   return(0);
431: }

435: /*@
436:    MatConjugate - replaces the matrix values with their complex conjugates

438:    Logically Collective on Mat

440:    Input Parameters:
441: .  mat - the matrix

443:    Level: advanced

445: .seealso:  VecConjugate()
446: @*/
447: PetscErrorCode  MatConjugate(Mat mat)
448: {
449: #if defined(PETSC_USE_COMPLEX)

454:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
455:   if (!mat->ops->conjugate) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Not provided for this matrix format, send email to petsc-maint@mcs.anl.gov");
456:   (*mat->ops->conjugate)(mat);
457: #if defined(PETSC_HAVE_CUSP)
458:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
459:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
460:   }
461: #endif
462: #if defined(PETSC_HAVE_VIENNACL)
463:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
464:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
465:   }
466: #endif
467:   return(0);
468: #else
469:   return 0;
470: #endif
471: }

475: /*@C
476:    MatRestoreRow - Frees any temporary space allocated by MatGetRow().

478:    Not Collective

480:    Input Parameters:
481: +  mat - the matrix
482: .  row - the row to get
483: .  ncols, cols - the number of nonzeros and their columns
484: -  vals - if nonzero the column values

486:    Notes:
487:    This routine should be called after you have finished examining the entries.

489:    This routine zeros out ncols, cols, and vals. This is to prevent accidental
490:    us of the array after it has been restored. If you pass NULL, it will
491:    not zero the pointers.  Use of cols or vals after MatRestoreRow is invalid.

493:    Fortran Notes:
494:    The calling sequence from Fortran is
495: .vb
496:    MatRestoreRow(matrix,row,ncols,cols,values,ierr)
497:       Mat     matrix (input)
498:       integer row    (input)
499:       integer ncols  (output)
500:       integer cols(maxcols) (output)
501:       double precision (or double complex) values(maxcols) output
502: .ve
503:    Where maxcols >= maximum nonzeros in any row of the matrix.

505:    In Fortran MatRestoreRow() MUST be called after MatGetRow()
506:    before another call to MatGetRow() can be made.

508:    Level: advanced

510: .seealso:  MatGetRow()
511: @*/
512: PetscErrorCode MatRestoreRow(Mat mat,PetscInt row,PetscInt *ncols,const PetscInt *cols[],const PetscScalar *vals[])
513: {

519:   if (!mat->assembled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
520:   if (!mat->ops->restorerow) return(0);
521:   (*mat->ops->restorerow)(mat,row,ncols,(PetscInt **)cols,(PetscScalar **)vals);
522:   if (ncols) *ncols = 0;
523:   if (cols)  *cols = NULL;
524:   if (vals)  *vals = NULL;
525:   return(0);
526: }

530: /*@
531:    MatGetRowUpperTriangular - Sets a flag to enable calls to MatGetRow() for matrix in MATSBAIJ format.
532:    You should call MatRestoreRowUpperTriangular() after calling MatGetRow/MatRestoreRow() to disable the flag.

534:    Not Collective

536:    Input Parameters:
537: +  mat - the matrix

539:    Notes:
540:    The flag is to ensure that users are aware of MatGetRow() only provides the upper trianglular part of the row for the matrices in MATSBAIJ format.

542:    Level: advanced

544:    Concepts: matrices^row access

546: .seealso: MatRestoreRowRowUpperTriangular()
547: @*/
548: PetscErrorCode  MatGetRowUpperTriangular(Mat mat)
549: {

555:   if (!mat->assembled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
556:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
557:   if (!mat->ops->getrowuppertriangular) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
558:   MatCheckPreallocated(mat,1);
559:   (*mat->ops->getrowuppertriangular)(mat);
560:   return(0);
561: }

565: /*@
566:    MatRestoreRowUpperTriangular - Disable calls to MatGetRow() for matrix in MATSBAIJ format.

568:    Not Collective

570:    Input Parameters:
571: +  mat - the matrix

573:    Notes:
574:    This routine should be called after you have finished MatGetRow/MatRestoreRow().


577:    Level: advanced

579: .seealso:  MatGetRowUpperTriangular()
580: @*/
581: PetscErrorCode  MatRestoreRowUpperTriangular(Mat mat)
582: {

587:   if (!mat->assembled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
588:   if (!mat->ops->restorerowuppertriangular) return(0);
589:   (*mat->ops->restorerowuppertriangular)(mat);
590:   return(0);
591: }

595: /*@C
596:    MatSetOptionsPrefix - Sets the prefix used for searching for all
597:    Mat options in the database.

599:    Logically Collective on Mat

601:    Input Parameter:
602: +  A - the Mat context
603: -  prefix - the prefix to prepend to all option names

605:    Notes:
606:    A hyphen (-) must NOT be given at the beginning of the prefix name.
607:    The first character of all runtime options is AUTOMATICALLY the hyphen.

609:    Level: advanced

611: .keywords: Mat, set, options, prefix, database

613: .seealso: MatSetFromOptions()
614: @*/
615: PetscErrorCode  MatSetOptionsPrefix(Mat A,const char prefix[])
616: {

621:   PetscObjectSetOptionsPrefix((PetscObject)A,prefix);
622:   return(0);
623: }

627: /*@C
628:    MatAppendOptionsPrefix - Appends to the prefix used for searching for all
629:    Mat options in the database.

631:    Logically Collective on Mat

633:    Input Parameters:
634: +  A - the Mat context
635: -  prefix - the prefix to prepend to all option names

637:    Notes:
638:    A hyphen (-) must NOT be given at the beginning of the prefix name.
639:    The first character of all runtime options is AUTOMATICALLY the hyphen.

641:    Level: advanced

643: .keywords: Mat, append, options, prefix, database

645: .seealso: MatGetOptionsPrefix()
646: @*/
647: PetscErrorCode  MatAppendOptionsPrefix(Mat A,const char prefix[])
648: {

653:   PetscObjectAppendOptionsPrefix((PetscObject)A,prefix);
654:   return(0);
655: }

659: /*@C
660:    MatGetOptionsPrefix - Sets the prefix used for searching for all
661:    Mat options in the database.

663:    Not Collective

665:    Input Parameter:
666: .  A - the Mat context

668:    Output Parameter:
669: .  prefix - pointer to the prefix string used

671:    Notes: On the fortran side, the user should pass in a string 'prefix' of
672:    sufficient length to hold the prefix.

674:    Level: advanced

676: .keywords: Mat, get, options, prefix, database

678: .seealso: MatAppendOptionsPrefix()
679: @*/
680: PetscErrorCode  MatGetOptionsPrefix(Mat A,const char *prefix[])
681: {

686:   PetscObjectGetOptionsPrefix((PetscObject)A,prefix);
687:   return(0);
688: }

692: /*@
693:    MatSetUp - Sets up the internal matrix data structures for the later use.

695:    Collective on Mat

697:    Input Parameters:
698: .  A - the Mat context

700:    Notes:
701:    If the user has not set preallocation for this matrix then a default preallocation that is likely to be inefficient is used.

703:    If a suitable preallocation routine is used, this function does not need to be called.

705:    See the Performance chapter of the PETSc users manual for how to preallocate matrices

707:    Level: beginner

709: .keywords: Mat, setup

711: .seealso: MatCreate(), MatDestroy()
712: @*/
713: PetscErrorCode  MatSetUp(Mat A)
714: {
715:   PetscMPIInt    size;

720:   if (!((PetscObject)A)->type_name) {
721:     MPI_Comm_size(PetscObjectComm((PetscObject)A), &size);
722:     if (size == 1) {
723:       MatSetType(A, MATSEQAIJ);
724:     } else {
725:       MatSetType(A, MATMPIAIJ);
726:     }
727:   }
728:   if (!A->preallocated && A->ops->setup) {
729:     PetscInfo(A,"Warning not preallocating matrix storage\n");
730:     (*A->ops->setup)(A);
731:   }
732:   A->preallocated = PETSC_TRUE;
733:   return(0);
734: }

736: #if defined(PETSC_HAVE_SAWS)
737: #include <petscviewersaws.h>
738: #endif
741: /*@C
742:    MatView - Visualizes a matrix object.

744:    Collective on Mat

746:    Input Parameters:
747: +  mat - the matrix
748: -  viewer - visualization context

750:   Notes:
751:   The available visualization contexts include
752: +    PETSC_VIEWER_STDOUT_SELF - for sequential matrices
753: .    PETSC_VIEWER_STDOUT_WORLD - for parallel matrices created on PETSC_COMM_WORLD
754: .    PETSC_VIEWER_STDOUT_(comm) - for matrices created on MPI communicator comm
755: -     PETSC_VIEWER_DRAW_WORLD - graphical display of nonzero structure

757:    The user can open alternative visualization contexts with
758: +    PetscViewerASCIIOpen() - Outputs matrix to a specified file
759: .    PetscViewerBinaryOpen() - Outputs matrix in binary to a
760:          specified file; corresponding input uses MatLoad()
761: .    PetscViewerDrawOpen() - Outputs nonzero matrix structure to
762:          an X window display
763: -    PetscViewerSocketOpen() - Outputs matrix to Socket viewer.
764:          Currently only the sequential dense and AIJ
765:          matrix types support the Socket viewer.

767:    The user can call PetscViewerSetFormat() to specify the output
768:    format of ASCII printed objects (when using PETSC_VIEWER_STDOUT_SELF,
769:    PETSC_VIEWER_STDOUT_WORLD and PetscViewerASCIIOpen).  Available formats include
770: +    PETSC_VIEWER_DEFAULT - default, prints matrix contents
771: .    PETSC_VIEWER_ASCII_MATLAB - prints matrix contents in Matlab format
772: .    PETSC_VIEWER_ASCII_DENSE - prints entire matrix including zeros
773: .    PETSC_VIEWER_ASCII_COMMON - prints matrix contents, using a sparse
774:          format common among all matrix types
775: .    PETSC_VIEWER_ASCII_IMPL - prints matrix contents, using an implementation-specific
776:          format (which is in many cases the same as the default)
777: .    PETSC_VIEWER_ASCII_INFO - prints basic information about the matrix
778:          size and structure (not the matrix entries)
779: .    PETSC_VIEWER_ASCII_INFO_DETAIL - prints more detailed information about
780:          the matrix structure

782:    Options Database Keys:
783: +  -mat_view ::ascii_info - Prints info on matrix at conclusion of MatEndAssembly()
784: .  -mat_view ::ascii_info_detail - Prints more detailed info
785: .  -mat_view - Prints matrix in ASCII format
786: .  -mat_view ::ascii_matlab - Prints matrix in Matlab format
787: .  -mat_view draw - PetscDraws nonzero structure of matrix, using MatView() and PetscDrawOpenX().
788: .  -display <name> - Sets display name (default is host)
789: .  -draw_pause <sec> - Sets number of seconds to pause after display
790: .  -mat_view socket - Sends matrix to socket, can be accessed from Matlab (see Users-Manual: Chapter 11 Using MATLAB with PETSc for details)
791: .  -viewer_socket_machine <machine> -
792: .  -viewer_socket_port <port> -
793: .  -mat_view binary - save matrix to file in binary format
794: -  -viewer_binary_filename <name> -
795:    Level: beginner

797:    Notes: see the manual page for MatLoad() for the exact format of the binary file when the binary
798:       viewer is used.

800:       See share/petsc/matlab/PetscBinaryRead.m for a Matlab code that can read in the binary file when the binary
801:       viewer is used.

803:       One can use '-mat_view draw -draw_pause -1' to pause the graphical display of matrix nonzero structure.
804:       And then use the following mouse functions:
805:           left mouse: zoom in
806:           middle mouse: zoom out
807:           right mouse: continue with the simulation

809:    Concepts: matrices^viewing
810:    Concepts: matrices^plotting
811:    Concepts: matrices^printing

813: .seealso: PetscViewerSetFormat(), PetscViewerASCIIOpen(), PetscViewerDrawOpen(),
814:           PetscViewerSocketOpen(), PetscViewerBinaryOpen(), MatLoad()
815: @*/
816: PetscErrorCode  MatView(Mat mat,PetscViewer viewer)
817: {
818:   PetscErrorCode    ierr;
819:   PetscInt          rows,cols,rbs,cbs;
820:   PetscBool         iascii;
821:   PetscViewerFormat format;
822: #if defined(PETSC_HAVE_SAWS)
823:   PetscBool         issaws;
824: #endif

829:   if (!viewer) {
830:     PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)mat),&viewer);
831:   }
834:   MatCheckPreallocated(mat,1);

836:   PetscLogEventBegin(MAT_View,mat,viewer,0,0);
837:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
838:   PetscViewerGetFormat(viewer,&format);
839:   if ((!iascii || (format != PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL)) && mat->factortype) {
840:     SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"No viewers for factored matrix except ASCII info or info_detailed");
841:   }

843: #if defined(PETSC_HAVE_SAWS)
844:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSAWS,&issaws);
845: #endif
846:   if (iascii) {
847:     if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ORDER,"Must call MatAssemblyBegin/End() before viewing matrix");
848:     PetscObjectPrintClassNamePrefixType((PetscObject)mat,viewer);
849:     if (format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
850:       PetscViewerASCIIPushTab(viewer);
851:       MatGetSize(mat,&rows,&cols);
852:       MatGetBlockSizes(mat,&rbs,&cbs);
853:       if (rbs != 1 || cbs != 1) {
854:         if (rbs != cbs) {PetscViewerASCIIPrintf(viewer,"rows=%D, cols=%D, rbs=%D, cbs = %D\n",rows,cols,rbs,cbs);}
855:         else            {PetscViewerASCIIPrintf(viewer,"rows=%D, cols=%D, bs=%D\n",rows,cols,rbs);}
856:       } else {
857:         PetscViewerASCIIPrintf(viewer,"rows=%D, cols=%D\n",rows,cols);
858:       }
859:       if (mat->factortype) {
860:         const MatSolverPackage solver;
861:         MatFactorGetSolverPackage(mat,&solver);
862:         PetscViewerASCIIPrintf(viewer,"package used to perform factorization: %s\n",solver);
863:       }
864:       if (mat->ops->getinfo) {
865:         MatInfo info;
866:         MatGetInfo(mat,MAT_GLOBAL_SUM,&info);
867:         PetscViewerASCIIPrintf(viewer,"total: nonzeros=%g, allocated nonzeros=%g\n",info.nz_used,info.nz_allocated);
868:         PetscViewerASCIIPrintf(viewer,"total number of mallocs used during MatSetValues calls =%D\n",(PetscInt)info.mallocs);
869:       }
870:       if (mat->nullsp) {PetscViewerASCIIPrintf(viewer,"  has attached null space\n");}
871:       if (mat->nearnullsp) {PetscViewerASCIIPrintf(viewer,"  has attached near null space\n");}
872:     }
873: #if defined(PETSC_HAVE_SAWS)
874:   } else if (issaws) {
875:     PetscMPIInt rank;

877:     PetscObjectName((PetscObject)mat);
878:     MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
879:     if (!((PetscObject)mat)->amsmem && !rank) {
880:       PetscObjectViewSAWs((PetscObject)mat,viewer);
881:     }
882: #endif
883:   }
884:   if (mat->ops->view) {
885:     PetscViewerASCIIPushTab(viewer);
886:     (*mat->ops->view)(mat,viewer);
887:     PetscViewerASCIIPopTab(viewer);
888:   }
889:   if (iascii) {
890:     if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ORDER,"Must call MatAssemblyBegin/End() before viewing matrix");
891:     PetscViewerGetFormat(viewer,&format);
892:     if (format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
893:       PetscViewerASCIIPopTab(viewer);
894:     }
895:   }
896:   PetscLogEventEnd(MAT_View,mat,viewer,0,0);
897:   return(0);
898: }

900: #if defined(PETSC_USE_DEBUG)
901: #include <../src/sys/totalview/tv_data_display.h>
902: PETSC_UNUSED static int TV_display_type(const struct _p_Mat *mat)
903: {
904:   TV_add_row("Local rows", "int", &mat->rmap->n);
905:   TV_add_row("Local columns", "int", &mat->cmap->n);
906:   TV_add_row("Global rows", "int", &mat->rmap->N);
907:   TV_add_row("Global columns", "int", &mat->cmap->N);
908:   TV_add_row("Typename", TV_ascii_string_type, ((PetscObject)mat)->type_name);
909:   return TV_format_OK;
910: }
911: #endif

915: /*@C
916:    MatLoad - Loads a matrix that has been stored in binary format
917:    with MatView().  The matrix format is determined from the options database.
918:    Generates a parallel MPI matrix if the communicator has more than one
919:    processor.  The default matrix type is AIJ.

921:    Collective on PetscViewer

923:    Input Parameters:
924: +  newmat - the newly loaded matrix, this needs to have been created with MatCreate()
925:             or some related function before a call to MatLoad()
926: -  viewer - binary file viewer, created with PetscViewerBinaryOpen()

928:    Options Database Keys:
929:    Used with block matrix formats (MATSEQBAIJ,  ...) to specify
930:    block size
931: .    -matload_block_size <bs>

933:    Level: beginner

935:    Notes:
936:    If the Mat type has not yet been given then MATAIJ is used, call MatSetFromOptions() on the
937:    Mat before calling this routine if you wish to set it from the options database.

939:    MatLoad() automatically loads into the options database any options
940:    given in the file filename.info where filename is the name of the file
941:    that was passed to the PetscViewerBinaryOpen(). The options in the info
942:    file will be ignored if you use the -viewer_binary_skip_info option.

944:    If the type or size of newmat is not set before a call to MatLoad, PETSc
945:    sets the default matrix type AIJ and sets the local and global sizes.
946:    If type and/or size is already set, then the same are used.

948:    In parallel, each processor can load a subset of rows (or the
949:    entire matrix).  This routine is especially useful when a large
950:    matrix is stored on disk and only part of it is desired on each
951:    processor.  For example, a parallel solver may access only some of
952:    the rows from each processor.  The algorithm used here reads
953:    relatively small blocks of data rather than reading the entire
954:    matrix and then subsetting it.

956:    Notes for advanced users:
957:    Most users should not need to know the details of the binary storage
958:    format, since MatLoad() and MatView() completely hide these details.
959:    But for anyone who's interested, the standard binary matrix storage
960:    format is

962: $    int    MAT_FILE_CLASSID
963: $    int    number of rows
964: $    int    number of columns
965: $    int    total number of nonzeros
966: $    int    *number nonzeros in each row
967: $    int    *column indices of all nonzeros (starting index is zero)
968: $    PetscScalar *values of all nonzeros

970:    PETSc automatically does the byte swapping for
971: machines that store the bytes reversed, e.g.  DEC alpha, freebsd,
972: linux, Windows and the paragon; thus if you write your own binary
973: read/write routines you have to swap the bytes; see PetscBinaryRead()
974: and PetscBinaryWrite() to see how this may be done.

976: .keywords: matrix, load, binary, input

978: .seealso: PetscViewerBinaryOpen(), MatView(), VecLoad()

980:  @*/
981: PetscErrorCode  MatLoad(Mat newmat,PetscViewer viewer)
982: {
984:   PetscBool      isbinary,flg;

989:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
990:   if (!isbinary) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Invalid viewer; open viewer with PetscViewerBinaryOpen()");

992:   if (!((PetscObject)newmat)->type_name) {
993:     MatSetType(newmat,MATAIJ);
994:   }

996:   if (!newmat->ops->load) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"MatLoad is not supported for type");
997:   PetscLogEventBegin(MAT_Load,viewer,0,0,0);
998:   (*newmat->ops->load)(newmat,viewer);
999:   PetscLogEventEnd(MAT_Load,viewer,0,0,0);

1001:   flg  = PETSC_FALSE;
1002:   PetscOptionsGetBool(((PetscObject)newmat)->prefix,"-matload_symmetric",&flg,NULL);
1003:   if (flg) {
1004:     MatSetOption(newmat,MAT_SYMMETRIC,PETSC_TRUE);
1005:     MatSetOption(newmat,MAT_SYMMETRY_ETERNAL,PETSC_TRUE);
1006:   }
1007:   flg  = PETSC_FALSE;
1008:   PetscOptionsGetBool(((PetscObject)newmat)->prefix,"-matload_spd",&flg,NULL);
1009:   if (flg) {
1010:     MatSetOption(newmat,MAT_SPD,PETSC_TRUE);
1011:   }
1012:   return(0);
1013: }

1017: PetscErrorCode MatDestroy_Redundant(Mat_Redundant **redundant)
1018: {
1020:   Mat_Redundant  *redund = *redundant;
1021:   PetscInt       i;

1024:   if (redund){
1025:     if (redund->matseq) { /* via MatGetSubMatrices()  */
1026:       ISDestroy(&redund->isrow);
1027:       ISDestroy(&redund->iscol);
1028:       MatDestroy(&redund->matseq[0]);
1029:       PetscFree(redund->matseq);
1030:     } else {
1031:       PetscFree2(redund->send_rank,redund->recv_rank);
1032:       PetscFree(redund->sbuf_j);
1033:       PetscFree(redund->sbuf_a);
1034:       for (i=0; i<redund->nrecvs; i++) {
1035:         PetscFree(redund->rbuf_j[i]);
1036:         PetscFree(redund->rbuf_a[i]);
1037:       }
1038:       PetscFree4(redund->sbuf_nz,redund->rbuf_nz,redund->rbuf_j,redund->rbuf_a);
1039:     }

1041:     if (redund->subcomm) {
1042:       PetscCommDestroy(&redund->subcomm);
1043:     }
1044:     PetscFree(redund);
1045:   }
1046:   return(0);
1047: }

1051: /*@
1052:    MatDestroy - Frees space taken by a matrix.

1054:    Collective on Mat

1056:    Input Parameter:
1057: .  A - the matrix

1059:    Level: beginner

1061: @*/
1062: PetscErrorCode  MatDestroy(Mat *A)
1063: {

1067:   if (!*A) return(0);
1069:   if (--((PetscObject)(*A))->refct > 0) {*A = NULL; return(0);}

1071:   /* if memory was published with SAWs then destroy it */
1072:   PetscObjectSAWsViewOff((PetscObject)*A);
1073:   if ((*A)->ops->destroy) {
1074:     (*(*A)->ops->destroy)(*A);
1075:   }
1076:   MatDestroy_Redundant(&(*A)->redundant);
1077:   MatNullSpaceDestroy(&(*A)->nullsp);
1078:   MatNullSpaceDestroy(&(*A)->transnullsp);
1079:   MatNullSpaceDestroy(&(*A)->nearnullsp);
1080:   PetscLayoutDestroy(&(*A)->rmap);
1081:   PetscLayoutDestroy(&(*A)->cmap);
1082:   PetscHeaderDestroy(A);
1083:   return(0);
1084: }

1088: /*@
1089:    MatSetValues - Inserts or adds a block of values into a matrix.
1090:    These values may be cached, so MatAssemblyBegin() and MatAssemblyEnd()
1091:    MUST be called after all calls to MatSetValues() have been completed.

1093:    Not Collective

1095:    Input Parameters:
1096: +  mat - the matrix
1097: .  v - a logically two-dimensional array of values
1098: .  m, idxm - the number of rows and their global indices
1099: .  n, idxn - the number of columns and their global indices
1100: -  addv - either ADD_VALUES or INSERT_VALUES, where
1101:    ADD_VALUES adds values to any existing entries, and
1102:    INSERT_VALUES replaces existing entries with new values

1104:    Notes:
1105:    If you create the matrix yourself (that is not with a call to DMCreateMatrix()) then you MUST call MatXXXXSetPreallocation() or
1106:       MatSetUp() before using this routine

1108:    By default the values, v, are row-oriented. See MatSetOption() for other options.

1110:    Calls to MatSetValues() with the INSERT_VALUES and ADD_VALUES
1111:    options cannot be mixed without intervening calls to the assembly
1112:    routines.

1114:    MatSetValues() uses 0-based row and column numbers in Fortran
1115:    as well as in C.

1117:    Negative indices may be passed in idxm and idxn, these rows and columns are
1118:    simply ignored. This allows easily inserting element stiffness matrices
1119:    with homogeneous Dirchlet boundary conditions that you don't want represented
1120:    in the matrix.

1122:    Efficiency Alert:
1123:    The routine MatSetValuesBlocked() may offer much better efficiency
1124:    for users of block sparse formats (MATSEQBAIJ and MATMPIBAIJ).

1126:    Level: beginner

1128:    Concepts: matrices^putting entries in

1130: .seealso: MatSetOption(), MatAssemblyBegin(), MatAssemblyEnd(), MatSetValuesBlocked(), MatSetValuesLocal(),
1131:           InsertMode, INSERT_VALUES, ADD_VALUES
1132: @*/
1133: PetscErrorCode  MatSetValues(Mat mat,PetscInt m,const PetscInt idxm[],PetscInt n,const PetscInt idxn[],const PetscScalar v[],InsertMode addv)
1134: {
1136: #if defined(PETSC_USE_DEBUG)
1137:   PetscInt       i,j;
1138: #endif

1143:   if (!m || !n) return(0); /* no values to insert */
1147:   MatCheckPreallocated(mat,1);
1148:   if (mat->insertmode == NOT_SET_VALUES) {
1149:     mat->insertmode = addv;
1150:   }
1151: #if defined(PETSC_USE_DEBUG)
1152:   else if (mat->insertmode != addv) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Cannot mix add values and insert values");
1153:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
1154:   if (!mat->ops->setvalues) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);

1156:   for (i=0; i<m; i++) {
1157:     for (j=0; j<n; j++) {
1158:       if (mat->erroriffpe && PetscIsInfOrNanScalar(v[i*n+j]))
1159: #if defined(PETSC_USE_COMPLEX)
1160:         SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_FP,"Inserting %g+ig at matrix entry (%D,%D)",(double)PetscRealPart(v[i*n+j]),(double)PetscImaginaryPart(v[i*n+j]),idxm[i],idxn[j]);
1161: #else
1162:       SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_FP,"Inserting %g at matrix entry (%D,%D)",(double)v[i*n+j],idxm[i],idxn[j]);
1163: #endif
1164:     }
1165:   }
1166: #endif

1168:   if (mat->assembled) {
1169:     mat->was_assembled = PETSC_TRUE;
1170:     mat->assembled     = PETSC_FALSE;
1171:   }
1172:   PetscLogEventBegin(MAT_SetValues,mat,0,0,0);
1173:   (*mat->ops->setvalues)(mat,m,idxm,n,idxn,v,addv);
1174:   PetscLogEventEnd(MAT_SetValues,mat,0,0,0);
1175: #if defined(PETSC_HAVE_CUSP)
1176:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
1177:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
1178:   }
1179: #endif
1180: #if defined(PETSC_HAVE_VIENNACL)
1181:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
1182:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
1183:   }
1184: #endif
1185:   return(0);
1186: }


1191: /*@
1192:    MatSetValuesRowLocal - Inserts a row (block row for BAIJ matrices) of nonzero
1193:         values into a matrix

1195:    Not Collective

1197:    Input Parameters:
1198: +  mat - the matrix
1199: .  row - the (block) row to set
1200: -  v - a logically two-dimensional array of values

1202:    Notes:
1203:    By the values, v, are column-oriented (for the block version) and sorted

1205:    All the nonzeros in the row must be provided

1207:    The matrix must have previously had its column indices set

1209:    The row must belong to this process

1211:    Level: intermediate

1213:    Concepts: matrices^putting entries in

1215: .seealso: MatSetOption(), MatAssemblyBegin(), MatAssemblyEnd(), MatSetValuesBlocked(), MatSetValuesLocal(),
1216:           InsertMode, INSERT_VALUES, ADD_VALUES, MatSetValues(), MatSetValuesRow(), MatSetLocalToGlobalMapping()
1217: @*/
1218: PetscErrorCode  MatSetValuesRowLocal(Mat mat,PetscInt row,const PetscScalar v[])
1219: {
1221:   PetscInt       globalrow;

1227:   ISLocalToGlobalMappingApply(mat->rmap->mapping,1,&row,&globalrow);
1228:   MatSetValuesRow(mat,globalrow,v);
1229: #if defined(PETSC_HAVE_CUSP)
1230:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
1231:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
1232:   }
1233: #endif
1234: #if defined(PETSC_HAVE_VIENNACL)
1235:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
1236:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
1237:   }
1238: #endif
1239:   return(0);
1240: }

1244: /*@
1245:    MatSetValuesRow - Inserts a row (block row for BAIJ matrices) of nonzero
1246:         values into a matrix

1248:    Not Collective

1250:    Input Parameters:
1251: +  mat - the matrix
1252: .  row - the (block) row to set
1253: -  v - a logically two-dimensional array of values

1255:    Notes:
1256:    The values, v, are column-oriented for the block version.

1258:    All the nonzeros in the row must be provided

1260:    THE MATRIX MUSAT HAVE PREVIOUSLY HAD ITS COLUMN INDICES SET. IT IS RARE THAT THIS ROUTINE IS USED, usually MatSetValues() is used.

1262:    The row must belong to this process

1264:    Level: advanced

1266:    Concepts: matrices^putting entries in

1268: .seealso: MatSetOption(), MatAssemblyBegin(), MatAssemblyEnd(), MatSetValuesBlocked(), MatSetValuesLocal(),
1269:           InsertMode, INSERT_VALUES, ADD_VALUES, MatSetValues()
1270: @*/
1271: PetscErrorCode  MatSetValuesRow(Mat mat,PetscInt row,const PetscScalar v[])
1272: {

1278:   MatCheckPreallocated(mat,1);
1280: #if defined(PETSC_USE_DEBUG)
1281:   if (mat->insertmode == ADD_VALUES) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Cannot mix add and insert values");
1282:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
1283: #endif
1284:   mat->insertmode = INSERT_VALUES;

1286:   if (mat->assembled) {
1287:     mat->was_assembled = PETSC_TRUE;
1288:     mat->assembled     = PETSC_FALSE;
1289:   }
1290:   PetscLogEventBegin(MAT_SetValues,mat,0,0,0);
1291:   if (!mat->ops->setvaluesrow) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
1292:   (*mat->ops->setvaluesrow)(mat,row,v);
1293:   PetscLogEventEnd(MAT_SetValues,mat,0,0,0);
1294: #if defined(PETSC_HAVE_CUSP)
1295:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
1296:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
1297:   }
1298: #endif
1299: #if defined(PETSC_HAVE_VIENNACL)
1300:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
1301:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
1302:   }
1303: #endif
1304:   return(0);
1305: }

1309: /*@
1310:    MatSetValuesStencil - Inserts or adds a block of values into a matrix.
1311:      Using structured grid indexing

1313:    Not Collective

1315:    Input Parameters:
1316: +  mat - the matrix
1317: .  m - number of rows being entered
1318: .  idxm - grid coordinates (and component number when dof > 1) for matrix rows being entered
1319: .  n - number of columns being entered
1320: .  idxn - grid coordinates (and component number when dof > 1) for matrix columns being entered
1321: .  v - a logically two-dimensional array of values
1322: -  addv - either ADD_VALUES or INSERT_VALUES, where
1323:    ADD_VALUES adds values to any existing entries, and
1324:    INSERT_VALUES replaces existing entries with new values

1326:    Notes:
1327:    By default the values, v, are row-oriented.  See MatSetOption() for other options.

1329:    Calls to MatSetValuesStencil() with the INSERT_VALUES and ADD_VALUES
1330:    options cannot be mixed without intervening calls to the assembly
1331:    routines.

1333:    The grid coordinates are across the entire grid, not just the local portion

1335:    MatSetValuesStencil() uses 0-based row and column numbers in Fortran
1336:    as well as in C.

1338:    For setting/accessing vector values via array coordinates you can use the DMDAVecGetArray() routine

1340:    In order to use this routine you must either obtain the matrix with DMCreateMatrix()
1341:    or call MatSetLocalToGlobalMapping() and MatSetStencil() first.

1343:    The columns and rows in the stencil passed in MUST be contained within the
1344:    ghost region of the given process as set with DMDACreateXXX() or MatSetStencil(). For example,
1345:    if you create a DMDA with an overlap of one grid level and on a particular process its first
1346:    local nonghost x logical coordinate is 6 (so its first ghost x logical coordinate is 5) the
1347:    first i index you can use in your column and row indices in MatSetStencil() is 5.

1349:    In Fortran idxm and idxn should be declared as
1350: $     MatStencil idxm(4,m),idxn(4,n)
1351:    and the values inserted using
1352: $    idxm(MatStencil_i,1) = i
1353: $    idxm(MatStencil_j,1) = j
1354: $    idxm(MatStencil_k,1) = k
1355: $    idxm(MatStencil_c,1) = c
1356:    etc

1358:    For periodic boundary conditions use negative indices for values to the left (below 0; that are to be
1359:    obtained by wrapping values from right edge). For values to the right of the last entry using that index plus one
1360:    etc to obtain values that obtained by wrapping the values from the left edge. This does not work for anything but the
1361:    DM_BOUNDARY_PERIODIC boundary type.

1363:    For indices that don't mean anything for your case (like the k index when working in 2d) or the c index when you have
1364:    a single value per point) you can skip filling those indices.

1366:    Inspired by the structured grid interface to the HYPRE package
1367:    (http://www.llnl.gov/CASC/hypre)

1369:    Efficiency Alert:
1370:    The routine MatSetValuesBlockedStencil() may offer much better efficiency
1371:    for users of block sparse formats (MATSEQBAIJ and MATMPIBAIJ).

1373:    Level: beginner

1375:    Concepts: matrices^putting entries in

1377: .seealso: MatSetOption(), MatAssemblyBegin(), MatAssemblyEnd(), MatSetValuesBlocked(), MatSetValuesLocal()
1378:           MatSetValues(), MatSetValuesBlockedStencil(), MatSetStencil(), DMCreateMatrix(), DMDAVecGetArray(), MatStencil
1379: @*/
1380: PetscErrorCode  MatSetValuesStencil(Mat mat,PetscInt m,const MatStencil idxm[],PetscInt n,const MatStencil idxn[],const PetscScalar v[],InsertMode addv)
1381: {
1383:   PetscInt       buf[8192],*bufm=0,*bufn=0,*jdxm,*jdxn;
1384:   PetscInt       j,i,dim = mat->stencil.dim,*dims = mat->stencil.dims+1,tmp;
1385:   PetscInt       *starts = mat->stencil.starts,*dxm = (PetscInt*)idxm,*dxn = (PetscInt*)idxn,sdim = dim - (1 - (PetscInt)mat->stencil.noc);

1388:   if (!m || !n) return(0); /* no values to insert */

1395:   if ((m+n) <= (PetscInt)(sizeof(buf)/sizeof(PetscInt))) {
1396:     jdxm = buf; jdxn = buf+m;
1397:   } else {
1398:     PetscMalloc2(m,&bufm,n,&bufn);
1399:     jdxm = bufm; jdxn = bufn;
1400:   }
1401:   for (i=0; i<m; i++) {
1402:     for (j=0; j<3-sdim; j++) dxm++;
1403:     tmp = *dxm++ - starts[0];
1404:     for (j=0; j<dim-1; j++) {
1405:       if ((*dxm++ - starts[j+1]) < 0 || tmp < 0) tmp = -1;
1406:       else                                       tmp = tmp*dims[j] + *(dxm-1) - starts[j+1];
1407:     }
1408:     if (mat->stencil.noc) dxm++;
1409:     jdxm[i] = tmp;
1410:   }
1411:   for (i=0; i<n; i++) {
1412:     for (j=0; j<3-sdim; j++) dxn++;
1413:     tmp = *dxn++ - starts[0];
1414:     for (j=0; j<dim-1; j++) {
1415:       if ((*dxn++ - starts[j+1]) < 0 || tmp < 0) tmp = -1;
1416:       else                                       tmp = tmp*dims[j] + *(dxn-1) - starts[j+1];
1417:     }
1418:     if (mat->stencil.noc) dxn++;
1419:     jdxn[i] = tmp;
1420:   }
1421:   MatSetValuesLocal(mat,m,jdxm,n,jdxn,v,addv);
1422:   PetscFree2(bufm,bufn);
1423:   return(0);
1424: }

1428: /*@
1429:    MatSetValuesBlockedStencil - Inserts or adds a block of values into a matrix.
1430:      Using structured grid indexing

1432:    Not Collective

1434:    Input Parameters:
1435: +  mat - the matrix
1436: .  m - number of rows being entered
1437: .  idxm - grid coordinates for matrix rows being entered
1438: .  n - number of columns being entered
1439: .  idxn - grid coordinates for matrix columns being entered
1440: .  v - a logically two-dimensional array of values
1441: -  addv - either ADD_VALUES or INSERT_VALUES, where
1442:    ADD_VALUES adds values to any existing entries, and
1443:    INSERT_VALUES replaces existing entries with new values

1445:    Notes:
1446:    By default the values, v, are row-oriented and unsorted.
1447:    See MatSetOption() for other options.

1449:    Calls to MatSetValuesBlockedStencil() with the INSERT_VALUES and ADD_VALUES
1450:    options cannot be mixed without intervening calls to the assembly
1451:    routines.

1453:    The grid coordinates are across the entire grid, not just the local portion

1455:    MatSetValuesBlockedStencil() uses 0-based row and column numbers in Fortran
1456:    as well as in C.

1458:    For setting/accessing vector values via array coordinates you can use the DMDAVecGetArray() routine

1460:    In order to use this routine you must either obtain the matrix with DMCreateMatrix()
1461:    or call MatSetBlockSize(), MatSetLocalToGlobalMapping() and MatSetStencil() first.

1463:    The columns and rows in the stencil passed in MUST be contained within the
1464:    ghost region of the given process as set with DMDACreateXXX() or MatSetStencil(). For example,
1465:    if you create a DMDA with an overlap of one grid level and on a particular process its first
1466:    local nonghost x logical coordinate is 6 (so its first ghost x logical coordinate is 5) the
1467:    first i index you can use in your column and row indices in MatSetStencil() is 5.

1469:    In Fortran idxm and idxn should be declared as
1470: $     MatStencil idxm(4,m),idxn(4,n)
1471:    and the values inserted using
1472: $    idxm(MatStencil_i,1) = i
1473: $    idxm(MatStencil_j,1) = j
1474: $    idxm(MatStencil_k,1) = k
1475:    etc

1477:    Negative indices may be passed in idxm and idxn, these rows and columns are
1478:    simply ignored. This allows easily inserting element stiffness matrices
1479:    with homogeneous Dirchlet boundary conditions that you don't want represented
1480:    in the matrix.

1482:    Inspired by the structured grid interface to the HYPRE package
1483:    (http://www.llnl.gov/CASC/hypre)

1485:    Level: beginner

1487:    Concepts: matrices^putting entries in

1489: .seealso: MatSetOption(), MatAssemblyBegin(), MatAssemblyEnd(), MatSetValuesBlocked(), MatSetValuesLocal()
1490:           MatSetValues(), MatSetValuesStencil(), MatSetStencil(), DMCreateMatrix(), DMDAVecGetArray(), MatStencil,
1491:           MatSetBlockSize(), MatSetLocalToGlobalMapping()
1492: @*/
1493: PetscErrorCode  MatSetValuesBlockedStencil(Mat mat,PetscInt m,const MatStencil idxm[],PetscInt n,const MatStencil idxn[],const PetscScalar v[],InsertMode addv)
1494: {
1496:   PetscInt       buf[8192],*bufm=0,*bufn=0,*jdxm,*jdxn;
1497:   PetscInt       j,i,dim = mat->stencil.dim,*dims = mat->stencil.dims+1,tmp;
1498:   PetscInt       *starts = mat->stencil.starts,*dxm = (PetscInt*)idxm,*dxn = (PetscInt*)idxn,sdim = dim - (1 - (PetscInt)mat->stencil.noc);

1501:   if (!m || !n) return(0); /* no values to insert */

1508:   if ((m+n) <= (PetscInt)(sizeof(buf)/sizeof(PetscInt))) {
1509:     jdxm = buf; jdxn = buf+m;
1510:   } else {
1511:     PetscMalloc2(m,&bufm,n,&bufn);
1512:     jdxm = bufm; jdxn = bufn;
1513:   }
1514:   for (i=0; i<m; i++) {
1515:     for (j=0; j<3-sdim; j++) dxm++;
1516:     tmp = *dxm++ - starts[0];
1517:     for (j=0; j<sdim-1; j++) {
1518:       if ((*dxm++ - starts[j+1]) < 0 || tmp < 0) tmp = -1;
1519:       else                                       tmp = tmp*dims[j] + *(dxm-1) - starts[j+1];
1520:     }
1521:     dxm++;
1522:     jdxm[i] = tmp;
1523:   }
1524:   for (i=0; i<n; i++) {
1525:     for (j=0; j<3-sdim; j++) dxn++;
1526:     tmp = *dxn++ - starts[0];
1527:     for (j=0; j<sdim-1; j++) {
1528:       if ((*dxn++ - starts[j+1]) < 0 || tmp < 0) tmp = -1;
1529:       else                                       tmp = tmp*dims[j] + *(dxn-1) - starts[j+1];
1530:     }
1531:     dxn++;
1532:     jdxn[i] = tmp;
1533:   }
1534:   MatSetValuesBlockedLocal(mat,m,jdxm,n,jdxn,v,addv);
1535:   PetscFree2(bufm,bufn);
1536: #if defined(PETSC_HAVE_CUSP)
1537:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
1538:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
1539:   }
1540: #endif
1541: #if defined(PETSC_HAVE_VIENNACL)
1542:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
1543:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
1544:   }
1545: #endif
1546:   return(0);
1547: }

1551: /*@
1552:    MatSetStencil - Sets the grid information for setting values into a matrix via
1553:         MatSetValuesStencil()

1555:    Not Collective

1557:    Input Parameters:
1558: +  mat - the matrix
1559: .  dim - dimension of the grid 1, 2, or 3
1560: .  dims - number of grid points in x, y, and z direction, including ghost points on your processor
1561: .  starts - starting point of ghost nodes on your processor in x, y, and z direction
1562: -  dof - number of degrees of freedom per node


1565:    Inspired by the structured grid interface to the HYPRE package
1566:    (www.llnl.gov/CASC/hyper)

1568:    For matrices generated with DMCreateMatrix() this routine is automatically called and so not needed by the
1569:    user.

1571:    Level: beginner

1573:    Concepts: matrices^putting entries in

1575: .seealso: MatSetOption(), MatAssemblyBegin(), MatAssemblyEnd(), MatSetValuesBlocked(), MatSetValuesLocal()
1576:           MatSetValues(), MatSetValuesBlockedStencil(), MatSetValuesStencil()
1577: @*/
1578: PetscErrorCode  MatSetStencil(Mat mat,PetscInt dim,const PetscInt dims[],const PetscInt starts[],PetscInt dof)
1579: {
1580:   PetscInt i;


1587:   mat->stencil.dim = dim + (dof > 1);
1588:   for (i=0; i<dim; i++) {
1589:     mat->stencil.dims[i]   = dims[dim-i-1];      /* copy the values in backwards */
1590:     mat->stencil.starts[i] = starts[dim-i-1];
1591:   }
1592:   mat->stencil.dims[dim]   = dof;
1593:   mat->stencil.starts[dim] = 0;
1594:   mat->stencil.noc         = (PetscBool)(dof == 1);
1595:   return(0);
1596: }

1600: /*@
1601:    MatSetValuesBlocked - Inserts or adds a block of values into a matrix.

1603:    Not Collective

1605:    Input Parameters:
1606: +  mat - the matrix
1607: .  v - a logically two-dimensional array of values
1608: .  m, idxm - the number of block rows and their global block indices
1609: .  n, idxn - the number of block columns and their global block indices
1610: -  addv - either ADD_VALUES or INSERT_VALUES, where
1611:    ADD_VALUES adds values to any existing entries, and
1612:    INSERT_VALUES replaces existing entries with new values

1614:    Notes:
1615:    If you create the matrix yourself (that is not with a call to DMCreateMatrix()) then you MUST call
1616:    MatXXXXSetPreallocation() or MatSetUp() before using this routine.

1618:    The m and n count the NUMBER of blocks in the row direction and column direction,
1619:    NOT the total number of rows/columns; for example, if the block size is 2 and
1620:    you are passing in values for rows 2,3,4,5  then m would be 2 (not 4).
1621:    The values in idxm would be 1 2; that is the first index for each block divided by
1622:    the block size.

1624:    Note that you must call MatSetBlockSize() when constructing this matrix (before
1625:    preallocating it).

1627:    By default the values, v, are row-oriented, so the layout of
1628:    v is the same as for MatSetValues(). See MatSetOption() for other options.

1630:    Calls to MatSetValuesBlocked() with the INSERT_VALUES and ADD_VALUES
1631:    options cannot be mixed without intervening calls to the assembly
1632:    routines.

1634:    MatSetValuesBlocked() uses 0-based row and column numbers in Fortran
1635:    as well as in C.

1637:    Negative indices may be passed in idxm and idxn, these rows and columns are
1638:    simply ignored. This allows easily inserting element stiffness matrices
1639:    with homogeneous Dirchlet boundary conditions that you don't want represented
1640:    in the matrix.

1642:    Each time an entry is set within a sparse matrix via MatSetValues(),
1643:    internal searching must be done to determine where to place the the
1644:    data in the matrix storage space.  By instead inserting blocks of
1645:    entries via MatSetValuesBlocked(), the overhead of matrix assembly is
1646:    reduced.

1648:    Example:
1649: $   Suppose m=n=2 and block size(bs) = 2 The array is
1650: $
1651: $   1  2  | 3  4
1652: $   5  6  | 7  8
1653: $   - - - | - - -
1654: $   9  10 | 11 12
1655: $   13 14 | 15 16
1656: $
1657: $   v[] should be passed in like
1658: $   v[] = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
1659: $
1660: $  If you are not using row oriented storage of v (that is you called MatSetOption(mat,MAT_ROW_ORIENTED,PETSC_FALSE)) then
1661: $   v[] = [1,5,9,13,2,6,10,14,3,7,11,15,4,8,12,16]

1663:    Level: intermediate

1665:    Concepts: matrices^putting entries in blocked

1667: .seealso: MatSetBlockSize(), MatSetOption(), MatAssemblyBegin(), MatAssemblyEnd(), MatSetValues(), MatSetValuesBlockedLocal()
1668: @*/
1669: PetscErrorCode  MatSetValuesBlocked(Mat mat,PetscInt m,const PetscInt idxm[],PetscInt n,const PetscInt idxn[],const PetscScalar v[],InsertMode addv)
1670: {

1676:   if (!m || !n) return(0); /* no values to insert */
1680:   MatCheckPreallocated(mat,1);
1681:   if (mat->insertmode == NOT_SET_VALUES) {
1682:     mat->insertmode = addv;
1683:   }
1684: #if defined(PETSC_USE_DEBUG)
1685:   else if (mat->insertmode != addv) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Cannot mix add values and insert values");
1686:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
1687:   if (!mat->ops->setvaluesblocked && !mat->ops->setvalues) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
1688: #endif

1690:   if (mat->assembled) {
1691:     mat->was_assembled = PETSC_TRUE;
1692:     mat->assembled     = PETSC_FALSE;
1693:   }
1694:   PetscLogEventBegin(MAT_SetValues,mat,0,0,0);
1695:   if (mat->ops->setvaluesblocked) {
1696:     (*mat->ops->setvaluesblocked)(mat,m,idxm,n,idxn,v,addv);
1697:   } else {
1698:     PetscInt buf[8192],*bufr=0,*bufc=0,*iidxm,*iidxn;
1699:     PetscInt i,j,bs,cbs;
1700:     MatGetBlockSizes(mat,&bs,&cbs);
1701:     if (m*bs+n*cbs <= (PetscInt)(sizeof(buf)/sizeof(PetscInt))) {
1702:       iidxm = buf; iidxn = buf + m*bs;
1703:     } else {
1704:       PetscMalloc2(m*bs,&bufr,n*cbs,&bufc);
1705:       iidxm = bufr; iidxn = bufc;
1706:     }
1707:     for (i=0; i<m; i++) {
1708:       for (j=0; j<bs; j++) {
1709:         iidxm[i*bs+j] = bs*idxm[i] + j;
1710:       }
1711:     }
1712:     for (i=0; i<n; i++) {
1713:       for (j=0; j<cbs; j++) {
1714:         iidxn[i*cbs+j] = cbs*idxn[i] + j;
1715:       }
1716:     }
1717:     MatSetValues(mat,m*bs,iidxm,n*cbs,iidxn,v,addv);
1718:     PetscFree2(bufr,bufc);
1719:   }
1720:   PetscLogEventEnd(MAT_SetValues,mat,0,0,0);
1721: #if defined(PETSC_HAVE_CUSP)
1722:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
1723:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
1724:   }
1725: #endif
1726: #if defined(PETSC_HAVE_VIENNACL)
1727:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
1728:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
1729:   }
1730: #endif
1731:   return(0);
1732: }

1736: /*@
1737:    MatGetValues - Gets a block of values from a matrix.

1739:    Not Collective; currently only returns a local block

1741:    Input Parameters:
1742: +  mat - the matrix
1743: .  v - a logically two-dimensional array for storing the values
1744: .  m, idxm - the number of rows and their global indices
1745: -  n, idxn - the number of columns and their global indices

1747:    Notes:
1748:    The user must allocate space (m*n PetscScalars) for the values, v.
1749:    The values, v, are then returned in a row-oriented format,
1750:    analogous to that used by default in MatSetValues().

1752:    MatGetValues() uses 0-based row and column numbers in
1753:    Fortran as well as in C.

1755:    MatGetValues() requires that the matrix has been assembled
1756:    with MatAssemblyBegin()/MatAssemblyEnd().  Thus, calls to
1757:    MatSetValues() and MatGetValues() CANNOT be made in succession
1758:    without intermediate matrix assembly.

1760:    Negative row or column indices will be ignored and those locations in v[] will be
1761:    left unchanged.

1763:    Level: advanced

1765:    Concepts: matrices^accessing values

1767: .seealso: MatGetRow(), MatGetSubMatrices(), MatSetValues()
1768: @*/
1769: PetscErrorCode  MatGetValues(Mat mat,PetscInt m,const PetscInt idxm[],PetscInt n,const PetscInt idxn[],PetscScalar v[])
1770: {

1776:   if (!m || !n) return(0);
1780:   if (!mat->assembled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
1781:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
1782:   if (!mat->ops->getvalues) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
1783:   MatCheckPreallocated(mat,1);

1785:   PetscLogEventBegin(MAT_GetValues,mat,0,0,0);
1786:   (*mat->ops->getvalues)(mat,m,idxm,n,idxn,v);
1787:   PetscLogEventEnd(MAT_GetValues,mat,0,0,0);
1788:   return(0);
1789: }

1793: /*@
1794:   MatSetValuesBatch - Adds (ADD_VALUES) many blocks of values into a matrix at once. The blocks must all be square and
1795:   the same size. Currently, this can only be called once and creates the given matrix.

1797:   Not Collective

1799:   Input Parameters:
1800: + mat - the matrix
1801: . nb - the number of blocks
1802: . bs - the number of rows (and columns) in each block
1803: . rows - a concatenation of the rows for each block
1804: - v - a concatenation of logically two-dimensional arrays of values

1806:   Notes:
1807:   In the future, we will extend this routine to handle rectangular blocks, and to allow multiple calls for a given matrix.

1809:   Level: advanced

1811:   Concepts: matrices^putting entries in

1813: .seealso: MatSetOption(), MatAssemblyBegin(), MatAssemblyEnd(), MatSetValuesBlocked(), MatSetValuesLocal(),
1814:           InsertMode, INSERT_VALUES, ADD_VALUES, MatSetValues()
1815: @*/
1816: PetscErrorCode MatSetValuesBatch(Mat mat, PetscInt nb, PetscInt bs, PetscInt rows[], const PetscScalar v[])
1817: {

1825: #if defined(PETSC_USE_DEBUG)
1826:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
1827: #endif

1829:   PetscLogEventBegin(MAT_SetValuesBatch,mat,0,0,0);
1830:   if (mat->ops->setvaluesbatch) {
1831:     (*mat->ops->setvaluesbatch)(mat,nb,bs,rows,v);
1832:   } else {
1833:     PetscInt b;
1834:     for (b = 0; b < nb; ++b) {
1835:       MatSetValues(mat, bs, &rows[b*bs], bs, &rows[b*bs], &v[b*bs*bs], ADD_VALUES);
1836:     }
1837:   }
1838:   PetscLogEventEnd(MAT_SetValuesBatch,mat,0,0,0);
1839:   return(0);
1840: }

1844: /*@
1845:    MatSetLocalToGlobalMapping - Sets a local-to-global numbering for use by
1846:    the routine MatSetValuesLocal() to allow users to insert matrix entries
1847:    using a local (per-processor) numbering.

1849:    Not Collective

1851:    Input Parameters:
1852: +  x - the matrix
1853: .  rmapping - row mapping created with ISLocalToGlobalMappingCreate()   or ISLocalToGlobalMappingCreateIS()
1854: - cmapping - column mapping

1856:    Level: intermediate

1858:    Concepts: matrices^local to global mapping
1859:    Concepts: local to global mapping^for matrices

1861: .seealso:  MatAssemblyBegin(), MatAssemblyEnd(), MatSetValues(), MatSetValuesLocal()
1862: @*/
1863: PetscErrorCode  MatSetLocalToGlobalMapping(Mat x,ISLocalToGlobalMapping rmapping,ISLocalToGlobalMapping cmapping)
1864: {


1873:   if (x->ops->setlocaltoglobalmapping) {
1874:     (*x->ops->setlocaltoglobalmapping)(x,rmapping,cmapping);
1875:   } else {
1876:     PetscLayoutSetISLocalToGlobalMapping(x->rmap,rmapping);
1877:     PetscLayoutSetISLocalToGlobalMapping(x->cmap,cmapping);
1878:   }
1879:   return(0);
1880: }


1885: /*@
1886:    MatGetLocalToGlobalMapping - Gets the local-to-global numbering set by MatSetLocalToGlobalMapping()

1888:    Not Collective

1890:    Input Parameters:
1891: .  A - the matrix

1893:    Output Parameters:
1894: + rmapping - row mapping
1895: - cmapping - column mapping

1897:    Level: advanced

1899:    Concepts: matrices^local to global mapping
1900:    Concepts: local to global mapping^for matrices

1902: .seealso:  MatSetValuesLocal()
1903: @*/
1904: PetscErrorCode  MatGetLocalToGlobalMapping(Mat A,ISLocalToGlobalMapping *rmapping,ISLocalToGlobalMapping *cmapping)
1905: {
1911:   if (rmapping) *rmapping = A->rmap->mapping;
1912:   if (cmapping) *cmapping = A->cmap->mapping;
1913:   return(0);
1914: }

1918: /*@
1919:    MatGetLayouts - Gets the PetscLayout objects for rows and columns

1921:    Not Collective

1923:    Input Parameters:
1924: .  A - the matrix

1926:    Output Parameters:
1927: + rmap - row layout
1928: - cmap - column layout

1930:    Level: advanced

1932: .seealso:  MatCreateVecs(), MatGetLocalToGlobalMapping()
1933: @*/
1934: PetscErrorCode  MatGetLayouts(Mat A,PetscLayout *rmap,PetscLayout *cmap)
1935: {
1941:   if (rmap) *rmap = A->rmap;
1942:   if (cmap) *cmap = A->cmap;
1943:   return(0);
1944: }

1948: /*@
1949:    MatSetValuesLocal - Inserts or adds values into certain locations of a matrix,
1950:    using a local ordering of the nodes.

1952:    Not Collective

1954:    Input Parameters:
1955: +  x - the matrix
1956: .  nrow, irow - number of rows and their local indices
1957: .  ncol, icol - number of columns and their local indices
1958: .  y -  a logically two-dimensional array of values
1959: -  addv - either INSERT_VALUES or ADD_VALUES, where
1960:    ADD_VALUES adds values to any existing entries, and
1961:    INSERT_VALUES replaces existing entries with new values

1963:    Notes:
1964:    If you create the matrix yourself (that is not with a call to DMCreateMatrix()) then you MUST call MatXXXXSetPreallocation() or
1965:       MatSetUp() before using this routine

1967:    If you create the matrix yourself (that is not with a call to DMCreateMatrix()) then you MUST call MatSetLocalToGlobalMapping() before using this routine

1969:    Calls to MatSetValuesLocal() with the INSERT_VALUES and ADD_VALUES
1970:    options cannot be mixed without intervening calls to the assembly
1971:    routines.

1973:    These values may be cached, so MatAssemblyBegin() and MatAssemblyEnd()
1974:    MUST be called after all calls to MatSetValuesLocal() have been completed.

1976:    Level: intermediate

1978:    Concepts: matrices^putting entries in with local numbering

1980: .seealso:  MatAssemblyBegin(), MatAssemblyEnd(), MatSetValues(), MatSetLocalToGlobalMapping(),
1981:            MatSetValueLocal()
1982: @*/
1983: PetscErrorCode  MatSetValuesLocal(Mat mat,PetscInt nrow,const PetscInt irow[],PetscInt ncol,const PetscInt icol[],const PetscScalar y[],InsertMode addv)
1984: {

1990:   MatCheckPreallocated(mat,1);
1991:   if (!nrow || !ncol) return(0); /* no values to insert */
1995:   if (mat->insertmode == NOT_SET_VALUES) {
1996:     mat->insertmode = addv;
1997:   }
1998: #if defined(PETSC_USE_DEBUG)
1999:   else if (mat->insertmode != addv) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Cannot mix add values and insert values");
2000:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2001:   if (!mat->ops->setvalueslocal && !mat->ops->setvalues) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
2002: #endif

2004:   if (mat->assembled) {
2005:     mat->was_assembled = PETSC_TRUE;
2006:     mat->assembled     = PETSC_FALSE;
2007:   }
2008:   PetscLogEventBegin(MAT_SetValues,mat,0,0,0);
2009:   if (mat->ops->setvalueslocal) {
2010:     (*mat->ops->setvalueslocal)(mat,nrow,irow,ncol,icol,y,addv);
2011:   } else {
2012:     PetscInt buf[8192],*bufr=0,*bufc=0,*irowm,*icolm;
2013:     if ((nrow+ncol) <= (PetscInt)(sizeof(buf)/sizeof(PetscInt))) {
2014:       irowm = buf; icolm = buf+nrow;
2015:     } else {
2016:       PetscMalloc2(nrow,&bufr,ncol,&bufc);
2017:       irowm = bufr; icolm = bufc;
2018:     }
2019:     ISLocalToGlobalMappingApply(mat->rmap->mapping,nrow,irow,irowm);
2020:     ISLocalToGlobalMappingApply(mat->cmap->mapping,ncol,icol,icolm);
2021:     MatSetValues(mat,nrow,irowm,ncol,icolm,y,addv);
2022:     PetscFree2(bufr,bufc);
2023:   }
2024:   PetscLogEventEnd(MAT_SetValues,mat,0,0,0);
2025: #if defined(PETSC_HAVE_CUSP)
2026:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
2027:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
2028:   }
2029: #endif
2030: #if defined(PETSC_HAVE_VIENNACL)
2031:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
2032:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
2033:   }
2034: #endif
2035:   return(0);
2036: }

2040: /*@
2041:    MatSetValuesBlockedLocal - Inserts or adds values into certain locations of a matrix,
2042:    using a local ordering of the nodes a block at a time.

2044:    Not Collective

2046:    Input Parameters:
2047: +  x - the matrix
2048: .  nrow, irow - number of rows and their local indices
2049: .  ncol, icol - number of columns and their local indices
2050: .  y -  a logically two-dimensional array of values
2051: -  addv - either INSERT_VALUES or ADD_VALUES, where
2052:    ADD_VALUES adds values to any existing entries, and
2053:    INSERT_VALUES replaces existing entries with new values

2055:    Notes:
2056:    If you create the matrix yourself (that is not with a call to DMCreateMatrix()) then you MUST call MatXXXXSetPreallocation() or
2057:       MatSetUp() before using this routine

2059:    If you create the matrix yourself (that is not with a call to DMCreateMatrix()) then you MUST call MatSetBlockSize() and MatSetLocalToGlobalMapping()
2060:       before using this routineBefore calling MatSetValuesLocal(), the user must first set the

2062:    Calls to MatSetValuesBlockedLocal() with the INSERT_VALUES and ADD_VALUES
2063:    options cannot be mixed without intervening calls to the assembly
2064:    routines.

2066:    These values may be cached, so MatAssemblyBegin() and MatAssemblyEnd()
2067:    MUST be called after all calls to MatSetValuesBlockedLocal() have been completed.

2069:    Level: intermediate

2071:    Concepts: matrices^putting blocked values in with local numbering

2073: .seealso:  MatSetBlockSize(), MatSetLocalToGlobalMapping(), MatAssemblyBegin(), MatAssemblyEnd(),
2074:            MatSetValuesLocal(),  MatSetValuesBlocked()
2075: @*/
2076: PetscErrorCode  MatSetValuesBlockedLocal(Mat mat,PetscInt nrow,const PetscInt irow[],PetscInt ncol,const PetscInt icol[],const PetscScalar y[],InsertMode addv)
2077: {

2083:   MatCheckPreallocated(mat,1);
2084:   if (!nrow || !ncol) return(0); /* no values to insert */
2088:   if (mat->insertmode == NOT_SET_VALUES) {
2089:     mat->insertmode = addv;
2090:   }
2091: #if defined(PETSC_USE_DEBUG)
2092:   else if (mat->insertmode != addv) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Cannot mix add values and insert values");
2093:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2094:   if (!mat->ops->setvaluesblockedlocal && !mat->ops->setvaluesblocked && !mat->ops->setvalueslocal && !mat->ops->setvalues) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
2095: #endif

2097:   if (mat->assembled) {
2098:     mat->was_assembled = PETSC_TRUE;
2099:     mat->assembled     = PETSC_FALSE;
2100:   }
2101:   PetscLogEventBegin(MAT_SetValues,mat,0,0,0);
2102:   if (mat->ops->setvaluesblockedlocal) {
2103:     (*mat->ops->setvaluesblockedlocal)(mat,nrow,irow,ncol,icol,y,addv);
2104:   } else {
2105:     PetscInt buf[8192],*bufr=0,*bufc=0,*irowm,*icolm;
2106:     if ((nrow+ncol) <= (PetscInt)(sizeof(buf)/sizeof(PetscInt))) {
2107:       irowm = buf; icolm = buf + nrow;
2108:     } else {
2109:       PetscMalloc2(nrow,&bufr,ncol,&bufc);
2110:       irowm = bufr; icolm = bufc;
2111:     }
2112:     ISLocalToGlobalMappingApplyBlock(mat->rmap->mapping,nrow,irow,irowm);
2113:     ISLocalToGlobalMappingApplyBlock(mat->cmap->mapping,ncol,icol,icolm);
2114:     MatSetValuesBlocked(mat,nrow,irowm,ncol,icolm,y,addv);
2115:     PetscFree2(bufr,bufc);
2116:   }
2117:   PetscLogEventEnd(MAT_SetValues,mat,0,0,0);
2118: #if defined(PETSC_HAVE_CUSP)
2119:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
2120:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
2121:   }
2122: #endif
2123: #if defined(PETSC_HAVE_VIENNACL)
2124:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
2125:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
2126:   }
2127: #endif
2128:   return(0);
2129: }

2133: /*@
2134:    MatMultDiagonalBlock - Computes the matrix-vector product, y = Dx. Where D is defined by the inode or block structure of the diagonal

2136:    Collective on Mat and Vec

2138:    Input Parameters:
2139: +  mat - the matrix
2140: -  x   - the vector to be multiplied

2142:    Output Parameters:
2143: .  y - the result

2145:    Notes:
2146:    The vectors x and y cannot be the same.  I.e., one cannot
2147:    call MatMult(A,y,y).

2149:    Level: developer

2151:    Concepts: matrix-vector product

2153: .seealso: MatMultTranspose(), MatMultAdd(), MatMultTransposeAdd()
2154: @*/
2155: PetscErrorCode  MatMultDiagonalBlock(Mat mat,Vec x,Vec y)
2156: {


2165:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2166:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2167:   if (x == y) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"x and y must be different vectors");
2168:   MatCheckPreallocated(mat,1);

2170:   if (!mat->ops->multdiagonalblock) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"This matrix type does not have a multiply defined");
2171:   (*mat->ops->multdiagonalblock)(mat,x,y);
2172:   PetscObjectStateIncrease((PetscObject)y);
2173:   return(0);
2174: }

2176: /* --------------------------------------------------------*/
2179: /*@
2180:    MatMult - Computes the matrix-vector product, y = Ax.

2182:    Neighbor-wise Collective on Mat and Vec

2184:    Input Parameters:
2185: +  mat - the matrix
2186: -  x   - the vector to be multiplied

2188:    Output Parameters:
2189: .  y - the result

2191:    Notes:
2192:    The vectors x and y cannot be the same.  I.e., one cannot
2193:    call MatMult(A,y,y).

2195:    Level: beginner

2197:    Concepts: matrix-vector product

2199: .seealso: MatMultTranspose(), MatMultAdd(), MatMultTransposeAdd()
2200: @*/
2201: PetscErrorCode  MatMult(Mat mat,Vec x,Vec y)
2202: {

2210:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2211:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2212:   if (x == y) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"x and y must be different vectors");
2213: #if !defined(PETSC_HAVE_CONSTRAINTS)
2214:   if (mat->cmap->N != x->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->cmap->N,x->map->N);
2215:   if (mat->rmap->N != y->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec y: global dim %D %D",mat->rmap->N,y->map->N);
2216:   if (mat->rmap->n != y->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec y: local dim %D %D",mat->rmap->n,y->map->n);
2217: #endif
2218:   VecLocked(y,3);
2219:   if (mat->erroriffpe) {VecValidValues(x,2,PETSC_TRUE);}
2220:   MatCheckPreallocated(mat,1);

2222:   VecLockPush(x);
2223:   if (!mat->ops->mult) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"This matrix type does not have a multiply defined");
2224:   PetscLogEventBegin(MAT_Mult,mat,x,y,0);
2225:   (*mat->ops->mult)(mat,x,y);
2226:   PetscLogEventEnd(MAT_Mult,mat,x,y,0);
2227:   if (mat->erroriffpe) {VecValidValues(y,3,PETSC_FALSE);}
2228:   VecLockPop(x);
2229:   return(0);
2230: }

2234: /*@
2235:    MatMultTranspose - Computes matrix transpose times a vector.

2237:    Neighbor-wise Collective on Mat and Vec

2239:    Input Parameters:
2240: +  mat - the matrix
2241: -  x   - the vector to be multilplied

2243:    Output Parameters:
2244: .  y - the result

2246:    Notes:
2247:    The vectors x and y cannot be the same.  I.e., one cannot
2248:    call MatMultTranspose(A,y,y).

2250:    For complex numbers this does NOT compute the Hermitian (complex conjugate) transpose multiple,
2251:    use MatMultHermitianTranspose()

2253:    Level: beginner

2255:    Concepts: matrix vector product^transpose

2257: .seealso: MatMult(), MatMultAdd(), MatMultTransposeAdd(), MatMultHermitianTranspose(), MatTranspose()
2258: @*/
2259: PetscErrorCode  MatMultTranspose(Mat mat,Vec x,Vec y)
2260: {


2269:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2270:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2271:   if (x == y) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"x and y must be different vectors");
2272: #if !defined(PETSC_HAVE_CONSTRAINTS)
2273:   if (mat->rmap->N != x->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->rmap->N,x->map->N);
2274:   if (mat->cmap->N != y->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec y: global dim %D %D",mat->cmap->N,y->map->N);
2275: #endif
2276:   if (mat->erroriffpe) {VecValidValues(x,2,PETSC_TRUE);}
2277:   MatCheckPreallocated(mat,1);

2279:   if (!mat->ops->multtranspose) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"This matrix type does not have a multiply tranpose defined");
2280:   PetscLogEventBegin(MAT_MultTranspose,mat,x,y,0);
2281:   VecLockPush(x);
2282:   (*mat->ops->multtranspose)(mat,x,y);
2283:   VecLockPop(x);
2284:   PetscLogEventEnd(MAT_MultTranspose,mat,x,y,0);
2285:   PetscObjectStateIncrease((PetscObject)y);
2286:   if (mat->erroriffpe) {VecValidValues(y,3,PETSC_FALSE);}
2287:   return(0);
2288: }

2292: /*@
2293:    MatMultHermitianTranspose - Computes matrix Hermitian transpose times a vector.

2295:    Neighbor-wise Collective on Mat and Vec

2297:    Input Parameters:
2298: +  mat - the matrix
2299: -  x   - the vector to be multilplied

2301:    Output Parameters:
2302: .  y - the result

2304:    Notes:
2305:    The vectors x and y cannot be the same.  I.e., one cannot
2306:    call MatMultHermitianTranspose(A,y,y).

2308:    Also called the conjugate transpose, complex conjugate transpose, or adjoint.

2310:    For real numbers MatMultTranspose() and MatMultHermitianTranspose() are identical.

2312:    Level: beginner

2314:    Concepts: matrix vector product^transpose

2316: .seealso: MatMult(), MatMultAdd(), MatMultHermitianTransposeAdd(), MatMultTranspose()
2317: @*/
2318: PetscErrorCode  MatMultHermitianTranspose(Mat mat,Vec x,Vec y)
2319: {
2321:   Vec            w;


2329:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2330:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2331:   if (x == y) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"x and y must be different vectors");
2332: #if !defined(PETSC_HAVE_CONSTRAINTS)
2333:   if (mat->rmap->N != x->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->rmap->N,x->map->N);
2334:   if (mat->cmap->N != y->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec y: global dim %D %D",mat->cmap->N,y->map->N);
2335: #endif
2336:   MatCheckPreallocated(mat,1);

2338:   PetscLogEventBegin(MAT_MultHermitianTranspose,mat,x,y,0);
2339:   if (mat->ops->multhermitiantranspose) {
2340:     VecLockPush(x);
2341:     (*mat->ops->multhermitiantranspose)(mat,x,y);
2342:     VecLockPop(x);
2343:   } else {
2344:     VecDuplicate(x,&w);
2345:     VecCopy(x,w);
2346:     VecConjugate(w);
2347:     MatMultTranspose(mat,w,y);
2348:     VecDestroy(&w);
2349:     VecConjugate(y);
2350:   }
2351:   PetscLogEventEnd(MAT_MultHermitianTranspose,mat,x,y,0);
2352:   PetscObjectStateIncrease((PetscObject)y);
2353:   return(0);
2354: }

2358: /*@
2359:     MatMultAdd -  Computes v3 = v2 + A * v1.

2361:     Neighbor-wise Collective on Mat and Vec

2363:     Input Parameters:
2364: +   mat - the matrix
2365: -   v1, v2 - the vectors

2367:     Output Parameters:
2368: .   v3 - the result

2370:     Notes:
2371:     The vectors v1 and v3 cannot be the same.  I.e., one cannot
2372:     call MatMultAdd(A,v1,v2,v1).

2374:     Level: beginner

2376:     Concepts: matrix vector product^addition

2378: .seealso: MatMultTranspose(), MatMult(), MatMultTransposeAdd()
2379: @*/
2380: PetscErrorCode  MatMultAdd(Mat mat,Vec v1,Vec v2,Vec v3)
2381: {


2391:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2392:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2393:   if (mat->cmap->N != v1->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec v1: global dim %D %D",mat->cmap->N,v1->map->N);
2394:   /* if (mat->rmap->N != v2->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec v2: global dim %D %D",mat->rmap->N,v2->map->N);
2395:      if (mat->rmap->N != v3->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec v3: global dim %D %D",mat->rmap->N,v3->map->N); */
2396:   if (mat->rmap->n != v3->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec v3: local dim %D %D",mat->rmap->n,v3->map->n);
2397:   if (mat->rmap->n != v2->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec v2: local dim %D %D",mat->rmap->n,v2->map->n);
2398:   if (v1 == v3) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_IDN,"v1 and v3 must be different vectors");
2399:   MatCheckPreallocated(mat,1);

2401:   if (!mat->ops->multadd) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"No MatMultAdd() for matrix type '%s'",((PetscObject)mat)->type_name);
2402:   PetscLogEventBegin(MAT_MultAdd,mat,v1,v2,v3);
2403:   VecLockPush(v1);
2404:   (*mat->ops->multadd)(mat,v1,v2,v3);
2405:   VecLockPop(v1);
2406:   PetscLogEventEnd(MAT_MultAdd,mat,v1,v2,v3);
2407:   PetscObjectStateIncrease((PetscObject)v3);
2408:   return(0);
2409: }

2413: /*@
2414:    MatMultTransposeAdd - Computes v3 = v2 + A' * v1.

2416:    Neighbor-wise Collective on Mat and Vec

2418:    Input Parameters:
2419: +  mat - the matrix
2420: -  v1, v2 - the vectors

2422:    Output Parameters:
2423: .  v3 - the result

2425:    Notes:
2426:    The vectors v1 and v3 cannot be the same.  I.e., one cannot
2427:    call MatMultTransposeAdd(A,v1,v2,v1).

2429:    Level: beginner

2431:    Concepts: matrix vector product^transpose and addition

2433: .seealso: MatMultTranspose(), MatMultAdd(), MatMult()
2434: @*/
2435: PetscErrorCode  MatMultTransposeAdd(Mat mat,Vec v1,Vec v2,Vec v3)
2436: {


2446:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2447:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2448:   if (!mat->ops->multtransposeadd) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
2449:   if (v1 == v3) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_IDN,"v1 and v3 must be different vectors");
2450:   if (mat->rmap->N != v1->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec v1: global dim %D %D",mat->rmap->N,v1->map->N);
2451:   if (mat->cmap->N != v2->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec v2: global dim %D %D",mat->cmap->N,v2->map->N);
2452:   if (mat->cmap->N != v3->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec v3: global dim %D %D",mat->cmap->N,v3->map->N);
2453:   MatCheckPreallocated(mat,1);

2455:   PetscLogEventBegin(MAT_MultTransposeAdd,mat,v1,v2,v3);
2456:   VecLockPush(v1);
2457:   (*mat->ops->multtransposeadd)(mat,v1,v2,v3);
2458:   VecLockPop(v1);
2459:   PetscLogEventEnd(MAT_MultTransposeAdd,mat,v1,v2,v3);
2460:   PetscObjectStateIncrease((PetscObject)v3);
2461:   return(0);
2462: }

2466: /*@
2467:    MatMultHermitianTransposeAdd - Computes v3 = v2 + A^H * v1.

2469:    Neighbor-wise Collective on Mat and Vec

2471:    Input Parameters:
2472: +  mat - the matrix
2473: -  v1, v2 - the vectors

2475:    Output Parameters:
2476: .  v3 - the result

2478:    Notes:
2479:    The vectors v1 and v3 cannot be the same.  I.e., one cannot
2480:    call MatMultHermitianTransposeAdd(A,v1,v2,v1).

2482:    Level: beginner

2484:    Concepts: matrix vector product^transpose and addition

2486: .seealso: MatMultHermitianTranspose(), MatMultTranspose(), MatMultAdd(), MatMult()
2487: @*/
2488: PetscErrorCode  MatMultHermitianTransposeAdd(Mat mat,Vec v1,Vec v2,Vec v3)
2489: {


2499:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2500:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2501:   if (!mat->ops->multhermitiantransposeadd) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
2502:   if (v1 == v3) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_IDN,"v1 and v3 must be different vectors");
2503:   if (mat->rmap->N != v1->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec v1: global dim %D %D",mat->rmap->N,v1->map->N);
2504:   if (mat->cmap->N != v2->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec v2: global dim %D %D",mat->cmap->N,v2->map->N);
2505:   if (mat->cmap->N != v3->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec v3: global dim %D %D",mat->cmap->N,v3->map->N);
2506:   MatCheckPreallocated(mat,1);

2508:   PetscLogEventBegin(MAT_MultHermitianTransposeAdd,mat,v1,v2,v3);
2509:   VecLockPush(v1);
2510:   (*mat->ops->multhermitiantransposeadd)(mat,v1,v2,v3);
2511:   VecLockPop(v1);
2512:   PetscLogEventEnd(MAT_MultHermitianTransposeAdd,mat,v1,v2,v3);
2513:   PetscObjectStateIncrease((PetscObject)v3);
2514:   return(0);
2515: }

2519: /*@
2520:    MatMultConstrained - The inner multiplication routine for a
2521:    constrained matrix P^T A P.

2523:    Neighbor-wise Collective on Mat and Vec

2525:    Input Parameters:
2526: +  mat - the matrix
2527: -  x   - the vector to be multilplied

2529:    Output Parameters:
2530: .  y - the result

2532:    Notes:
2533:    The vectors x and y cannot be the same.  I.e., one cannot
2534:    call MatMult(A,y,y).

2536:    Level: beginner

2538: .keywords: matrix, multiply, matrix-vector product, constraint
2539: .seealso: MatMult(), MatMultTranspose(), MatMultAdd(), MatMultTransposeAdd()
2540: @*/
2541: PetscErrorCode  MatMultConstrained(Mat mat,Vec x,Vec y)
2542: {

2549:   if (!mat->assembled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2550:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2551:   if (x == y) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"x and y must be different vectors");
2552:   if (mat->cmap->N != x->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->cmap->N,x->map->N);
2553:   if (mat->rmap->N != y->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec y: global dim %D %D",mat->rmap->N,y->map->N);
2554:   if (mat->rmap->n != y->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec y: local dim %D %D",mat->rmap->n,y->map->n);

2556:   PetscLogEventBegin(MAT_MultConstrained,mat,x,y,0);
2557:   VecLockPush(x);
2558:   (*mat->ops->multconstrained)(mat,x,y);
2559:   VecLockPop(x);
2560:   PetscLogEventEnd(MAT_MultConstrained,mat,x,y,0);
2561:   PetscObjectStateIncrease((PetscObject)y);
2562:   return(0);
2563: }

2567: /*@
2568:    MatMultTransposeConstrained - The inner multiplication routine for a
2569:    constrained matrix P^T A^T P.

2571:    Neighbor-wise Collective on Mat and Vec

2573:    Input Parameters:
2574: +  mat - the matrix
2575: -  x   - the vector to be multilplied

2577:    Output Parameters:
2578: .  y - the result

2580:    Notes:
2581:    The vectors x and y cannot be the same.  I.e., one cannot
2582:    call MatMult(A,y,y).

2584:    Level: beginner

2586: .keywords: matrix, multiply, matrix-vector product, constraint
2587: .seealso: MatMult(), MatMultTranspose(), MatMultAdd(), MatMultTransposeAdd()
2588: @*/
2589: PetscErrorCode  MatMultTransposeConstrained(Mat mat,Vec x,Vec y)
2590: {

2597:   if (!mat->assembled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2598:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2599:   if (x == y) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"x and y must be different vectors");
2600:   if (mat->rmap->N != x->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->cmap->N,x->map->N);
2601:   if (mat->cmap->N != y->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec y: global dim %D %D",mat->rmap->N,y->map->N);

2603:   PetscLogEventBegin(MAT_MultConstrained,mat,x,y,0);
2604:   (*mat->ops->multtransposeconstrained)(mat,x,y);
2605:   PetscLogEventEnd(MAT_MultConstrained,mat,x,y,0);
2606:   PetscObjectStateIncrease((PetscObject)y);
2607:   return(0);
2608: }

2612: /*@C
2613:    MatGetFactorType - gets the type of factorization it is

2615:    Note Collective
2616:    as the flag

2618:    Input Parameters:
2619: .  mat - the matrix

2621:    Output Parameters:
2622: .  t - the type, one of MAT_FACTOR_NONE, MAT_FACTOR_LU, MAT_FACTOR_CHOLESKY, MAT_FACTOR_ILU, MAT_FACTOR_ICC,MAT_FACTOR_ILUDT

2624:     Level: intermediate

2626: .seealso:    MatFactorType, MatGetFactor()
2627: @*/
2628: PetscErrorCode  MatGetFactorType(Mat mat,MatFactorType *t)
2629: {
2633:   *t = mat->factortype;
2634:   return(0);
2635: }

2637: /* ------------------------------------------------------------*/
2640: /*@C
2641:    MatGetInfo - Returns information about matrix storage (number of
2642:    nonzeros, memory, etc.).

2644:    Collective on Mat if MAT_GLOBAL_MAX or MAT_GLOBAL_SUM is used as the flag

2646:    Input Parameters:
2647: .  mat - the matrix

2649:    Output Parameters:
2650: +  flag - flag indicating the type of parameters to be returned
2651:    (MAT_LOCAL - local matrix, MAT_GLOBAL_MAX - maximum over all processors,
2652:    MAT_GLOBAL_SUM - sum over all processors)
2653: -  info - matrix information context

2655:    Notes:
2656:    The MatInfo context contains a variety of matrix data, including
2657:    number of nonzeros allocated and used, number of mallocs during
2658:    matrix assembly, etc.  Additional information for factored matrices
2659:    is provided (such as the fill ratio, number of mallocs during
2660:    factorization, etc.).  Much of this info is printed to PETSC_STDOUT
2661:    when using the runtime options
2662: $       -info -mat_view ::ascii_info

2664:    Example for C/C++ Users:
2665:    See the file ${PETSC_DIR}/include/petscmat.h for a complete list of
2666:    data within the MatInfo context.  For example,
2667: .vb
2668:       MatInfo info;
2669:       Mat     A;
2670:       double  mal, nz_a, nz_u;

2672:       MatGetInfo(A,MAT_LOCAL,&info);
2673:       mal  = info.mallocs;
2674:       nz_a = info.nz_allocated;
2675: .ve

2677:    Example for Fortran Users:
2678:    Fortran users should declare info as a double precision
2679:    array of dimension MAT_INFO_SIZE, and then extract the parameters
2680:    of interest.  See the file ${PETSC_DIR}/include/petsc/finclude/petscmat.h
2681:    a complete list of parameter names.
2682: .vb
2683:       double  precision info(MAT_INFO_SIZE)
2684:       double  precision mal, nz_a
2685:       Mat     A
2686:       integer ierr

2688:       call MatGetInfo(A,MAT_LOCAL,info,ierr)
2689:       mal = info(MAT_INFO_MALLOCS)
2690:       nz_a = info(MAT_INFO_NZ_ALLOCATED)
2691: .ve

2693:     Level: intermediate

2695:     Concepts: matrices^getting information on

2697:     Developer Note: fortran interface is not autogenerated as the f90
2698:     interface defintion cannot be generated correctly [due to MatInfo]

2700: .seealso: MatStashGetInfo()

2702: @*/
2703: PetscErrorCode  MatGetInfo(Mat mat,MatInfoType flag,MatInfo *info)
2704: {

2711:   if (!mat->ops->getinfo) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
2712:   MatCheckPreallocated(mat,1);
2713:   (*mat->ops->getinfo)(mat,flag,info);
2714:   return(0);
2715: }

2717: /* ----------------------------------------------------------*/

2721: /*@C
2722:    MatLUFactor - Performs in-place LU factorization of matrix.

2724:    Collective on Mat

2726:    Input Parameters:
2727: +  mat - the matrix
2728: .  row - row permutation
2729: .  col - column permutation
2730: -  info - options for factorization, includes
2731: $          fill - expected fill as ratio of original fill.
2732: $          dtcol - pivot tolerance (0 no pivot, 1 full column pivoting)
2733: $                   Run with the option -info to determine an optimal value to use

2735:    Notes:
2736:    Most users should employ the simplified KSP interface for linear solvers
2737:    instead of working directly with matrix algebra routines such as this.
2738:    See, e.g., KSPCreate().

2740:    This changes the state of the matrix to a factored matrix; it cannot be used
2741:    for example with MatSetValues() unless one first calls MatSetUnfactored().

2743:    Level: developer

2745:    Concepts: matrices^LU factorization

2747: .seealso: MatLUFactorSymbolic(), MatLUFactorNumeric(), MatCholeskyFactor(),
2748:           MatGetOrdering(), MatSetUnfactored(), MatFactorInfo, MatGetFactor()

2750:     Developer Note: fortran interface is not autogenerated as the f90
2751:     interface defintion cannot be generated correctly [due to MatFactorInfo]

2753: @*/
2754: PetscErrorCode  MatLUFactor(Mat mat,IS row,IS col,const MatFactorInfo *info)
2755: {
2757:   MatFactorInfo  tinfo;

2765:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2766:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2767:   if (!mat->ops->lufactor) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
2768:   MatCheckPreallocated(mat,1);
2769:   if (!info) {
2770:     MatFactorInfoInitialize(&tinfo);
2771:     info = &tinfo;
2772:   }

2774:   PetscLogEventBegin(MAT_LUFactor,mat,row,col,0);
2775:   (*mat->ops->lufactor)(mat,row,col,info);
2776:   PetscLogEventEnd(MAT_LUFactor,mat,row,col,0);
2777:   PetscObjectStateIncrease((PetscObject)mat);
2778:   return(0);
2779: }

2783: /*@C
2784:    MatILUFactor - Performs in-place ILU factorization of matrix.

2786:    Collective on Mat

2788:    Input Parameters:
2789: +  mat - the matrix
2790: .  row - row permutation
2791: .  col - column permutation
2792: -  info - structure containing
2793: $      levels - number of levels of fill.
2794: $      expected fill - as ratio of original fill.
2795: $      1 or 0 - indicating force fill on diagonal (improves robustness for matrices
2796:                 missing diagonal entries)

2798:    Notes:
2799:    Probably really in-place only when level of fill is zero, otherwise allocates
2800:    new space to store factored matrix and deletes previous memory.

2802:    Most users should employ the simplified KSP interface for linear solvers
2803:    instead of working directly with matrix algebra routines such as this.
2804:    See, e.g., KSPCreate().

2806:    Level: developer

2808:    Concepts: matrices^ILU factorization

2810: .seealso: MatILUFactorSymbolic(), MatLUFactorNumeric(), MatCholeskyFactor(), MatFactorInfo

2812:     Developer Note: fortran interface is not autogenerated as the f90
2813:     interface defintion cannot be generated correctly [due to MatFactorInfo]

2815: @*/
2816: PetscErrorCode  MatILUFactor(Mat mat,IS row,IS col,const MatFactorInfo *info)
2817: {

2826:   if (mat->rmap->N != mat->cmap->N) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONG,"matrix must be square");
2827:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2828:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2829:   if (!mat->ops->ilufactor) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
2830:   MatCheckPreallocated(mat,1);

2832:   PetscLogEventBegin(MAT_ILUFactor,mat,row,col,0);
2833:   (*mat->ops->ilufactor)(mat,row,col,info);
2834:   PetscLogEventEnd(MAT_ILUFactor,mat,row,col,0);
2835:   PetscObjectStateIncrease((PetscObject)mat);
2836:   return(0);
2837: }

2841: /*@C
2842:    MatLUFactorSymbolic - Performs symbolic LU factorization of matrix.
2843:    Call this routine before calling MatLUFactorNumeric().

2845:    Collective on Mat

2847:    Input Parameters:
2848: +  fact - the factor matrix obtained with MatGetFactor()
2849: .  mat - the matrix
2850: .  row, col - row and column permutations
2851: -  info - options for factorization, includes
2852: $          fill - expected fill as ratio of original fill.
2853: $          dtcol - pivot tolerance (0 no pivot, 1 full column pivoting)
2854: $                   Run with the option -info to determine an optimal value to use


2857:    Notes: See Users-Manual: ch_mat for additional information about choosing the fill factor for better efficiency.

2859:    Most users should employ the simplified KSP interface for linear solvers
2860:    instead of working directly with matrix algebra routines such as this.
2861:    See, e.g., KSPCreate().

2863:    Level: developer

2865:    Concepts: matrices^LU symbolic factorization

2867: .seealso: MatLUFactor(), MatLUFactorNumeric(), MatCholeskyFactor(), MatFactorInfo, MatFactorInfoInitialize()

2869:     Developer Note: fortran interface is not autogenerated as the f90
2870:     interface defintion cannot be generated correctly [due to MatFactorInfo]

2872: @*/
2873: PetscErrorCode  MatLUFactorSymbolic(Mat fact,Mat mat,IS row,IS col,const MatFactorInfo *info)
2874: {

2884:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2885:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2886:   if (!(fact)->ops->lufactorsymbolic) {
2887:     const MatSolverPackage spackage;
2888:     MatFactorGetSolverPackage(fact,&spackage);
2889:     SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Matrix type %s symbolic LU using solver package %s",((PetscObject)mat)->type_name,spackage);
2890:   }
2891:   MatCheckPreallocated(mat,2);

2893:   PetscLogEventBegin(MAT_LUFactorSymbolic,mat,row,col,0);
2894:   (fact->ops->lufactorsymbolic)(fact,mat,row,col,info);
2895:   PetscLogEventEnd(MAT_LUFactorSymbolic,mat,row,col,0);
2896:   PetscObjectStateIncrease((PetscObject)fact);
2897:   return(0);
2898: }

2902: /*@C
2903:    MatLUFactorNumeric - Performs numeric LU factorization of a matrix.
2904:    Call this routine after first calling MatLUFactorSymbolic().

2906:    Collective on Mat

2908:    Input Parameters:
2909: +  fact - the factor matrix obtained with MatGetFactor()
2910: .  mat - the matrix
2911: -  info - options for factorization

2913:    Notes:
2914:    See MatLUFactor() for in-place factorization.  See
2915:    MatCholeskyFactorNumeric() for the symmetric, positive definite case.

2917:    Most users should employ the simplified KSP interface for linear solvers
2918:    instead of working directly with matrix algebra routines such as this.
2919:    See, e.g., KSPCreate().

2921:    Level: developer

2923:    Concepts: matrices^LU numeric factorization

2925: .seealso: MatLUFactorSymbolic(), MatLUFactor(), MatCholeskyFactor()

2927:     Developer Note: fortran interface is not autogenerated as the f90
2928:     interface defintion cannot be generated correctly [due to MatFactorInfo]

2930: @*/
2931: PetscErrorCode  MatLUFactorNumeric(Mat fact,Mat mat,const MatFactorInfo *info)
2932: {

2940:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2941:   if (mat->rmap->N != (fact)->rmap->N || mat->cmap->N != (fact)->cmap->N) SETERRQ4(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Mat fact: global dimensions are different %D should = %D %D should = %D",mat->rmap->N,(fact)->rmap->N,mat->cmap->N,(fact)->cmap->N);

2943:   if (!(fact)->ops->lufactornumeric) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s numeric LU",((PetscObject)mat)->type_name);
2944:   MatCheckPreallocated(mat,2);
2945:   PetscLogEventBegin(MAT_LUFactorNumeric,mat,fact,0,0);
2946:   (fact->ops->lufactornumeric)(fact,mat,info);
2947:   PetscLogEventEnd(MAT_LUFactorNumeric,mat,fact,0,0);
2948:   MatViewFromOptions(fact,NULL,"-mat_factor_view");
2949:   PetscObjectStateIncrease((PetscObject)fact);
2950:   return(0);
2951: }

2955: /*@C
2956:    MatCholeskyFactor - Performs in-place Cholesky factorization of a
2957:    symmetric matrix.

2959:    Collective on Mat

2961:    Input Parameters:
2962: +  mat - the matrix
2963: .  perm - row and column permutations
2964: -  f - expected fill as ratio of original fill

2966:    Notes:
2967:    See MatLUFactor() for the nonsymmetric case.  See also
2968:    MatCholeskyFactorSymbolic(), and MatCholeskyFactorNumeric().

2970:    Most users should employ the simplified KSP interface for linear solvers
2971:    instead of working directly with matrix algebra routines such as this.
2972:    See, e.g., KSPCreate().

2974:    Level: developer

2976:    Concepts: matrices^Cholesky factorization

2978: .seealso: MatLUFactor(), MatCholeskyFactorSymbolic(), MatCholeskyFactorNumeric()
2979:           MatGetOrdering()

2981:     Developer Note: fortran interface is not autogenerated as the f90
2982:     interface defintion cannot be generated correctly [due to MatFactorInfo]

2984: @*/
2985: PetscErrorCode  MatCholeskyFactor(Mat mat,IS perm,const MatFactorInfo *info)
2986: {

2994:   if (mat->rmap->N != mat->cmap->N) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONG,"Matrix must be square");
2995:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2996:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2997:   if (!mat->ops->choleskyfactor) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
2998:   MatCheckPreallocated(mat,1);

3000:   PetscLogEventBegin(MAT_CholeskyFactor,mat,perm,0,0);
3001:   (*mat->ops->choleskyfactor)(mat,perm,info);
3002:   PetscLogEventEnd(MAT_CholeskyFactor,mat,perm,0,0);
3003:   PetscObjectStateIncrease((PetscObject)mat);
3004:   return(0);
3005: }

3009: /*@C
3010:    MatCholeskyFactorSymbolic - Performs symbolic Cholesky factorization
3011:    of a symmetric matrix.

3013:    Collective on Mat

3015:    Input Parameters:
3016: +  fact - the factor matrix obtained with MatGetFactor()
3017: .  mat - the matrix
3018: .  perm - row and column permutations
3019: -  info - options for factorization, includes
3020: $          fill - expected fill as ratio of original fill.
3021: $          dtcol - pivot tolerance (0 no pivot, 1 full column pivoting)
3022: $                   Run with the option -info to determine an optimal value to use

3024:    Notes:
3025:    See MatLUFactorSymbolic() for the nonsymmetric case.  See also
3026:    MatCholeskyFactor() and MatCholeskyFactorNumeric().

3028:    Most users should employ the simplified KSP interface for linear solvers
3029:    instead of working directly with matrix algebra routines such as this.
3030:    See, e.g., KSPCreate().

3032:    Level: developer

3034:    Concepts: matrices^Cholesky symbolic factorization

3036: .seealso: MatLUFactorSymbolic(), MatCholeskyFactor(), MatCholeskyFactorNumeric()
3037:           MatGetOrdering()

3039:     Developer Note: fortran interface is not autogenerated as the f90
3040:     interface defintion cannot be generated correctly [due to MatFactorInfo]

3042: @*/
3043: PetscErrorCode  MatCholeskyFactorSymbolic(Mat fact,Mat mat,IS perm,const MatFactorInfo *info)
3044: {

3053:   if (mat->rmap->N != mat->cmap->N) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONG,"Matrix must be square");
3054:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
3055:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
3056:   if (!(fact)->ops->choleskyfactorsymbolic) {
3057:     const MatSolverPackage spackage;
3058:     MatFactorGetSolverPackage(fact,&spackage);
3059:     SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s symbolic factor Cholesky using solver package %s",((PetscObject)mat)->type_name,spackage);
3060:   }
3061:   MatCheckPreallocated(mat,2);

3063:   PetscLogEventBegin(MAT_CholeskyFactorSymbolic,mat,perm,0,0);
3064:   (fact->ops->choleskyfactorsymbolic)(fact,mat,perm,info);
3065:   PetscLogEventEnd(MAT_CholeskyFactorSymbolic,mat,perm,0,0);
3066:   PetscObjectStateIncrease((PetscObject)fact);
3067:   return(0);
3068: }

3072: /*@C
3073:    MatCholeskyFactorNumeric - Performs numeric Cholesky factorization
3074:    of a symmetric matrix. Call this routine after first calling
3075:    MatCholeskyFactorSymbolic().

3077:    Collective on Mat

3079:    Input Parameters:
3080: +  fact - the factor matrix obtained with MatGetFactor()
3081: .  mat - the initial matrix
3082: .  info - options for factorization
3083: -  fact - the symbolic factor of mat


3086:    Notes:
3087:    Most users should employ the simplified KSP interface for linear solvers
3088:    instead of working directly with matrix algebra routines such as this.
3089:    See, e.g., KSPCreate().

3091:    Level: developer

3093:    Concepts: matrices^Cholesky numeric factorization

3095: .seealso: MatCholeskyFactorSymbolic(), MatCholeskyFactor(), MatLUFactorNumeric()

3097:     Developer Note: fortran interface is not autogenerated as the f90
3098:     interface defintion cannot be generated correctly [due to MatFactorInfo]

3100: @*/
3101: PetscErrorCode  MatCholeskyFactorNumeric(Mat fact,Mat mat,const MatFactorInfo *info)
3102: {

3110:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
3111:   if (!(fact)->ops->choleskyfactornumeric) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s numeric factor Cholesky",((PetscObject)mat)->type_name);
3112:   if (mat->rmap->N != (fact)->rmap->N || mat->cmap->N != (fact)->cmap->N) SETERRQ4(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Mat fact: global dim %D should = %D %D should = %D",mat->rmap->N,(fact)->rmap->N,mat->cmap->N,(fact)->cmap->N);
3113:   MatCheckPreallocated(mat,2);

3115:   PetscLogEventBegin(MAT_CholeskyFactorNumeric,mat,fact,0,0);
3116:   (fact->ops->choleskyfactornumeric)(fact,mat,info);
3117:   PetscLogEventEnd(MAT_CholeskyFactorNumeric,mat,fact,0,0);
3118:   MatViewFromOptions(fact,NULL,"-mat_factor_view");
3119:   PetscObjectStateIncrease((PetscObject)fact);
3120:   return(0);
3121: }

3123: /* ----------------------------------------------------------------*/
3126: /*@
3127:    MatSolve - Solves A x = b, given a factored matrix.

3129:    Neighbor-wise Collective on Mat and Vec

3131:    Input Parameters:
3132: +  mat - the factored matrix
3133: -  b - the right-hand-side vector

3135:    Output Parameter:
3136: .  x - the result vector

3138:    Notes:
3139:    The vectors b and x cannot be the same.  I.e., one cannot
3140:    call MatSolve(A,x,x).

3142:    Notes:
3143:    Most users should employ the simplified KSP interface for linear solvers
3144:    instead of working directly with matrix algebra routines such as this.
3145:    See, e.g., KSPCreate().

3147:    Level: developer

3149:    Concepts: matrices^triangular solves

3151: .seealso: MatSolveAdd(), MatSolveTranspose(), MatSolveTransposeAdd()
3152: @*/
3153: PetscErrorCode  MatSolve(Mat mat,Vec b,Vec x)
3154: {

3164:   if (x == b) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_IDN,"x and b must be different vectors");
3165:   if (!mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Unfactored matrix");
3166:   if (mat->cmap->N != x->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->cmap->N,x->map->N);
3167:   if (mat->rmap->N != b->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: global dim %D %D",mat->rmap->N,b->map->N);
3168:   if (mat->rmap->n != b->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: local dim %D %D",mat->rmap->n,b->map->n);
3169:   if (!mat->rmap->N && !mat->cmap->N) return(0);
3170:   if (!mat->ops->solve) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
3171:   MatCheckPreallocated(mat,1);

3173:   PetscLogEventBegin(MAT_Solve,mat,b,x,0);
3174:   (*mat->ops->solve)(mat,b,x);
3175:   PetscLogEventEnd(MAT_Solve,mat,b,x,0);
3176:   PetscObjectStateIncrease((PetscObject)x);
3177:   return(0);
3178: }

3182: PetscErrorCode  MatMatSolve_Basic(Mat A,Mat B,Mat X)
3183: {
3185:   Vec            b,x;
3186:   PetscInt       m,N,i;
3187:   PetscScalar    *bb,*xx;
3188:   PetscBool      flg;

3191:   PetscObjectTypeCompareAny((PetscObject)B,&flg,MATSEQDENSE,MATMPIDENSE,NULL);
3192:   if (!flg) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"Matrix B must be MATDENSE matrix");
3193:   PetscObjectTypeCompareAny((PetscObject)X,&flg,MATSEQDENSE,MATMPIDENSE,NULL);
3194:   if (!flg) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"Matrix X must be MATDENSE matrix");

3196:   MatDenseGetArray(B,&bb);
3197:   MatDenseGetArray(X,&xx);
3198:   MatGetLocalSize(B,&m,NULL);  /* number local rows */
3199:   MatGetSize(B,NULL,&N);       /* total columns in dense matrix */
3200:   MatCreateVecs(A,&x,&b);
3201:   for (i=0; i<N; i++) {
3202:     VecPlaceArray(b,bb + i*m);
3203:     VecPlaceArray(x,xx + i*m);
3204:     MatSolve(A,b,x);
3205:     VecResetArray(x);
3206:     VecResetArray(b);
3207:   }
3208:   VecDestroy(&b);
3209:   VecDestroy(&x);
3210:   MatDenseRestoreArray(B,&bb);
3211:   MatDenseRestoreArray(X,&xx);
3212:   return(0);
3213: }

3217: /*@
3218:    MatMatSolve - Solves A X = B, given a factored matrix.

3220:    Neighbor-wise Collective on Mat

3222:    Input Parameters:
3223: +  A - the factored matrix
3224: -  B - the right-hand-side matrix  (dense matrix)

3226:    Output Parameter:
3227: .  X - the result matrix (dense matrix)

3229:    Notes:
3230:    The matrices b and x cannot be the same.  I.e., one cannot
3231:    call MatMatSolve(A,x,x).

3233:    Notes:
3234:    Most users should usually employ the simplified KSP interface for linear solvers
3235:    instead of working directly with matrix algebra routines such as this.
3236:    See, e.g., KSPCreate(). However KSP can only solve for one vector (column of X)
3237:    at a time.

3239:    When using SuperLU_Dist as a parallel solver PETSc will use the SuperLU_Dist functionality to solve multiple right hand sides simultaneously. For MUMPS
3240:    it calls a separate solve for each right hand side since MUMPS does not yet support distributed right hand sides.

3242:    Since the resulting matrix X must always be dense we do not support sparse representation of the matrix B.

3244:    Level: developer

3246:    Concepts: matrices^triangular solves

3248: .seealso: MatMatSolveAdd(), MatMatSolveTranspose(), MatMatSolveTransposeAdd(), MatLUFactor(), MatCholeskyFactor()
3249: @*/
3250: PetscErrorCode  MatMatSolve(Mat A,Mat B,Mat X)
3251: {

3261:   if (X == B) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_IDN,"X and B must be different matrices");
3262:   if (!A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Unfactored matrix");
3263:   if (A->cmap->N != X->rmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Mat A,Mat X: global dim %D %D",A->cmap->N,X->rmap->N);
3264:   if (A->rmap->N != B->rmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Mat A,Mat B: global dim %D %D",A->rmap->N,B->rmap->N);
3265:   if (A->rmap->n != B->rmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat A,Mat B: local dim %D %D",A->rmap->n,B->rmap->n);
3266:   if (X->cmap->N < B->cmap->N) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Solution matrix must have same number of columns as rhs matrix");
3267:   if (!A->rmap->N && !A->cmap->N) return(0);
3268:   MatCheckPreallocated(A,1);

3270:   PetscLogEventBegin(MAT_MatSolve,A,B,X,0);
3271:   if (!A->ops->matsolve) {
3272:     PetscInfo1(A,"Mat type %s using basic MatMatSolve\n",((PetscObject)A)->type_name);
3273:     MatMatSolve_Basic(A,B,X);
3274:   } else {
3275:     (*A->ops->matsolve)(A,B,X);
3276:   }
3277:   PetscLogEventEnd(MAT_MatSolve,A,B,X,0);
3278:   PetscObjectStateIncrease((PetscObject)X);
3279:   return(0);
3280: }


3285: /*@
3286:    MatForwardSolve - Solves L x = b, given a factored matrix, A = LU, or
3287:                             U^T*D^(1/2) x = b, given a factored symmetric matrix, A = U^T*D*U,

3289:    Neighbor-wise Collective on Mat and Vec

3291:    Input Parameters:
3292: +  mat - the factored matrix
3293: -  b - the right-hand-side vector

3295:    Output Parameter:
3296: .  x - the result vector

3298:    Notes:
3299:    MatSolve() should be used for most applications, as it performs
3300:    a forward solve followed by a backward solve.

3302:    The vectors b and x cannot be the same,  i.e., one cannot
3303:    call MatForwardSolve(A,x,x).

3305:    For matrix in seqsbaij format with block size larger than 1,
3306:    the diagonal blocks are not implemented as D = D^(1/2) * D^(1/2) yet.
3307:    MatForwardSolve() solves U^T*D y = b, and
3308:    MatBackwardSolve() solves U x = y.
3309:    Thus they do not provide a symmetric preconditioner.

3311:    Most users should employ the simplified KSP interface for linear solvers
3312:    instead of working directly with matrix algebra routines such as this.
3313:    See, e.g., KSPCreate().

3315:    Level: developer

3317:    Concepts: matrices^forward solves

3319: .seealso: MatSolve(), MatBackwardSolve()
3320: @*/
3321: PetscErrorCode  MatForwardSolve(Mat mat,Vec b,Vec x)
3322: {

3332:   if (x == b) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_IDN,"x and b must be different vectors");
3333:   if (!mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Unfactored matrix");
3334:   if (!mat->ops->forwardsolve) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
3335:   if (mat->cmap->N != x->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->cmap->N,x->map->N);
3336:   if (mat->rmap->N != b->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: global dim %D %D",mat->rmap->N,b->map->N);
3337:   if (mat->rmap->n != b->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: local dim %D %D",mat->rmap->n,b->map->n);
3338:   MatCheckPreallocated(mat,1);
3339:   PetscLogEventBegin(MAT_ForwardSolve,mat,b,x,0);
3340:   (*mat->ops->forwardsolve)(mat,b,x);
3341:   PetscLogEventEnd(MAT_ForwardSolve,mat,b,x,0);
3342:   PetscObjectStateIncrease((PetscObject)x);
3343:   return(0);
3344: }

3348: /*@
3349:    MatBackwardSolve - Solves U x = b, given a factored matrix, A = LU.
3350:                              D^(1/2) U x = b, given a factored symmetric matrix, A = U^T*D*U,

3352:    Neighbor-wise Collective on Mat and Vec

3354:    Input Parameters:
3355: +  mat - the factored matrix
3356: -  b - the right-hand-side vector

3358:    Output Parameter:
3359: .  x - the result vector

3361:    Notes:
3362:    MatSolve() should be used for most applications, as it performs
3363:    a forward solve followed by a backward solve.

3365:    The vectors b and x cannot be the same.  I.e., one cannot
3366:    call MatBackwardSolve(A,x,x).

3368:    For matrix in seqsbaij format with block size larger than 1,
3369:    the diagonal blocks are not implemented as D = D^(1/2) * D^(1/2) yet.
3370:    MatForwardSolve() solves U^T*D y = b, and
3371:    MatBackwardSolve() solves U x = y.
3372:    Thus they do not provide a symmetric preconditioner.

3374:    Most users should employ the simplified KSP interface for linear solvers
3375:    instead of working directly with matrix algebra routines such as this.
3376:    See, e.g., KSPCreate().

3378:    Level: developer

3380:    Concepts: matrices^backward solves

3382: .seealso: MatSolve(), MatForwardSolve()
3383: @*/
3384: PetscErrorCode  MatBackwardSolve(Mat mat,Vec b,Vec x)
3385: {

3395:   if (x == b) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_IDN,"x and b must be different vectors");
3396:   if (!mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Unfactored matrix");
3397:   if (!mat->ops->backwardsolve) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
3398:   if (mat->cmap->N != x->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->cmap->N,x->map->N);
3399:   if (mat->rmap->N != b->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: global dim %D %D",mat->rmap->N,b->map->N);
3400:   if (mat->rmap->n != b->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: local dim %D %D",mat->rmap->n,b->map->n);
3401:   MatCheckPreallocated(mat,1);

3403:   PetscLogEventBegin(MAT_BackwardSolve,mat,b,x,0);
3404:   (*mat->ops->backwardsolve)(mat,b,x);
3405:   PetscLogEventEnd(MAT_BackwardSolve,mat,b,x,0);
3406:   PetscObjectStateIncrease((PetscObject)x);
3407:   return(0);
3408: }

3412: /*@
3413:    MatSolveAdd - Computes x = y + inv(A)*b, given a factored matrix.

3415:    Neighbor-wise Collective on Mat and Vec

3417:    Input Parameters:
3418: +  mat - the factored matrix
3419: .  b - the right-hand-side vector
3420: -  y - the vector to be added to

3422:    Output Parameter:
3423: .  x - the result vector

3425:    Notes:
3426:    The vectors b and x cannot be the same.  I.e., one cannot
3427:    call MatSolveAdd(A,x,y,x).

3429:    Most users should employ the simplified KSP interface for linear solvers
3430:    instead of working directly with matrix algebra routines such as this.
3431:    See, e.g., KSPCreate().

3433:    Level: developer

3435:    Concepts: matrices^triangular solves

3437: .seealso: MatSolve(), MatSolveTranspose(), MatSolveTransposeAdd()
3438: @*/
3439: PetscErrorCode  MatSolveAdd(Mat mat,Vec b,Vec y,Vec x)
3440: {
3441:   PetscScalar    one = 1.0;
3442:   Vec            tmp;

3454:   if (x == b) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_IDN,"x and b must be different vectors");
3455:   if (!mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Unfactored matrix");
3456:   if (mat->cmap->N != x->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->cmap->N,x->map->N);
3457:   if (mat->rmap->N != b->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: global dim %D %D",mat->rmap->N,b->map->N);
3458:   if (mat->rmap->N != y->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec y: global dim %D %D",mat->rmap->N,y->map->N);
3459:   if (mat->rmap->n != b->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: local dim %D %D",mat->rmap->n,b->map->n);
3460:   if (x->map->n != y->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Vec x,Vec y: local dim %D %D",x->map->n,y->map->n);
3461:   MatCheckPreallocated(mat,1);

3463:   PetscLogEventBegin(MAT_SolveAdd,mat,b,x,y);
3464:   if (mat->ops->solveadd) {
3465:     (*mat->ops->solveadd)(mat,b,y,x);
3466:   } else {
3467:     /* do the solve then the add manually */
3468:     if (x != y) {
3469:       MatSolve(mat,b,x);
3470:       VecAXPY(x,one,y);
3471:     } else {
3472:       VecDuplicate(x,&tmp);
3473:       PetscLogObjectParent((PetscObject)mat,(PetscObject)tmp);
3474:       VecCopy(x,tmp);
3475:       MatSolve(mat,b,x);
3476:       VecAXPY(x,one,tmp);
3477:       VecDestroy(&tmp);
3478:     }
3479:   }
3480:   PetscLogEventEnd(MAT_SolveAdd,mat,b,x,y);
3481:   PetscObjectStateIncrease((PetscObject)x);
3482:   return(0);
3483: }

3487: /*@
3488:    MatSolveTranspose - Solves A' x = b, given a factored matrix.

3490:    Neighbor-wise Collective on Mat and Vec

3492:    Input Parameters:
3493: +  mat - the factored matrix
3494: -  b - the right-hand-side vector

3496:    Output Parameter:
3497: .  x - the result vector

3499:    Notes:
3500:    The vectors b and x cannot be the same.  I.e., one cannot
3501:    call MatSolveTranspose(A,x,x).

3503:    Most users should employ the simplified KSP interface for linear solvers
3504:    instead of working directly with matrix algebra routines such as this.
3505:    See, e.g., KSPCreate().

3507:    Level: developer

3509:    Concepts: matrices^triangular solves

3511: .seealso: MatSolve(), MatSolveAdd(), MatSolveTransposeAdd()
3512: @*/
3513: PetscErrorCode  MatSolveTranspose(Mat mat,Vec b,Vec x)
3514: {

3524:   if (!mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Unfactored matrix");
3525:   if (x == b) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_IDN,"x and b must be different vectors");
3526:   if (!mat->ops->solvetranspose) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Matrix type %s",((PetscObject)mat)->type_name);
3527:   if (mat->rmap->N != x->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->rmap->N,x->map->N);
3528:   if (mat->cmap->N != b->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: global dim %D %D",mat->cmap->N,b->map->N);
3529:   MatCheckPreallocated(mat,1);
3530:   PetscLogEventBegin(MAT_SolveTranspose,mat,b,x,0);
3531:   (*mat->ops->solvetranspose)(mat,b,x);
3532:   PetscLogEventEnd(MAT_SolveTranspose,mat,b,x,0);
3533:   PetscObjectStateIncrease((PetscObject)x);
3534:   return(0);
3535: }

3539: /*@
3540:    MatSolveTransposeAdd - Computes x = y + inv(Transpose(A)) b, given a
3541:                       factored matrix.

3543:    Neighbor-wise Collective on Mat and Vec

3545:    Input Parameters:
3546: +  mat - the factored matrix
3547: .  b - the right-hand-side vector
3548: -  y - the vector to be added to

3550:    Output Parameter:
3551: .  x - the result vector

3553:    Notes:
3554:    The vectors b and x cannot be the same.  I.e., one cannot
3555:    call MatSolveTransposeAdd(A,x,y,x).

3557:    Most users should employ the simplified KSP interface for linear solvers
3558:    instead of working directly with matrix algebra routines such as this.
3559:    See, e.g., KSPCreate().

3561:    Level: developer

3563:    Concepts: matrices^triangular solves

3565: .seealso: MatSolve(), MatSolveAdd(), MatSolveTranspose()
3566: @*/
3567: PetscErrorCode  MatSolveTransposeAdd(Mat mat,Vec b,Vec y,Vec x)
3568: {
3569:   PetscScalar    one = 1.0;
3571:   Vec            tmp;

3582:   if (x == b) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_IDN,"x and b must be different vectors");
3583:   if (!mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Unfactored matrix");
3584:   if (mat->rmap->N != x->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->rmap->N,x->map->N);
3585:   if (mat->cmap->N != b->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: global dim %D %D",mat->cmap->N,b->map->N);
3586:   if (mat->cmap->N != y->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec y: global dim %D %D",mat->cmap->N,y->map->N);
3587:   if (x->map->n != y->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Vec x,Vec y: local dim %D %D",x->map->n,y->map->n);
3588:   MatCheckPreallocated(mat,1);

3590:   PetscLogEventBegin(MAT_SolveTransposeAdd,mat,b,x,y);
3591:   if (mat->ops->solvetransposeadd) {
3592:     (*mat->ops->solvetransposeadd)(mat,b,y,x);
3593:   } else {
3594:     /* do the solve then the add manually */
3595:     if (x != y) {
3596:       MatSolveTranspose(mat,b,x);
3597:       VecAXPY(x,one,y);
3598:     } else {
3599:       VecDuplicate(x,&tmp);
3600:       PetscLogObjectParent((PetscObject)mat,(PetscObject)tmp);
3601:       VecCopy(x,tmp);
3602:       MatSolveTranspose(mat,b,x);
3603:       VecAXPY(x,one,tmp);
3604:       VecDestroy(&tmp);
3605:     }
3606:   }
3607:   PetscLogEventEnd(MAT_SolveTransposeAdd,mat,b,x,y);
3608:   PetscObjectStateIncrease((PetscObject)x);
3609:   return(0);
3610: }
3611: /* ----------------------------------------------------------------*/

3615: /*@
3616:    MatSOR - Computes relaxation (SOR, Gauss-Seidel) sweeps.

3618:    Neighbor-wise Collective on Mat and Vec

3620:    Input Parameters:
3621: +  mat - the matrix
3622: .  b - the right hand side
3623: .  omega - the relaxation factor
3624: .  flag - flag indicating the type of SOR (see below)
3625: .  shift -  diagonal shift
3626: .  its - the number of iterations
3627: -  lits - the number of local iterations

3629:    Output Parameters:
3630: .  x - the solution (can contain an initial guess, use option SOR_ZERO_INITIAL_GUESS to indicate no guess)

3632:    SOR Flags:
3633: .     SOR_FORWARD_SWEEP - forward SOR
3634: .     SOR_BACKWARD_SWEEP - backward SOR
3635: .     SOR_SYMMETRIC_SWEEP - SSOR (symmetric SOR)
3636: .     SOR_LOCAL_FORWARD_SWEEP - local forward SOR
3637: .     SOR_LOCAL_BACKWARD_SWEEP - local forward SOR
3638: .     SOR_LOCAL_SYMMETRIC_SWEEP - local SSOR
3639: .     SOR_APPLY_UPPER, SOR_APPLY_LOWER - applies
3640:          upper/lower triangular part of matrix to
3641:          vector (with omega)
3642: .     SOR_ZERO_INITIAL_GUESS - zero initial guess

3644:    Notes:
3645:    SOR_LOCAL_FORWARD_SWEEP, SOR_LOCAL_BACKWARD_SWEEP, and
3646:    SOR_LOCAL_SYMMETRIC_SWEEP perform separate independent smoothings
3647:    on each processor.

3649:    Application programmers will not generally use MatSOR() directly,
3650:    but instead will employ the KSP/PC interface.

3652:    Notes: for BAIJ, SBAIJ, and AIJ matrices with Inodes this does a block SOR smoothing, otherwise it does a pointwise smoothing

3654:    Notes for Advanced Users:
3655:    The flags are implemented as bitwise inclusive or operations.
3656:    For example, use (SOR_ZERO_INITIAL_GUESS | SOR_SYMMETRIC_SWEEP)
3657:    to specify a zero initial guess for SSOR.

3659:    Most users should employ the simplified KSP interface for linear solvers
3660:    instead of working directly with matrix algebra routines such as this.
3661:    See, e.g., KSPCreate().

3663:    Vectors x and b CANNOT be the same

3665:    Developer Note: We should add block SOR support for AIJ matrices with block size set to great than one and no inodes

3667:    Level: developer

3669:    Concepts: matrices^relaxation
3670:    Concepts: matrices^SOR
3671:    Concepts: matrices^Gauss-Seidel

3673: @*/
3674: PetscErrorCode  MatSOR(Mat mat,Vec b,PetscReal omega,MatSORType flag,PetscReal shift,PetscInt its,PetscInt lits,Vec x)
3675: {

3685:   if (!mat->ops->sor) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
3686:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
3687:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
3688:   if (mat->cmap->N != x->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->cmap->N,x->map->N);
3689:   if (mat->rmap->N != b->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: global dim %D %D",mat->rmap->N,b->map->N);
3690:   if (mat->rmap->n != b->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: local dim %D %D",mat->rmap->n,b->map->n);
3691:   if (its <= 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Relaxation requires global its %D positive",its);
3692:   if (lits <= 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Relaxation requires local its %D positive",lits);
3693:   if (b == x) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_IDN,"b and x vector cannot be the same");

3695:   MatCheckPreallocated(mat,1);
3696:   PetscLogEventBegin(MAT_SOR,mat,b,x,0);
3697:   ierr =(*mat->ops->sor)(mat,b,omega,flag,shift,its,lits,x);
3698:   PetscLogEventEnd(MAT_SOR,mat,b,x,0);
3699:   PetscObjectStateIncrease((PetscObject)x);
3700:   return(0);
3701: }

3705: /*
3706:       Default matrix copy routine.
3707: */
3708: PetscErrorCode MatCopy_Basic(Mat A,Mat B,MatStructure str)
3709: {
3710:   PetscErrorCode    ierr;
3711:   PetscInt          i,rstart = 0,rend = 0,nz;
3712:   const PetscInt    *cwork;
3713:   const PetscScalar *vwork;

3716:   if (B->assembled) {
3717:     MatZeroEntries(B);
3718:   }
3719:   MatGetOwnershipRange(A,&rstart,&rend);
3720:   for (i=rstart; i<rend; i++) {
3721:     MatGetRow(A,i,&nz,&cwork,&vwork);
3722:     MatSetValues(B,1,&i,nz,cwork,vwork,INSERT_VALUES);
3723:     MatRestoreRow(A,i,&nz,&cwork,&vwork);
3724:   }
3725:   MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
3726:   MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
3727:   PetscObjectStateIncrease((PetscObject)B);
3728:   return(0);
3729: }

3733: /*@
3734:    MatCopy - Copys a matrix to another matrix.

3736:    Collective on Mat

3738:    Input Parameters:
3739: +  A - the matrix
3740: -  str - SAME_NONZERO_PATTERN or DIFFERENT_NONZERO_PATTERN

3742:    Output Parameter:
3743: .  B - where the copy is put

3745:    Notes:
3746:    If you use SAME_NONZERO_PATTERN then the two matrices had better have the
3747:    same nonzero pattern or the routine will crash.

3749:    MatCopy() copies the matrix entries of a matrix to another existing
3750:    matrix (after first zeroing the second matrix).  A related routine is
3751:    MatConvert(), which first creates a new matrix and then copies the data.

3753:    Level: intermediate

3755:    Concepts: matrices^copying

3757: .seealso: MatConvert(), MatDuplicate()

3759: @*/
3760: PetscErrorCode  MatCopy(Mat A,Mat B,MatStructure str)
3761: {
3763:   PetscInt       i;

3771:   MatCheckPreallocated(B,2);
3772:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
3773:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
3774:   if (A->rmap->N != B->rmap->N || A->cmap->N != B->cmap->N) SETERRQ4(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Mat A,Mat B: global dim (%D,%D) (%D,%D)",A->rmap->N,B->rmap->N,A->cmap->N,B->cmap->N);
3775:   MatCheckPreallocated(A,1);

3777:   PetscLogEventBegin(MAT_Copy,A,B,0,0);
3778:   if (A->ops->copy) {
3779:     (*A->ops->copy)(A,B,str);
3780:   } else { /* generic conversion */
3781:     MatCopy_Basic(A,B,str);
3782:   }

3784:   B->stencil.dim = A->stencil.dim;
3785:   B->stencil.noc = A->stencil.noc;
3786:   for (i=0; i<=A->stencil.dim; i++) {
3787:     B->stencil.dims[i]   = A->stencil.dims[i];
3788:     B->stencil.starts[i] = A->stencil.starts[i];
3789:   }

3791:   PetscLogEventEnd(MAT_Copy,A,B,0,0);
3792:   PetscObjectStateIncrease((PetscObject)B);
3793:   return(0);
3794: }

3798: /*@C
3799:    MatConvert - Converts a matrix to another matrix, either of the same
3800:    or different type.

3802:    Collective on Mat

3804:    Input Parameters:
3805: +  mat - the matrix
3806: .  newtype - new matrix type.  Use MATSAME to create a new matrix of the
3807:    same type as the original matrix.
3808: -  reuse - denotes if the destination matrix is to be created or reused.  Currently
3809:    MAT_REUSE_MATRIX is only supported for inplace conversion, otherwise use
3810:    MAT_INITIAL_MATRIX.

3812:    Output Parameter:
3813: .  M - pointer to place new matrix

3815:    Notes:
3816:    MatConvert() first creates a new matrix and then copies the data from
3817:    the first matrix.  A related routine is MatCopy(), which copies the matrix
3818:    entries of one matrix to another already existing matrix context.

3820:    Cannot be used to convert a sequential matrix to parallel or parallel to sequential,
3821:    the MPI communicator of the generated matrix is always the same as the communicator
3822:    of the input matrix.

3824:    Level: intermediate

3826:    Concepts: matrices^converting between storage formats

3828: .seealso: MatCopy(), MatDuplicate()
3829: @*/
3830: PetscErrorCode  MatConvert(Mat mat, MatType newtype,MatReuse reuse,Mat *M)
3831: {
3833:   PetscBool      sametype,issame,flg;
3834:   char           convname[256],mtype[256];
3835:   Mat            B;

3841:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
3842:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
3843:   MatCheckPreallocated(mat,1);
3844:   MatSetOption(mat,MAT_NEW_NONZERO_LOCATION_ERR,PETSC_FALSE);

3846:   PetscOptionsGetString(((PetscObject)mat)->prefix,"-matconvert_type",mtype,256,&flg);
3847:   if (flg) {
3848:     newtype = mtype;
3849:   }
3850:   PetscObjectTypeCompare((PetscObject)mat,newtype,&sametype);
3851:   PetscStrcmp(newtype,"same",&issame);
3852:   if ((reuse == MAT_REUSE_MATRIX) && (mat != *M)) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"MAT_REUSE_MATRIX only supported for in-place conversion currently");

3854:   if ((reuse == MAT_REUSE_MATRIX) && (issame || sametype)) return(0);

3856:   if ((sametype || issame) && (reuse==MAT_INITIAL_MATRIX) && mat->ops->duplicate) {
3857:     (*mat->ops->duplicate)(mat,MAT_COPY_VALUES,M);
3858:   } else {
3859:     PetscErrorCode (*conv)(Mat, MatType,MatReuse,Mat*)=NULL;
3860:     const char     *prefix[3] = {"seq","mpi",""};
3861:     PetscInt       i;
3862:     /*
3863:        Order of precedence:
3864:        1) See if a specialized converter is known to the current matrix.
3865:        2) See if a specialized converter is known to the desired matrix class.
3866:        3) See if a good general converter is registered for the desired class
3867:           (as of 6/27/03 only MATMPIADJ falls into this category).
3868:        4) See if a good general converter is known for the current matrix.
3869:        5) Use a really basic converter.
3870:     */

3872:     /* 1) See if a specialized converter is known to the current matrix and the desired class */
3873:     for (i=0; i<3; i++) {
3874:       PetscStrcpy(convname,"MatConvert_");
3875:       PetscStrcat(convname,((PetscObject)mat)->type_name);
3876:       PetscStrcat(convname,"_");
3877:       PetscStrcat(convname,prefix[i]);
3878:       PetscStrcat(convname,issame ? ((PetscObject)mat)->type_name : newtype);
3879:       PetscStrcat(convname,"_C");
3880:       PetscObjectQueryFunction((PetscObject)mat,convname,&conv);
3881:       if (conv) goto foundconv;
3882:     }

3884:     /* 2)  See if a specialized converter is known to the desired matrix class. */
3885:     MatCreate(PetscObjectComm((PetscObject)mat),&B);
3886:     MatSetSizes(B,mat->rmap->n,mat->cmap->n,mat->rmap->N,mat->cmap->N);
3887:     MatSetType(B,newtype);
3888:     for (i=0; i<3; i++) {
3889:       PetscStrcpy(convname,"MatConvert_");
3890:       PetscStrcat(convname,((PetscObject)mat)->type_name);
3891:       PetscStrcat(convname,"_");
3892:       PetscStrcat(convname,prefix[i]);
3893:       PetscStrcat(convname,newtype);
3894:       PetscStrcat(convname,"_C");
3895:       PetscObjectQueryFunction((PetscObject)B,convname,&conv);
3896:       if (conv) {
3897:         MatDestroy(&B);
3898:         goto foundconv;
3899:       }
3900:     }

3902:     /* 3) See if a good general converter is registered for the desired class */
3903:     conv = B->ops->convertfrom;
3904:     MatDestroy(&B);
3905:     if (conv) goto foundconv;

3907:     /* 4) See if a good general converter is known for the current matrix */
3908:     if (mat->ops->convert) {
3909:       conv = mat->ops->convert;
3910:     }
3911:     if (conv) goto foundconv;

3913:     /* 5) Use a really basic converter. */
3914:     conv = MatConvert_Basic;

3916: foundconv:
3917:     PetscLogEventBegin(MAT_Convert,mat,0,0,0);
3918:     (*conv)(mat,newtype,reuse,M);
3919:     PetscLogEventEnd(MAT_Convert,mat,0,0,0);
3920:   }
3921:   PetscObjectStateIncrease((PetscObject)*M);

3923:   /* Copy Mat options */
3924:   if (mat->symmetric) {MatSetOption(*M,MAT_SYMMETRIC,PETSC_TRUE);}
3925:   if (mat->hermitian) {MatSetOption(*M,MAT_HERMITIAN,PETSC_TRUE);}
3926:   return(0);
3927: }

3931: /*@C
3932:    MatFactorGetSolverPackage - Returns name of the package providing the factorization routines

3934:    Not Collective

3936:    Input Parameter:
3937: .  mat - the matrix, must be a factored matrix

3939:    Output Parameter:
3940: .   type - the string name of the package (do not free this string)

3942:    Notes:
3943:       In Fortran you pass in a empty string and the package name will be copied into it.
3944:     (Make sure the string is long enough)

3946:    Level: intermediate

3948: .seealso: MatCopy(), MatDuplicate(), MatGetFactorAvailable(), MatGetFactor()
3949: @*/
3950: PetscErrorCode  MatFactorGetSolverPackage(Mat mat, const MatSolverPackage *type)
3951: {
3952:   PetscErrorCode ierr, (*conv)(Mat,const MatSolverPackage*);

3957:   if (!mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Only for factored matrix");
3958:   PetscObjectQueryFunction((PetscObject)mat,"MatFactorGetSolverPackage_C",&conv);
3959:   if (!conv) {
3960:     *type = MATSOLVERPETSC;
3961:   } else {
3962:     (*conv)(mat,type);
3963:   }
3964:   return(0);
3965: }

3967: typedef struct _MatSolverPackageForSpecifcType* MatSolverPackageForSpecifcType;
3968: struct _MatSolverPackageForSpecifcType {
3969:   MatType                        mtype;
3970:   PetscErrorCode                 (*getfactor[4])(Mat,MatFactorType,Mat*);
3971:   MatSolverPackageForSpecifcType next;
3972: };

3974: typedef struct _MatSolverPackageHolder* MatSolverPackageHolder;
3975: struct _MatSolverPackageHolder {
3976:   char                           *name;
3977:   MatSolverPackageForSpecifcType handlers;
3978:   MatSolverPackageHolder         next;
3979: };

3981: static MatSolverPackageHolder MatSolverPackageHolders = NULL;

3985: /*@C
3986:    MatSolvePackageRegister - Registers a MatSolverPackage that works for a particular matrix type

3988:    Input Parameters:
3989: +    package - name of the package, for example petsc or superlu
3990: .    mtype - the matrix type that works with this package
3991: .    ftype - the type of factorization supported by the package
3992: -    getfactor - routine that will create the factored matrix ready to be used

3994:     Level: intermediate

3996: .seealso: MatCopy(), MatDuplicate(), MatGetFactorAvailable()
3997: @*/
3998: PetscErrorCode  MatSolverPackageRegister(const MatSolverPackage package,const MatType mtype,MatFactorType ftype,PetscErrorCode (*getfactor)(Mat,MatFactorType,Mat*))
3999: {
4000:   PetscErrorCode                 ierr;
4001:   MatSolverPackageHolder         next = MatSolverPackageHolders,prev;
4002:   PetscBool                      flg;
4003:   MatSolverPackageForSpecifcType inext,iprev = NULL;

4006:   if (!MatSolverPackageHolders) {
4007:     PetscNew(&MatSolverPackageHolders);
4008:     PetscStrallocpy(package,&MatSolverPackageHolders->name);
4009:     PetscNew(&MatSolverPackageHolders->handlers);
4010:     PetscStrallocpy(mtype,(char **)&MatSolverPackageHolders->handlers->mtype);
4011:     MatSolverPackageHolders->handlers->getfactor[(int)ftype-1] = getfactor;
4012:     return(0);
4013:   }
4014:   while (next) {
4015:     PetscStrcasecmp(package,next->name,&flg);
4016:     if (flg) {
4017:       inext = next->handlers;
4018:       while (inext) {
4019:         PetscStrcasecmp(mtype,inext->mtype,&flg);
4020:         if (flg) {
4021:           inext->getfactor[(int)ftype-1] = getfactor;
4022:           return(0);
4023:         }
4024:         iprev = inext;
4025:         inext = inext->next;
4026:       }
4027:       PetscNew(&iprev->next);
4028:       PetscStrallocpy(mtype,(char **)&iprev->next->mtype);
4029:       iprev->next->getfactor[(int)ftype-1] = getfactor;
4030:       return(0);
4031:     }
4032:     prev = next;
4033:     next = next->next;
4034:   }
4035:   PetscNew(&prev->next);
4036:   PetscStrallocpy(package,&prev->next->name);
4037:   PetscNew(&prev->next->handlers);
4038:   PetscStrallocpy(mtype,(char **)&prev->next->handlers->mtype);
4039:   prev->next->handlers->getfactor[(int)ftype-1] = getfactor;
4040:   return(0);
4041: }

4045: /*@C
4046:    MatSolvePackageGet - Get's the function that creates the factor matrix if it exist

4048:    Input Parameters:
4049: +    package - name of the package, for example petsc or superlu
4050: .    ftype - the type of factorization supported by the package
4051: -    mtype - the matrix type that works with this package

4053:    Output Parameters:
4054: +   foundpackage - PETSC_TRUE if the package was registered
4055: .   foundmtype - PETSC_TRUE if the package supports the requested mtype
4056: -   getfactor - routine that will create the factored matrix ready to be used or NULL if not found

4058:     Level: intermediate

4060: .seealso: MatCopy(), MatDuplicate(), MatGetFactorAvailable()
4061: @*/
4062: PetscErrorCode  MatSolverPackageGet(const MatSolverPackage package,const MatType mtype,MatFactorType ftype,PetscBool *foundpackage,PetscBool *foundmtype,PetscErrorCode (**getfactor)(Mat,MatFactorType,Mat*))
4063: {
4064:   PetscErrorCode                 ierr;
4065:   MatSolverPackageHolder         next = MatSolverPackageHolders;
4066:   PetscBool                      flg;
4067:   MatSolverPackageForSpecifcType inext;

4070:   if (foundpackage) *foundpackage = PETSC_FALSE;
4071:   if (foundmtype)   *foundmtype   = PETSC_FALSE;
4072:   if (getfactor)    *getfactor    = NULL;
4073:   while (next) {
4074:     PetscStrcasecmp(package,next->name,&flg);
4075:     if (flg) {
4076:       if (foundpackage) *foundpackage = PETSC_TRUE;
4077:       inext = next->handlers;
4078:       while (inext) {
4079:         PetscStrcasecmp(mtype,inext->mtype,&flg);
4080:         if (flg) {
4081:           if (foundmtype) *foundmtype = PETSC_TRUE;
4082:           if (getfactor)  *getfactor  = inext->getfactor[(int)ftype-1];
4083:           return(0);
4084:         }
4085:         inext = inext->next;
4086:       }
4087:     }
4088:     next = next->next;
4089:   }
4090:   return(0);
4091: }

4095: PetscErrorCode  MatSolverPackageDestroy(void)
4096: {
4097:   PetscErrorCode                 ierr;
4098:   MatSolverPackageHolder         next = MatSolverPackageHolders,prev;
4099:   MatSolverPackageForSpecifcType inext,iprev;

4102:   while (next) {
4103:     PetscFree(next->name);
4104:     inext = next->handlers;
4105:     while (inext) {
4106:       PetscFree(inext->mtype);
4107:       iprev = inext;
4108:       inext = inext->next;
4109:       PetscFree(iprev);
4110:     }
4111:     prev = next;
4112:     next = next->next;
4113:     PetscFree(prev);
4114:   }
4115:   MatSolverPackageHolders = NULL;
4116:   return(0);
4117: }

4121: /*@C
4122:    MatGetFactor - Returns a matrix suitable to calls to MatXXFactorSymbolic()

4124:    Collective on Mat

4126:    Input Parameters:
4127: +  mat - the matrix
4128: .  type - name of solver type, for example, superlu, petsc (to use PETSc's default)
4129: -  ftype - factor type, MAT_FACTOR_LU, MAT_FACTOR_CHOLESKY, MAT_FACTOR_ICC, MAT_FACTOR_ILU,

4131:    Output Parameters:
4132: .  f - the factor matrix used with MatXXFactorSymbolic() calls

4134:    Notes:
4135:       Some PETSc matrix formats have alternative solvers available that are contained in alternative packages
4136:      such as pastix, superlu, mumps etc.

4138:       PETSc must have been ./configure to use the external solver, using the option --download-package

4140:    Level: intermediate

4142: .seealso: MatCopy(), MatDuplicate(), MatGetFactorAvailable()
4143: @*/
4144: PetscErrorCode  MatGetFactor(Mat mat, const MatSolverPackage type,MatFactorType ftype,Mat *f)
4145: {
4146:   PetscErrorCode ierr,(*conv)(Mat,MatFactorType,Mat*);
4147:   PetscBool      foundpackage,foundmtype;


4153:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
4154:   MatCheckPreallocated(mat,1);

4156:   MatSolverPackageGet(type,((PetscObject)mat)->type_name,ftype,&foundpackage,&foundmtype,&conv);
4157:   if (!foundpackage) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_MISSING_FACTOR,"Could not locate solver package %s. Perhaps you must ./configure with --download-%s",type,type);
4158:   if (!foundmtype) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_MISSING_FACTOR,"MatSolverPackage %s does not support matrix type %s",type,((PetscObject)mat)->type_name);
4159:   if (!conv) SETERRQ3(PetscObjectComm((PetscObject)mat),PETSC_ERR_MISSING_FACTOR,"MatSolverPackage %s does not support factorization type %s for  matrix type %s",type,MatFactorTypes[ftype],((PetscObject)mat)->type_name);

4161:   (*conv)(mat,ftype,f);
4162:   return(0);
4163: }

4167: /*@C
4168:    MatGetFactorAvailable - Returns a a flag if matrix supports particular package and factor type

4170:    Not Collective

4172:    Input Parameters:
4173: +  mat - the matrix
4174: .  type - name of solver type, for example, superlu, petsc (to use PETSc's default)
4175: -  ftype - factor type, MAT_FACTOR_LU, MAT_FACTOR_CHOLESKY, MAT_FACTOR_ICC, MAT_FACTOR_ILU,

4177:    Output Parameter:
4178: .    flg - PETSC_TRUE if the factorization is available

4180:    Notes:
4181:       Some PETSc matrix formats have alternative solvers available that are contained in alternative packages
4182:      such as pastix, superlu, mumps etc.

4184:       PETSc must have been ./configure to use the external solver, using the option --download-package

4186:    Level: intermediate

4188: .seealso: MatCopy(), MatDuplicate(), MatGetFactor()
4189: @*/
4190: PetscErrorCode  MatGetFactorAvailable(Mat mat, const MatSolverPackage type,MatFactorType ftype,PetscBool  *flg)
4191: {
4192:   PetscErrorCode ierr, (*gconv)(Mat,MatFactorType,Mat*);


4198:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
4199:   MatCheckPreallocated(mat,1);

4201:   *flg = PETSC_FALSE;
4202:   MatSolverPackageGet(type,((PetscObject)mat)->type_name,ftype,NULL,NULL,&gconv);
4203:   if (gconv) {
4204:     *flg = PETSC_TRUE;
4205:   }
4206:   return(0);
4207: }

4209: #include <petscdmtypes.h>

4213: /*@
4214:    MatDuplicate - Duplicates a matrix including the non-zero structure.

4216:    Collective on Mat

4218:    Input Parameters:
4219: +  mat - the matrix
4220: -  op - either MAT_DO_NOT_COPY_VALUES or MAT_COPY_VALUES, cause it to copy the numerical values in the matrix
4221:         MAT_SHARE_NONZERO_PATTERN to share the nonzero patterns with the previous matrix and not copy them.

4223:    Output Parameter:
4224: .  M - pointer to place new matrix

4226:    Level: intermediate

4228:    Concepts: matrices^duplicating

4230:     Notes: You cannot change the nonzero pattern for the parent or child matrix if you use MAT_SHARE_NONZERO_PATTERN.

4232: .seealso: MatCopy(), MatConvert()
4233: @*/
4234: PetscErrorCode  MatDuplicate(Mat mat,MatDuplicateOption op,Mat *M)
4235: {
4237:   Mat            B;
4238:   PetscInt       i;
4239:   DM             dm;

4245:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4246:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
4247:   MatCheckPreallocated(mat,1);

4249:   *M = 0;
4250:   if (!mat->ops->duplicate) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Not written for this matrix type");
4251:   PetscLogEventBegin(MAT_Convert,mat,0,0,0);
4252:   (*mat->ops->duplicate)(mat,op,M);
4253:   B    = *M;

4255:   B->stencil.dim = mat->stencil.dim;
4256:   B->stencil.noc = mat->stencil.noc;
4257:   for (i=0; i<=mat->stencil.dim; i++) {
4258:     B->stencil.dims[i]   = mat->stencil.dims[i];
4259:     B->stencil.starts[i] = mat->stencil.starts[i];
4260:   }

4262:   B->nooffproczerorows = mat->nooffproczerorows;
4263:   B->nooffprocentries  = mat->nooffprocentries;

4265:   PetscObjectQuery((PetscObject) mat, "__PETSc_dm", (PetscObject*) &dm);
4266:   if (dm) {
4267:     PetscObjectCompose((PetscObject) B, "__PETSc_dm", (PetscObject) dm);
4268:   }
4269:   PetscLogEventEnd(MAT_Convert,mat,0,0,0);
4270:   PetscObjectStateIncrease((PetscObject)B);
4271:   return(0);
4272: }

4276: /*@
4277:    MatGetDiagonal - Gets the diagonal of a matrix.

4279:    Logically Collective on Mat and Vec

4281:    Input Parameters:
4282: +  mat - the matrix
4283: -  v - the vector for storing the diagonal

4285:    Output Parameter:
4286: .  v - the diagonal of the matrix

4288:    Level: intermediate

4290:    Note:
4291:    Currently only correct in parallel for square matrices.

4293:    Concepts: matrices^accessing diagonals

4295: .seealso: MatGetRow(), MatGetSubMatrices(), MatGetSubmatrix(), MatGetRowMaxAbs()
4296: @*/
4297: PetscErrorCode  MatGetDiagonal(Mat mat,Vec v)
4298: {

4305:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4306:   if (!mat->ops->getdiagonal) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
4307:   MatCheckPreallocated(mat,1);

4309:   (*mat->ops->getdiagonal)(mat,v);
4310:   PetscObjectStateIncrease((PetscObject)v);
4311:   return(0);
4312: }

4316: /*@C
4317:    MatGetRowMin - Gets the minimum value (of the real part) of each
4318:         row of the matrix

4320:    Logically Collective on Mat and Vec

4322:    Input Parameters:
4323: .  mat - the matrix

4325:    Output Parameter:
4326: +  v - the vector for storing the maximums
4327: -  idx - the indices of the column found for each row (optional)

4329:    Level: intermediate

4331:    Notes: The result of this call are the same as if one converted the matrix to dense format
4332:       and found the minimum value in each row (i.e. the implicit zeros are counted as zeros).

4334:     This code is only implemented for a couple of matrix formats.

4336:    Concepts: matrices^getting row maximums

4338: .seealso: MatGetDiagonal(), MatGetSubMatrices(), MatGetSubmatrix(), MatGetRowMaxAbs(),
4339:           MatGetRowMax()
4340: @*/
4341: PetscErrorCode  MatGetRowMin(Mat mat,Vec v,PetscInt idx[])
4342: {

4349:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4350:   if (!mat->ops->getrowmax) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
4351:   MatCheckPreallocated(mat,1);

4353:   (*mat->ops->getrowmin)(mat,v,idx);
4354:   PetscObjectStateIncrease((PetscObject)v);
4355:   return(0);
4356: }

4360: /*@C
4361:    MatGetRowMinAbs - Gets the minimum value (in absolute value) of each
4362:         row of the matrix

4364:    Logically Collective on Mat and Vec

4366:    Input Parameters:
4367: .  mat - the matrix

4369:    Output Parameter:
4370: +  v - the vector for storing the minimums
4371: -  idx - the indices of the column found for each row (or NULL if not needed)

4373:    Level: intermediate

4375:    Notes: if a row is completely empty or has only 0.0 values then the idx[] value for that
4376:     row is 0 (the first column).

4378:     This code is only implemented for a couple of matrix formats.

4380:    Concepts: matrices^getting row maximums

4382: .seealso: MatGetDiagonal(), MatGetSubMatrices(), MatGetSubmatrix(), MatGetRowMax(), MatGetRowMaxAbs(), MatGetRowMin()
4383: @*/
4384: PetscErrorCode  MatGetRowMinAbs(Mat mat,Vec v,PetscInt idx[])
4385: {

4392:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4393:   if (!mat->ops->getrowminabs) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
4394:   MatCheckPreallocated(mat,1);
4395:   if (idx) {PetscMemzero(idx,mat->rmap->n*sizeof(PetscInt));}

4397:   (*mat->ops->getrowminabs)(mat,v,idx);
4398:   PetscObjectStateIncrease((PetscObject)v);
4399:   return(0);
4400: }

4404: /*@C
4405:    MatGetRowMax - Gets the maximum value (of the real part) of each
4406:         row of the matrix

4408:    Logically Collective on Mat and Vec

4410:    Input Parameters:
4411: .  mat - the matrix

4413:    Output Parameter:
4414: +  v - the vector for storing the maximums
4415: -  idx - the indices of the column found for each row (optional)

4417:    Level: intermediate

4419:    Notes: The result of this call are the same as if one converted the matrix to dense format
4420:       and found the minimum value in each row (i.e. the implicit zeros are counted as zeros).

4422:     This code is only implemented for a couple of matrix formats.

4424:    Concepts: matrices^getting row maximums

4426: .seealso: MatGetDiagonal(), MatGetSubMatrices(), MatGetSubmatrix(), MatGetRowMaxAbs(), MatGetRowMin()
4427: @*/
4428: PetscErrorCode  MatGetRowMax(Mat mat,Vec v,PetscInt idx[])
4429: {

4436:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4437:   if (!mat->ops->getrowmax) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
4438:   MatCheckPreallocated(mat,1);

4440:   (*mat->ops->getrowmax)(mat,v,idx);
4441:   PetscObjectStateIncrease((PetscObject)v);
4442:   return(0);
4443: }

4447: /*@C
4448:    MatGetRowMaxAbs - Gets the maximum value (in absolute value) of each
4449:         row of the matrix

4451:    Logically Collective on Mat and Vec

4453:    Input Parameters:
4454: .  mat - the matrix

4456:    Output Parameter:
4457: +  v - the vector for storing the maximums
4458: -  idx - the indices of the column found for each row (or NULL if not needed)

4460:    Level: intermediate

4462:    Notes: if a row is completely empty or has only 0.0 values then the idx[] value for that
4463:     row is 0 (the first column).

4465:     This code is only implemented for a couple of matrix formats.

4467:    Concepts: matrices^getting row maximums

4469: .seealso: MatGetDiagonal(), MatGetSubMatrices(), MatGetSubmatrix(), MatGetRowMax(), MatGetRowMin()
4470: @*/
4471: PetscErrorCode  MatGetRowMaxAbs(Mat mat,Vec v,PetscInt idx[])
4472: {

4479:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4480:   if (!mat->ops->getrowmaxabs) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
4481:   MatCheckPreallocated(mat,1);
4482:   if (idx) {PetscMemzero(idx,mat->rmap->n*sizeof(PetscInt));}

4484:   (*mat->ops->getrowmaxabs)(mat,v,idx);
4485:   PetscObjectStateIncrease((PetscObject)v);
4486:   return(0);
4487: }

4491: /*@
4492:    MatGetRowSum - Gets the sum of each row of the matrix

4494:    Logically Collective on Mat and Vec

4496:    Input Parameters:
4497: .  mat - the matrix

4499:    Output Parameter:
4500: .  v - the vector for storing the sum of rows

4502:    Level: intermediate

4504:    Notes: This code is slow since it is not currently specialized for different formats

4506:    Concepts: matrices^getting row sums

4508: .seealso: MatGetDiagonal(), MatGetSubMatrices(), MatGetSubmatrix(), MatGetRowMax(), MatGetRowMin()
4509: @*/
4510: PetscErrorCode  MatGetRowSum(Mat mat, Vec v)
4511: {
4512:   PetscInt       start = 0, end = 0, row;
4513:   PetscScalar    *array;

4520:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4521:   MatCheckPreallocated(mat,1);
4522:   MatGetOwnershipRange(mat, &start, &end);
4523:   VecGetArray(v, &array);
4524:   for (row = start; row < end; ++row) {
4525:     PetscInt          ncols, col;
4526:     const PetscInt    *cols;
4527:     const PetscScalar *vals;

4529:     array[row - start] = 0.0;

4531:     MatGetRow(mat, row, &ncols, &cols, &vals);
4532:     for (col = 0; col < ncols; col++) {
4533:       array[row - start] += vals[col];
4534:     }
4535:     MatRestoreRow(mat, row, &ncols, &cols, &vals);
4536:   }
4537:   VecRestoreArray(v, &array);
4538:   PetscObjectStateIncrease((PetscObject) v);
4539:   return(0);
4540: }

4544: /*@
4545:    MatTranspose - Computes an in-place or out-of-place transpose of a matrix.

4547:    Collective on Mat

4549:    Input Parameter:
4550: +  mat - the matrix to transpose
4551: -  reuse - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX

4553:    Output Parameters:
4554: .  B - the transpose

4556:    Notes:
4557:      If you  pass in &mat for B the transpose will be done in place, for example MatTranspose(mat,MAT_REUSE_MATRIX,&mat);

4559:      Consider using MatCreateTranspose() instead if you only need a matrix that behaves like the transpose, but don't need the storage to be changed.

4561:    Level: intermediate

4563:    Concepts: matrices^transposing

4565: .seealso: MatMultTranspose(), MatMultTransposeAdd(), MatIsTranspose(), MatReuse
4566: @*/
4567: PetscErrorCode  MatTranspose(Mat mat,MatReuse reuse,Mat *B)
4568: {

4574:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4575:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
4576:   if (!mat->ops->transpose) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
4577:   MatCheckPreallocated(mat,1);

4579:   PetscLogEventBegin(MAT_Transpose,mat,0,0,0);
4580:   (*mat->ops->transpose)(mat,reuse,B);
4581:   PetscLogEventEnd(MAT_Transpose,mat,0,0,0);
4582:   if (B) {PetscObjectStateIncrease((PetscObject)*B);}
4583:   return(0);
4584: }

4588: /*@
4589:    MatIsTranspose - Test whether a matrix is another one's transpose,
4590:         or its own, in which case it tests symmetry.

4592:    Collective on Mat

4594:    Input Parameter:
4595: +  A - the matrix to test
4596: -  B - the matrix to test against, this can equal the first parameter

4598:    Output Parameters:
4599: .  flg - the result

4601:    Notes:
4602:    Only available for SeqAIJ/MPIAIJ matrices. The sequential algorithm
4603:    has a running time of the order of the number of nonzeros; the parallel
4604:    test involves parallel copies of the block-offdiagonal parts of the matrix.

4606:    Level: intermediate

4608:    Concepts: matrices^transposing, matrix^symmetry

4610: .seealso: MatTranspose(), MatIsSymmetric(), MatIsHermitian()
4611: @*/
4612: PetscErrorCode  MatIsTranspose(Mat A,Mat B,PetscReal tol,PetscBool  *flg)
4613: {
4614:   PetscErrorCode ierr,(*f)(Mat,Mat,PetscReal,PetscBool*),(*g)(Mat,Mat,PetscReal,PetscBool*);

4620:   PetscObjectQueryFunction((PetscObject)A,"MatIsTranspose_C",&f);
4621:   PetscObjectQueryFunction((PetscObject)B,"MatIsTranspose_C",&g);
4622:   *flg = PETSC_FALSE;
4623:   if (f && g) {
4624:     if (f == g) {
4625:       (*f)(A,B,tol,flg);
4626:     } else SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_NOTSAMETYPE,"Matrices do not have the same comparator for symmetry test");
4627:   } else {
4628:     MatType mattype;
4629:     if (!f) {
4630:       MatGetType(A,&mattype);
4631:     } else {
4632:       MatGetType(B,&mattype);
4633:     }
4634:     SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Matrix of type <%s> does not support checking for transpose",mattype);
4635:   }
4636:   return(0);
4637: }

4641: /*@
4642:    MatHermitianTranspose - Computes an in-place or out-of-place transpose of a matrix in complex conjugate.

4644:    Collective on Mat

4646:    Input Parameter:
4647: +  mat - the matrix to transpose and complex conjugate
4648: -  reuse - store the transpose matrix in the provided B

4650:    Output Parameters:
4651: .  B - the Hermitian

4653:    Notes:
4654:      If you  pass in &mat for B the Hermitian will be done in place

4656:    Level: intermediate

4658:    Concepts: matrices^transposing, complex conjugatex

4660: .seealso: MatTranspose(), MatMultTranspose(), MatMultTransposeAdd(), MatIsTranspose(), MatReuse
4661: @*/
4662: PetscErrorCode  MatHermitianTranspose(Mat mat,MatReuse reuse,Mat *B)
4663: {

4667:   MatTranspose(mat,reuse,B);
4668: #if defined(PETSC_USE_COMPLEX)
4669:   MatConjugate(*B);
4670: #endif
4671:   return(0);
4672: }

4676: /*@
4677:    MatIsHermitianTranspose - Test whether a matrix is another one's Hermitian transpose,

4679:    Collective on Mat

4681:    Input Parameter:
4682: +  A - the matrix to test
4683: -  B - the matrix to test against, this can equal the first parameter

4685:    Output Parameters:
4686: .  flg - the result

4688:    Notes:
4689:    Only available for SeqAIJ/MPIAIJ matrices. The sequential algorithm
4690:    has a running time of the order of the number of nonzeros; the parallel
4691:    test involves parallel copies of the block-offdiagonal parts of the matrix.

4693:    Level: intermediate

4695:    Concepts: matrices^transposing, matrix^symmetry

4697: .seealso: MatTranspose(), MatIsSymmetric(), MatIsHermitian(), MatIsTranspose()
4698: @*/
4699: PetscErrorCode  MatIsHermitianTranspose(Mat A,Mat B,PetscReal tol,PetscBool  *flg)
4700: {
4701:   PetscErrorCode ierr,(*f)(Mat,Mat,PetscReal,PetscBool*),(*g)(Mat,Mat,PetscReal,PetscBool*);

4707:   PetscObjectQueryFunction((PetscObject)A,"MatIsHermitianTranspose_C",&f);
4708:   PetscObjectQueryFunction((PetscObject)B,"MatIsHermitianTranspose_C",&g);
4709:   if (f && g) {
4710:     if (f==g) {
4711:       (*f)(A,B,tol,flg);
4712:     } else SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_NOTSAMETYPE,"Matrices do not have the same comparator for Hermitian test");
4713:   }
4714:   return(0);
4715: }

4719: /*@
4720:    MatPermute - Creates a new matrix with rows and columns permuted from the
4721:    original.

4723:    Collective on Mat

4725:    Input Parameters:
4726: +  mat - the matrix to permute
4727: .  row - row permutation, each processor supplies only the permutation for its rows
4728: -  col - column permutation, each processor supplies only the permutation for its columns

4730:    Output Parameters:
4731: .  B - the permuted matrix

4733:    Level: advanced

4735:    Note:
4736:    The index sets map from row/col of permuted matrix to row/col of original matrix.
4737:    The index sets should be on the same communicator as Mat and have the same local sizes.

4739:    Concepts: matrices^permuting

4741: .seealso: MatGetOrdering(), ISAllGather()

4743: @*/
4744: PetscErrorCode  MatPermute(Mat mat,IS row,IS col,Mat *B)
4745: {

4754:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4755:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
4756:   if (!mat->ops->permute) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"MatPermute not available for Mat type %s",((PetscObject)mat)->type_name);
4757:   MatCheckPreallocated(mat,1);

4759:   (*mat->ops->permute)(mat,row,col,B);
4760:   PetscObjectStateIncrease((PetscObject)*B);
4761:   return(0);
4762: }

4766: /*@
4767:    MatEqual - Compares two matrices.

4769:    Collective on Mat

4771:    Input Parameters:
4772: +  A - the first matrix
4773: -  B - the second matrix

4775:    Output Parameter:
4776: .  flg - PETSC_TRUE if the matrices are equal; PETSC_FALSE otherwise.

4778:    Level: intermediate

4780:    Concepts: matrices^equality between
4781: @*/
4782: PetscErrorCode  MatEqual(Mat A,Mat B,PetscBool  *flg)
4783: {

4793:   MatCheckPreallocated(B,2);
4794:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4795:   if (!B->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4796:   if (A->rmap->N != B->rmap->N || A->cmap->N != B->cmap->N) SETERRQ4(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Mat A,Mat B: global dim %D %D %D %D",A->rmap->N,B->rmap->N,A->cmap->N,B->cmap->N);
4797:   if (!A->ops->equal) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"Mat type %s",((PetscObject)A)->type_name);
4798:   if (!B->ops->equal) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"Mat type %s",((PetscObject)B)->type_name);
4799:   if (A->ops->equal != B->ops->equal) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_INCOMP,"A is type: %s\nB is type: %s",((PetscObject)A)->type_name,((PetscObject)B)->type_name);
4800:   MatCheckPreallocated(A,1);

4802:   (*A->ops->equal)(A,B,flg);
4803:   return(0);
4804: }

4808: /*@
4809:    MatDiagonalScale - Scales a matrix on the left and right by diagonal
4810:    matrices that are stored as vectors.  Either of the two scaling
4811:    matrices can be NULL.

4813:    Collective on Mat

4815:    Input Parameters:
4816: +  mat - the matrix to be scaled
4817: .  l - the left scaling vector (or NULL)
4818: -  r - the right scaling vector (or NULL)

4820:    Notes:
4821:    MatDiagonalScale() computes A = LAR, where
4822:    L = a diagonal matrix (stored as a vector), R = a diagonal matrix (stored as a vector)
4823:    The L scales the rows of the matrix, the R scales the columns of the matrix.

4825:    Level: intermediate

4827:    Concepts: matrices^diagonal scaling
4828:    Concepts: diagonal scaling of matrices

4830: .seealso: MatScale()
4831: @*/
4832: PetscErrorCode  MatDiagonalScale(Mat mat,Vec l,Vec r)
4833: {

4839:   if (!mat->ops->diagonalscale) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
4842:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4843:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
4844:   MatCheckPreallocated(mat,1);

4846:   PetscLogEventBegin(MAT_Scale,mat,0,0,0);
4847:   (*mat->ops->diagonalscale)(mat,l,r);
4848:   PetscLogEventEnd(MAT_Scale,mat,0,0,0);
4849:   PetscObjectStateIncrease((PetscObject)mat);
4850: #if defined(PETSC_HAVE_CUSP)
4851:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
4852:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
4853:   }
4854: #endif
4855: #if defined(PETSC_HAVE_VIENNACL)
4856:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
4857:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
4858:   }
4859: #endif
4860:   return(0);
4861: }

4865: /*@
4866:     MatScale - Scales all elements of a matrix by a given number.

4868:     Logically Collective on Mat

4870:     Input Parameters:
4871: +   mat - the matrix to be scaled
4872: -   a  - the scaling value

4874:     Output Parameter:
4875: .   mat - the scaled matrix

4877:     Level: intermediate

4879:     Concepts: matrices^scaling all entries

4881: .seealso: MatDiagonalScale()
4882: @*/
4883: PetscErrorCode  MatScale(Mat mat,PetscScalar a)
4884: {

4890:   if (a != (PetscScalar)1.0 && !mat->ops->scale) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
4891:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4892:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
4894:   MatCheckPreallocated(mat,1);

4896:   PetscLogEventBegin(MAT_Scale,mat,0,0,0);
4897:   if (a != (PetscScalar)1.0) {
4898:     (*mat->ops->scale)(mat,a);
4899:     PetscObjectStateIncrease((PetscObject)mat);
4900:   }
4901:   PetscLogEventEnd(MAT_Scale,mat,0,0,0);
4902: #if defined(PETSC_HAVE_CUSP)
4903:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
4904:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
4905:   }
4906: #endif
4907: #if defined(PETSC_HAVE_VIENNACL)
4908:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
4909:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
4910:   }
4911: #endif
4912:   return(0);
4913: }

4917: /*@
4918:    MatNorm - Calculates various norms of a matrix.

4920:    Collective on Mat

4922:    Input Parameters:
4923: +  mat - the matrix
4924: -  type - the type of norm, NORM_1, NORM_FROBENIUS, NORM_INFINITY

4926:    Output Parameters:
4927: .  nrm - the resulting norm

4929:    Level: intermediate

4931:    Concepts: matrices^norm
4932:    Concepts: norm^of matrix
4933: @*/
4934: PetscErrorCode  MatNorm(Mat mat,NormType type,PetscReal *nrm)
4935: {


4943:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4944:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
4945:   if (!mat->ops->norm) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
4946:   MatCheckPreallocated(mat,1);

4948:   (*mat->ops->norm)(mat,type,nrm);
4949:   return(0);
4950: }

4952: /*
4953:      This variable is used to prevent counting of MatAssemblyBegin() that
4954:    are called from within a MatAssemblyEnd().
4955: */
4956: static PetscInt MatAssemblyEnd_InUse = 0;
4959: /*@
4960:    MatAssemblyBegin - Begins assembling the matrix.  This routine should
4961:    be called after completing all calls to MatSetValues().

4963:    Collective on Mat

4965:    Input Parameters:
4966: +  mat - the matrix
4967: -  type - type of assembly, either MAT_FLUSH_ASSEMBLY or MAT_FINAL_ASSEMBLY

4969:    Notes:
4970:    MatSetValues() generally caches the values.  The matrix is ready to
4971:    use only after MatAssemblyBegin() and MatAssemblyEnd() have been called.
4972:    Use MAT_FLUSH_ASSEMBLY when switching between ADD_VALUES and INSERT_VALUES
4973:    in MatSetValues(); use MAT_FINAL_ASSEMBLY for the final assembly before
4974:    using the matrix.

4976:    ALL processes that share a matrix MUST call MatAssemblyBegin() and MatAssemblyEnd() the SAME NUMBER of times, and each time with the
4977:    same flag of MAT_FLUSH_ASSEMBLY or MAT_FINAL_ASSEMBLY for all processes. Thus you CANNOT locally change from ADD_VALUES to INSERT_VALUES, that is
4978:    a global collective operation requring all processes that share the matrix.

4980:    Space for preallocated nonzeros that is not filled by a call to MatSetValues() or a related routine are compressed
4981:    out by assembly. If you intend to use that extra space on a subsequent assembly, be sure to insert explicit zeros
4982:    before MAT_FINAL_ASSEMBLY so the space is not compressed out.

4984:    Level: beginner

4986:    Concepts: matrices^assembling

4988: .seealso: MatAssemblyEnd(), MatSetValues(), MatAssembled()
4989: @*/
4990: PetscErrorCode  MatAssemblyBegin(Mat mat,MatAssemblyType type)
4991: {

4997:   MatCheckPreallocated(mat,1);
4998:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix.\nDid you forget to call MatSetUnfactored()?");
4999:   if (mat->assembled) {
5000:     mat->was_assembled = PETSC_TRUE;
5001:     mat->assembled     = PETSC_FALSE;
5002:   }
5003:   if (!MatAssemblyEnd_InUse) {
5004:     PetscLogEventBegin(MAT_AssemblyBegin,mat,0,0,0);
5005:     if (mat->ops->assemblybegin) {(*mat->ops->assemblybegin)(mat,type);}
5006:     PetscLogEventEnd(MAT_AssemblyBegin,mat,0,0,0);
5007:   } else if (mat->ops->assemblybegin) {
5008:     (*mat->ops->assemblybegin)(mat,type);
5009:   }
5010:   return(0);
5011: }

5015: /*@
5016:    MatAssembled - Indicates if a matrix has been assembled and is ready for
5017:      use; for example, in matrix-vector product.

5019:    Not Collective

5021:    Input Parameter:
5022: .  mat - the matrix

5024:    Output Parameter:
5025: .  assembled - PETSC_TRUE or PETSC_FALSE

5027:    Level: advanced

5029:    Concepts: matrices^assembled?

5031: .seealso: MatAssemblyEnd(), MatSetValues(), MatAssemblyBegin()
5032: @*/
5033: PetscErrorCode  MatAssembled(Mat mat,PetscBool  *assembled)
5034: {
5039:   *assembled = mat->assembled;
5040:   return(0);
5041: }

5045: /*@
5046:    MatAssemblyEnd - Completes assembling the matrix.  This routine should
5047:    be called after MatAssemblyBegin().

5049:    Collective on Mat

5051:    Input Parameters:
5052: +  mat - the matrix
5053: -  type - type of assembly, either MAT_FLUSH_ASSEMBLY or MAT_FINAL_ASSEMBLY

5055:    Options Database Keys:
5056: +  -mat_view ::ascii_info - Prints info on matrix at conclusion of MatEndAssembly()
5057: .  -mat_view ::ascii_info_detail - Prints more detailed info
5058: .  -mat_view - Prints matrix in ASCII format
5059: .  -mat_view ::ascii_matlab - Prints matrix in Matlab format
5060: .  -mat_view draw - PetscDraws nonzero structure of matrix, using MatView() and PetscDrawOpenX().
5061: .  -display <name> - Sets display name (default is host)
5062: .  -draw_pause <sec> - Sets number of seconds to pause after display
5063: .  -mat_view socket - Sends matrix to socket, can be accessed from Matlab (See Users-Manual: Chapter 11 Using MATLAB with PETSc )
5064: .  -viewer_socket_machine <machine> - Machine to use for socket
5065: .  -viewer_socket_port <port> - Port number to use for socket
5066: -  -mat_view binary:filename[:append] - Save matrix to file in binary format

5068:    Notes:
5069:    MatSetValues() generally caches the values.  The matrix is ready to
5070:    use only after MatAssemblyBegin() and MatAssemblyEnd() have been called.
5071:    Use MAT_FLUSH_ASSEMBLY when switching between ADD_VALUES and INSERT_VALUES
5072:    in MatSetValues(); use MAT_FINAL_ASSEMBLY for the final assembly before
5073:    using the matrix.

5075:    Space for preallocated nonzeros that is not filled by a call to MatSetValues() or a related routine are compressed
5076:    out by assembly. If you intend to use that extra space on a subsequent assembly, be sure to insert explicit zeros
5077:    before MAT_FINAL_ASSEMBLY so the space is not compressed out.

5079:    Level: beginner

5081: .seealso: MatAssemblyBegin(), MatSetValues(), PetscDrawOpenX(), PetscDrawCreate(), MatView(), MatAssembled(), PetscViewerSocketOpen()
5082: @*/
5083: PetscErrorCode  MatAssemblyEnd(Mat mat,MatAssemblyType type)
5084: {
5085:   PetscErrorCode  ierr;
5086:   static PetscInt inassm = 0;
5087:   PetscBool       flg    = PETSC_FALSE;


5093:   inassm++;
5094:   MatAssemblyEnd_InUse++;
5095:   if (MatAssemblyEnd_InUse == 1) { /* Do the logging only the first time through */
5096:     PetscLogEventBegin(MAT_AssemblyEnd,mat,0,0,0);
5097:     if (mat->ops->assemblyend) {
5098:       (*mat->ops->assemblyend)(mat,type);
5099:     }
5100:     PetscLogEventEnd(MAT_AssemblyEnd,mat,0,0,0);
5101:   } else if (mat->ops->assemblyend) {
5102:     (*mat->ops->assemblyend)(mat,type);
5103:   }

5105:   /* Flush assembly is not a true assembly */
5106:   if (type != MAT_FLUSH_ASSEMBLY) {
5107:     mat->assembled = PETSC_TRUE; mat->num_ass++;
5108:   }
5109:   mat->insertmode = NOT_SET_VALUES;
5110:   MatAssemblyEnd_InUse--;
5111:   PetscObjectStateIncrease((PetscObject)mat);
5112:   if (!mat->symmetric_eternal) {
5113:     mat->symmetric_set              = PETSC_FALSE;
5114:     mat->hermitian_set              = PETSC_FALSE;
5115:     mat->structurally_symmetric_set = PETSC_FALSE;
5116:   }
5117: #if defined(PETSC_HAVE_CUSP)
5118:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
5119:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
5120:   }
5121: #endif
5122: #if defined(PETSC_HAVE_VIENNACL)
5123:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
5124:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
5125:   }
5126: #endif
5127:   if (inassm == 1 && type != MAT_FLUSH_ASSEMBLY) {
5128:     MatViewFromOptions(mat,NULL,"-mat_view");

5130:     if (mat->checksymmetryonassembly) {
5131:       MatIsSymmetric(mat,mat->checksymmetrytol,&flg);
5132:       if (flg) {
5133:         PetscPrintf(PetscObjectComm((PetscObject)mat),"Matrix is symmetric (tolerance %g)\n",(double)mat->checksymmetrytol);
5134:       } else {
5135:         PetscPrintf(PetscObjectComm((PetscObject)mat),"Matrix is not symmetric (tolerance %g)\n",(double)mat->checksymmetrytol);
5136:       }
5137:     }
5138:     if (mat->nullsp && mat->checknullspaceonassembly) {
5139:       MatNullSpaceTest(mat->nullsp,mat,NULL);
5140:     }
5141:   }
5142:   inassm--;
5143:   return(0);
5144: }

5148: /*@
5149:    MatSetOption - Sets a parameter option for a matrix. Some options
5150:    may be specific to certain storage formats.  Some options
5151:    determine how values will be inserted (or added). Sorted,
5152:    row-oriented input will generally assemble the fastest. The default
5153:    is row-oriented.

5155:    Logically Collective on Mat for certain operations, such as MAT_SPD, not collective for MAT_ROW_ORIENTED, see MatOption

5157:    Input Parameters:
5158: +  mat - the matrix
5159: .  option - the option, one of those listed below (and possibly others),
5160: -  flg - turn the option on (PETSC_TRUE) or off (PETSC_FALSE)

5162:   Options Describing Matrix Structure:
5163: +    MAT_SPD - symmetric positive definite
5164: .    MAT_SYMMETRIC - symmetric in terms of both structure and value
5165: .    MAT_HERMITIAN - transpose is the complex conjugation
5166: .    MAT_STRUCTURALLY_SYMMETRIC - symmetric nonzero structure
5167: -    MAT_SYMMETRY_ETERNAL - if you would like the symmetry/Hermitian flag
5168:                             you set to be kept with all future use of the matrix
5169:                             including after MatAssemblyBegin/End() which could
5170:                             potentially change the symmetry structure, i.e. you
5171:                             KNOW the matrix will ALWAYS have the property you set.


5174:    Options For Use with MatSetValues():
5175:    Insert a logically dense subblock, which can be
5176: .    MAT_ROW_ORIENTED - row-oriented (default)

5178:    Note these options reflect the data you pass in with MatSetValues(); it has
5179:    nothing to do with how the data is stored internally in the matrix
5180:    data structure.

5182:    When (re)assembling a matrix, we can restrict the input for
5183:    efficiency/debugging purposes.  These options include:
5184: +    MAT_NEW_NONZERO_LOCATIONS - additional insertions will be allowed if they generate a new nonzero (slow)
5185: .    MAT_NEW_DIAGONALS - new diagonals will be allowed (for block diagonal format only)
5186: .    MAT_IGNORE_OFF_PROC_ENTRIES - drops off-processor entries
5187: .    MAT_NEW_NONZERO_LOCATION_ERR - generates an error for new matrix entry
5188: .    MAT_USE_HASH_TABLE - uses a hash table to speed up matrix assembly
5189: +    MAT_NO_OFF_PROC_ENTRIES - you know each process will only set values for its own rows, will generate an error if
5190:         any process sets values for another process. This avoids all reductions in the MatAssembly routines and thus improves
5191:         performance for very large process counts.

5193:    Notes:
5194:    Except for MAT_UNUSED_NONZERO_LOCATION_ERR and  MAT_ROW_ORIENTED all processes that share the matrix must pass the same value in flg!

5196:    Some options are relevant only for particular matrix types and
5197:    are thus ignored by others.  Other options are not supported by
5198:    certain matrix types and will generate an error message if set.

5200:    If using a Fortran 77 module to compute a matrix, one may need to
5201:    use the column-oriented option (or convert to the row-oriented
5202:    format).

5204:    MAT_NEW_NONZERO_LOCATIONS set to PETSC_FALSE indicates that any add or insertion
5205:    that would generate a new entry in the nonzero structure is instead
5206:    ignored.  Thus, if memory has not alredy been allocated for this particular
5207:    data, then the insertion is ignored. For dense matrices, in which
5208:    the entire array is allocated, no entries are ever ignored.
5209:    Set after the first MatAssemblyEnd(). If this option is set then the MatAssemblyBegin/End() processes has one less global reduction

5211:    MAT_NEW_NONZERO_LOCATION_ERR set to PETSC_TRUE indicates that any add or insertion
5212:    that would generate a new entry in the nonzero structure instead produces
5213:    an error. (Currently supported for AIJ and BAIJ formats only.) If this option is set then the MatAssemblyBegin/End() processes has one less global reduction

5215:    MAT_NEW_NONZERO_ALLOCATION_ERR set to PETSC_TRUE indicates that any add or insertion
5216:    that would generate a new entry that has not been preallocated will
5217:    instead produce an error. (Currently supported for AIJ and BAIJ formats
5218:    only.) This is a useful flag when debugging matrix memory preallocation.
5219:    If this option is set then the MatAssemblyBegin/End() processes has one less global reduction

5221:    MAT_IGNORE_OFF_PROC_ENTRIES set to PETSC_TRUE indicates entries destined for
5222:    other processors should be dropped, rather than stashed.
5223:    This is useful if you know that the "owning" processor is also
5224:    always generating the correct matrix entries, so that PETSc need
5225:    not transfer duplicate entries generated on another processor.

5227:    MAT_USE_HASH_TABLE indicates that a hash table be used to improve the
5228:    searches during matrix assembly. When this flag is set, the hash table
5229:    is created during the first Matrix Assembly. This hash table is
5230:    used the next time through, during MatSetVaules()/MatSetVaulesBlocked()
5231:    to improve the searching of indices. MAT_NEW_NONZERO_LOCATIONS flag
5232:    should be used with MAT_USE_HASH_TABLE flag. This option is currently
5233:    supported by MATMPIBAIJ format only.

5235:    MAT_KEEP_NONZERO_PATTERN indicates when MatZeroRows() is called the zeroed entries
5236:    are kept in the nonzero structure

5238:    MAT_IGNORE_ZERO_ENTRIES - for AIJ/IS matrices this will stop zero values from creating
5239:    a zero location in the matrix

5241:    MAT_USE_INODES - indicates using inode version of the code - works with AIJ matrix types

5243:    MAT_NO_OFF_PROC_ZERO_ROWS - you know each process will only zero its own rows. This avoids all reductions in the
5244:         zero row routines and thus improves performance for very large process counts.

5246:    MAT_IGNORE_LOWER_TRIANGULAR - For SBAIJ matrices will ignore any insertions you make in the lower triangular
5247:         part of the matrix (since they should match the upper triangular part).

5249:    Notes: Can only be called after MatSetSizes() and MatSetType() have been set.

5251:    Level: intermediate

5253:    Concepts: matrices^setting options

5255: .seealso:  MatOption, Mat

5257: @*/
5258: PetscErrorCode  MatSetOption(Mat mat,MatOption op,PetscBool flg)
5259: {

5265:   if (op > 0) {
5268:   }

5270:   if (((int) op) <= MAT_OPTION_MIN || ((int) op) >= MAT_OPTION_MAX) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_OUTOFRANGE,"Options %d is out of range",(int)op);
5271:   if (!((PetscObject)mat)->type_name) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_TYPENOTSET,"Cannot set options until type and size have been set, see MatSetType() and MatSetSizes()");

5273:   switch (op) {
5274:   case MAT_NO_OFF_PROC_ENTRIES:
5275:     mat->nooffprocentries = flg;
5276:     return(0);
5277:     break;
5278:   case MAT_NO_OFF_PROC_ZERO_ROWS:
5279:     mat->nooffproczerorows = flg;
5280:     return(0);
5281:     break;
5282:   case MAT_SPD:
5283:     mat->spd_set = PETSC_TRUE;
5284:     mat->spd     = flg;
5285:     if (flg) {
5286:       mat->symmetric                  = PETSC_TRUE;
5287:       mat->structurally_symmetric     = PETSC_TRUE;
5288:       mat->symmetric_set              = PETSC_TRUE;
5289:       mat->structurally_symmetric_set = PETSC_TRUE;
5290:     }
5291:     break;
5292:   case MAT_SYMMETRIC:
5293:     mat->symmetric = flg;
5294:     if (flg) mat->structurally_symmetric = PETSC_TRUE;
5295:     mat->symmetric_set              = PETSC_TRUE;
5296:     mat->structurally_symmetric_set = flg;
5297:     break;
5298:   case MAT_HERMITIAN:
5299:     mat->hermitian = flg;
5300:     if (flg) mat->structurally_symmetric = PETSC_TRUE;
5301:     mat->hermitian_set              = PETSC_TRUE;
5302:     mat->structurally_symmetric_set = flg;
5303:     break;
5304:   case MAT_STRUCTURALLY_SYMMETRIC:
5305:     mat->structurally_symmetric     = flg;
5306:     mat->structurally_symmetric_set = PETSC_TRUE;
5307:     break;
5308:   case MAT_SYMMETRY_ETERNAL:
5309:     mat->symmetric_eternal = flg;
5310:     break;
5311:   default:
5312:     break;
5313:   }
5314:   if (mat->ops->setoption) {
5315:     (*mat->ops->setoption)(mat,op,flg);
5316:   }
5317:   return(0);
5318: }

5322: /*@
5323:    MatGetOption - Gets a parameter option that has been set for a matrix.

5325:    Logically Collective on Mat for certain operations, such as MAT_SPD, not collective for MAT_ROW_ORIENTED, see MatOption

5327:    Input Parameters:
5328: +  mat - the matrix
5329: -  option - the option, this only responds to certain options, check the code for which ones

5331:    Output Parameter:
5332: .  flg - turn the option on (PETSC_TRUE) or off (PETSC_FALSE)

5334:     Notes: Can only be called after MatSetSizes() and MatSetType() have been set.

5336:    Level: intermediate

5338:    Concepts: matrices^setting options

5340: .seealso:  MatOption, MatSetOption()

5342: @*/
5343: PetscErrorCode  MatGetOption(Mat mat,MatOption op,PetscBool *flg)
5344: {

5349:   if (((int) op) <= MAT_OPTION_MIN || ((int) op) >= MAT_OPTION_MAX) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_OUTOFRANGE,"Options %d is out of range",(int)op);
5350:   if (!((PetscObject)mat)->type_name) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_TYPENOTSET,"Cannot get options until type and size have been set, see MatSetType() and MatSetSizes()");

5352:   switch (op) {
5353:   case MAT_NO_OFF_PROC_ENTRIES:
5354:     *flg = mat->nooffprocentries;
5355:     break;
5356:   case MAT_NO_OFF_PROC_ZERO_ROWS:
5357:     *flg = mat->nooffproczerorows;
5358:     break;
5359:   case MAT_SYMMETRIC:
5360:     *flg = mat->symmetric;
5361:     break;
5362:   case MAT_HERMITIAN:
5363:     *flg = mat->hermitian;
5364:     break;
5365:   case MAT_STRUCTURALLY_SYMMETRIC:
5366:     *flg = mat->structurally_symmetric;
5367:     break;
5368:   case MAT_SYMMETRY_ETERNAL:
5369:     *flg = mat->symmetric_eternal;
5370:     break;
5371:   default:
5372:     break;
5373:   }
5374:   return(0);
5375: }

5379: /*@
5380:    MatZeroEntries - Zeros all entries of a matrix.  For sparse matrices
5381:    this routine retains the old nonzero structure.

5383:    Logically Collective on Mat

5385:    Input Parameters:
5386: .  mat - the matrix

5388:    Level: intermediate

5390:    Notes: If the matrix was not preallocated then a default, likely poor preallocation will be set in the matrix, so this should be called after the preallocation phase.
5391:    See the Performance chapter of the users manual for information on preallocating matrices.

5393:    Concepts: matrices^zeroing

5395: .seealso: MatZeroRows()
5396: @*/
5397: PetscErrorCode  MatZeroEntries(Mat mat)
5398: {

5404:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
5405:   if (mat->insertmode != NOT_SET_VALUES) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for matrices where you have set values but not yet assembled");
5406:   if (!mat->ops->zeroentries) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
5407:   MatCheckPreallocated(mat,1);

5409:   PetscLogEventBegin(MAT_ZeroEntries,mat,0,0,0);
5410:   (*mat->ops->zeroentries)(mat);
5411:   PetscLogEventEnd(MAT_ZeroEntries,mat,0,0,0);
5412:   PetscObjectStateIncrease((PetscObject)mat);
5413: #if defined(PETSC_HAVE_CUSP)
5414:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
5415:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
5416:   }
5417: #endif
5418: #if defined(PETSC_HAVE_VIENNACL)
5419:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
5420:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
5421:   }
5422: #endif
5423:   return(0);
5424: }

5428: /*@C
5429:    MatZeroRowsColumns - Zeros all entries (except possibly the main diagonal)
5430:    of a set of rows and columns of a matrix.

5432:    Collective on Mat

5434:    Input Parameters:
5435: +  mat - the matrix
5436: .  numRows - the number of rows to remove
5437: .  rows - the global row indices
5438: .  diag - value put in all diagonals of eliminated rows (0.0 will even eliminate diagonal entry)
5439: .  x - optional vector of solutions for zeroed rows (other entries in vector are not used)
5440: -  b - optional vector of right hand side, that will be adjusted by provided solution

5442:    Notes:
5443:    This does not change the nonzero structure of the matrix, it merely zeros those entries in the matrix.

5445:    The user can set a value in the diagonal entry (or for the AIJ and
5446:    row formats can optionally remove the main diagonal entry from the
5447:    nonzero structure as well, by passing 0.0 as the final argument).

5449:    For the parallel case, all processes that share the matrix (i.e.,
5450:    those in the communicator used for matrix creation) MUST call this
5451:    routine, regardless of whether any rows being zeroed are owned by
5452:    them.

5454:    Each processor can indicate any rows in the entire matrix to be zeroed (i.e. each process does NOT have to
5455:    list only rows local to itself).

5457:    The option MAT_NO_OFF_PROC_ZERO_ROWS does not apply to this routine.

5459:    Level: intermediate

5461:    Concepts: matrices^zeroing rows

5463: .seealso: MatZeroRowsIS(), MatZeroRowsStencil(), MatZeroEntries(), MatZeroRowsLocal(), MatSetOption(), MatZeroRowsColumnsIS()
5464: @*/
5465: PetscErrorCode  MatZeroRowsColumns(Mat mat,PetscInt numRows,const PetscInt rows[],PetscScalar diag,Vec x,Vec b)
5466: {

5473:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
5474:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
5475:   if (!mat->ops->zerorowscolumns) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
5476:   MatCheckPreallocated(mat,1);

5478:   (*mat->ops->zerorowscolumns)(mat,numRows,rows,diag,x,b);
5479:   MatViewFromOptions(mat,NULL,"-mat_view");
5480:   PetscObjectStateIncrease((PetscObject)mat);
5481: #if defined(PETSC_HAVE_CUSP)
5482:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
5483:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
5484:   }
5485: #endif
5486: #if defined(PETSC_HAVE_VIENNACL)
5487:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
5488:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
5489:   }
5490: #endif
5491:   return(0);
5492: }

5496: /*@C
5497:    MatZeroRowsColumnsIS - Zeros all entries (except possibly the main diagonal)
5498:    of a set of rows and columns of a matrix.

5500:    Collective on Mat

5502:    Input Parameters:
5503: +  mat - the matrix
5504: .  is - the rows to zero
5505: .  diag - value put in all diagonals of eliminated rows (0.0 will even eliminate diagonal entry)
5506: .  x - optional vector of solutions for zeroed rows (other entries in vector are not used)
5507: -  b - optional vector of right hand side, that will be adjusted by provided solution

5509:    Notes:
5510:    This does not change the nonzero structure of the matrix, it merely zeros those entries in the matrix.

5512:    The user can set a value in the diagonal entry (or for the AIJ and
5513:    row formats can optionally remove the main diagonal entry from the
5514:    nonzero structure as well, by passing 0.0 as the final argument).

5516:    For the parallel case, all processes that share the matrix (i.e.,
5517:    those in the communicator used for matrix creation) MUST call this
5518:    routine, regardless of whether any rows being zeroed are owned by
5519:    them.

5521:    Each processor can indicate any rows in the entire matrix to be zeroed (i.e. each process does NOT have to
5522:    list only rows local to itself).

5524:    The option MAT_NO_OFF_PROC_ZERO_ROWS does not apply to this routine.

5526:    Level: intermediate

5528:    Concepts: matrices^zeroing rows

5530: .seealso: MatZeroRowsIS(), MatZeroRowsStencil(), MatZeroEntries(), MatZeroRowsLocal(), MatSetOption(), MatZeroRowsColumns()
5531: @*/
5532: PetscErrorCode  MatZeroRowsColumnsIS(Mat mat,IS is,PetscScalar diag,Vec x,Vec b)
5533: {
5535:   PetscInt       numRows;
5536:   const PetscInt *rows;

5543:   ISGetLocalSize(is,&numRows);
5544:   ISGetIndices(is,&rows);
5545:   MatZeroRowsColumns(mat,numRows,rows,diag,x,b);
5546:   ISRestoreIndices(is,&rows);
5547:   return(0);
5548: }

5552: /*@C
5553:    MatZeroRows - Zeros all entries (except possibly the main diagonal)
5554:    of a set of rows of a matrix.

5556:    Collective on Mat

5558:    Input Parameters:
5559: +  mat - the matrix
5560: .  numRows - the number of rows to remove
5561: .  rows - the global row indices
5562: .  diag - value put in all diagonals of eliminated rows (0.0 will even eliminate diagonal entry)
5563: .  x - optional vector of solutions for zeroed rows (other entries in vector are not used)
5564: -  b - optional vector of right hand side, that will be adjusted by provided solution

5566:    Notes:
5567:    For the AIJ and BAIJ matrix formats this removes the old nonzero structure,
5568:    but does not release memory.  For the dense and block diagonal
5569:    formats this does not alter the nonzero structure.

5571:    If the option MatSetOption(mat,MAT_KEEP_NONZERO_PATTERN,PETSC_TRUE) the nonzero structure
5572:    of the matrix is not changed (even for AIJ and BAIJ matrices) the values are
5573:    merely zeroed.

5575:    The user can set a value in the diagonal entry (or for the AIJ and
5576:    row formats can optionally remove the main diagonal entry from the
5577:    nonzero structure as well, by passing 0.0 as the final argument).

5579:    For the parallel case, all processes that share the matrix (i.e.,
5580:    those in the communicator used for matrix creation) MUST call this
5581:    routine, regardless of whether any rows being zeroed are owned by
5582:    them.

5584:    Each processor can indicate any rows in the entire matrix to be zeroed (i.e. each process does NOT have to
5585:    list only rows local to itself).

5587:    You can call MatSetOption(mat,MAT_NO_OFF_PROC_ZERO_ROWS,PETSC_TRUE) if each process indicates only rows it
5588:    owns that are to be zeroed. This saves a global synchronization in the implementation.

5590:    Level: intermediate

5592:    Concepts: matrices^zeroing rows

5594: .seealso: MatZeroRowsIS(), MatZeroRowsStencil(), MatZeroEntries(), MatZeroRowsLocal(), MatSetOption()
5595: @*/
5596: PetscErrorCode  MatZeroRows(Mat mat,PetscInt numRows,const PetscInt rows[],PetscScalar diag,Vec x,Vec b)
5597: {

5604:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
5605:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
5606:   if (!mat->ops->zerorows) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
5607:   MatCheckPreallocated(mat,1);

5609:   (*mat->ops->zerorows)(mat,numRows,rows,diag,x,b);
5610:   MatViewFromOptions(mat,NULL,"-mat_view");
5611:   PetscObjectStateIncrease((PetscObject)mat);
5612: #if defined(PETSC_HAVE_CUSP)
5613:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
5614:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
5615:   }
5616: #endif
5617: #if defined(PETSC_HAVE_VIENNACL)
5618:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
5619:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
5620:   }
5621: #endif
5622:   return(0);
5623: }

5627: /*@C
5628:    MatZeroRowsIS - Zeros all entries (except possibly the main diagonal)
5629:    of a set of rows of a matrix.

5631:    Collective on Mat

5633:    Input Parameters:
5634: +  mat - the matrix
5635: .  is - index set of rows to remove
5636: .  diag - value put in all diagonals of eliminated rows
5637: .  x - optional vector of solutions for zeroed rows (other entries in vector are not used)
5638: -  b - optional vector of right hand side, that will be adjusted by provided solution

5640:    Notes:
5641:    For the AIJ and BAIJ matrix formats this removes the old nonzero structure,
5642:    but does not release memory.  For the dense and block diagonal
5643:    formats this does not alter the nonzero structure.

5645:    If the option MatSetOption(mat,MAT_KEEP_NONZERO_PATTERN,PETSC_TRUE) the nonzero structure
5646:    of the matrix is not changed (even for AIJ and BAIJ matrices) the values are
5647:    merely zeroed.

5649:    The user can set a value in the diagonal entry (or for the AIJ and
5650:    row formats can optionally remove the main diagonal entry from the
5651:    nonzero structure as well, by passing 0.0 as the final argument).

5653:    For the parallel case, all processes that share the matrix (i.e.,
5654:    those in the communicator used for matrix creation) MUST call this
5655:    routine, regardless of whether any rows being zeroed are owned by
5656:    them.

5658:    Each processor can indicate any rows in the entire matrix to be zeroed (i.e. each process does NOT have to
5659:    list only rows local to itself).

5661:    You can call MatSetOption(mat,MAT_NO_OFF_PROC_ZERO_ROWS,PETSC_TRUE) if each process indicates only rows it
5662:    owns that are to be zeroed. This saves a global synchronization in the implementation.

5664:    Level: intermediate

5666:    Concepts: matrices^zeroing rows

5668: .seealso: MatZeroRows(), MatZeroRowsStencil(), MatZeroEntries(), MatZeroRowsLocal(), MatSetOption()
5669: @*/
5670: PetscErrorCode  MatZeroRowsIS(Mat mat,IS is,PetscScalar diag,Vec x,Vec b)
5671: {
5672:   PetscInt       numRows;
5673:   const PetscInt *rows;

5680:   ISGetLocalSize(is,&numRows);
5681:   ISGetIndices(is,&rows);
5682:   MatZeroRows(mat,numRows,rows,diag,x,b);
5683:   ISRestoreIndices(is,&rows);
5684:   return(0);
5685: }

5689: /*@C
5690:    MatZeroRowsStencil - Zeros all entries (except possibly the main diagonal)
5691:    of a set of rows of a matrix. These rows must be local to the process.

5693:    Collective on Mat

5695:    Input Parameters:
5696: +  mat - the matrix
5697: .  numRows - the number of rows to remove
5698: .  rows - the grid coordinates (and component number when dof > 1) for matrix rows
5699: .  diag - value put in all diagonals of eliminated rows (0.0 will even eliminate diagonal entry)
5700: .  x - optional vector of solutions for zeroed rows (other entries in vector are not used)
5701: -  b - optional vector of right hand side, that will be adjusted by provided solution

5703:    Notes:
5704:    For the AIJ and BAIJ matrix formats this removes the old nonzero structure,
5705:    but does not release memory.  For the dense and block diagonal
5706:    formats this does not alter the nonzero structure.

5708:    If the option MatSetOption(mat,MAT_KEEP_NONZERO_PATTERN,PETSC_TRUE) the nonzero structure
5709:    of the matrix is not changed (even for AIJ and BAIJ matrices) the values are
5710:    merely zeroed.

5712:    The user can set a value in the diagonal entry (or for the AIJ and
5713:    row formats can optionally remove the main diagonal entry from the
5714:    nonzero structure as well, by passing 0.0 as the final argument).

5716:    For the parallel case, all processes that share the matrix (i.e.,
5717:    those in the communicator used for matrix creation) MUST call this
5718:    routine, regardless of whether any rows being zeroed are owned by
5719:    them.

5721:    Each processor can indicate any rows in the entire matrix to be zeroed (i.e. each process does NOT have to
5722:    list only rows local to itself).

5724:    The grid coordinates are across the entire grid, not just the local portion

5726:    In Fortran idxm and idxn should be declared as
5727: $     MatStencil idxm(4,m)
5728:    and the values inserted using
5729: $    idxm(MatStencil_i,1) = i
5730: $    idxm(MatStencil_j,1) = j
5731: $    idxm(MatStencil_k,1) = k
5732: $    idxm(MatStencil_c,1) = c
5733:    etc

5735:    For periodic boundary conditions use negative indices for values to the left (below 0; that are to be
5736:    obtained by wrapping values from right edge). For values to the right of the last entry using that index plus one
5737:    etc to obtain values that obtained by wrapping the values from the left edge. This does not work for anything but the
5738:    DM_BOUNDARY_PERIODIC boundary type.

5740:    For indices that don't mean anything for your case (like the k index when working in 2d) or the c index when you have
5741:    a single value per point) you can skip filling those indices.

5743:    Level: intermediate

5745:    Concepts: matrices^zeroing rows

5747: .seealso: MatZeroRows(), MatZeroRowsIS(), MatZeroEntries(), MatZeroRowsLocal(), MatSetOption()
5748: @*/
5749: PetscErrorCode  MatZeroRowsStencil(Mat mat,PetscInt numRows,const MatStencil rows[],PetscScalar diag,Vec x,Vec b)
5750: {
5751:   PetscInt       dim     = mat->stencil.dim;
5752:   PetscInt       sdim    = dim - (1 - (PetscInt) mat->stencil.noc);
5753:   PetscInt       *dims   = mat->stencil.dims+1;
5754:   PetscInt       *starts = mat->stencil.starts;
5755:   PetscInt       *dxm    = (PetscInt*) rows;
5756:   PetscInt       *jdxm, i, j, tmp, numNewRows = 0;


5764:   PetscMalloc1(numRows, &jdxm);
5765:   for (i = 0; i < numRows; ++i) {
5766:     /* Skip unused dimensions (they are ordered k, j, i, c) */
5767:     for (j = 0; j < 3-sdim; ++j) dxm++;
5768:     /* Local index in X dir */
5769:     tmp = *dxm++ - starts[0];
5770:     /* Loop over remaining dimensions */
5771:     for (j = 0; j < dim-1; ++j) {
5772:       /* If nonlocal, set index to be negative */
5773:       if ((*dxm++ - starts[j+1]) < 0 || tmp < 0) tmp = PETSC_MIN_INT;
5774:       /* Update local index */
5775:       else tmp = tmp*dims[j] + *(dxm-1) - starts[j+1];
5776:     }
5777:     /* Skip component slot if necessary */
5778:     if (mat->stencil.noc) dxm++;
5779:     /* Local row number */
5780:     if (tmp >= 0) {
5781:       jdxm[numNewRows++] = tmp;
5782:     }
5783:   }
5784:   MatZeroRowsLocal(mat,numNewRows,jdxm,diag,x,b);
5785:   PetscFree(jdxm);
5786:   return(0);
5787: }

5791: /*@C
5792:    MatZeroRowsColumnsStencil - Zeros all row and column entries (except possibly the main diagonal)
5793:    of a set of rows and columns of a matrix.

5795:    Collective on Mat

5797:    Input Parameters:
5798: +  mat - the matrix
5799: .  numRows - the number of rows/columns to remove
5800: .  rows - the grid coordinates (and component number when dof > 1) for matrix rows
5801: .  diag - value put in all diagonals of eliminated rows (0.0 will even eliminate diagonal entry)
5802: .  x - optional vector of solutions for zeroed rows (other entries in vector are not used)
5803: -  b - optional vector of right hand side, that will be adjusted by provided solution

5805:    Notes:
5806:    For the AIJ and BAIJ matrix formats this removes the old nonzero structure,
5807:    but does not release memory.  For the dense and block diagonal
5808:    formats this does not alter the nonzero structure.

5810:    If the option MatSetOption(mat,MAT_KEEP_NONZERO_PATTERN,PETSC_TRUE) the nonzero structure
5811:    of the matrix is not changed (even for AIJ and BAIJ matrices) the values are
5812:    merely zeroed.

5814:    The user can set a value in the diagonal entry (or for the AIJ and
5815:    row formats can optionally remove the main diagonal entry from the
5816:    nonzero structure as well, by passing 0.0 as the final argument).

5818:    For the parallel case, all processes that share the matrix (i.e.,
5819:    those in the communicator used for matrix creation) MUST call this
5820:    routine, regardless of whether any rows being zeroed are owned by
5821:    them.

5823:    Each processor can indicate any rows in the entire matrix to be zeroed (i.e. each process does NOT have to
5824:    list only rows local to itself, but the row/column numbers are given in local numbering).

5826:    The grid coordinates are across the entire grid, not just the local portion

5828:    In Fortran idxm and idxn should be declared as
5829: $     MatStencil idxm(4,m)
5830:    and the values inserted using
5831: $    idxm(MatStencil_i,1) = i
5832: $    idxm(MatStencil_j,1) = j
5833: $    idxm(MatStencil_k,1) = k
5834: $    idxm(MatStencil_c,1) = c
5835:    etc

5837:    For periodic boundary conditions use negative indices for values to the left (below 0; that are to be
5838:    obtained by wrapping values from right edge). For values to the right of the last entry using that index plus one
5839:    etc to obtain values that obtained by wrapping the values from the left edge. This does not work for anything but the
5840:    DM_BOUNDARY_PERIODIC boundary type.

5842:    For indices that don't mean anything for your case (like the k index when working in 2d) or the c index when you have
5843:    a single value per point) you can skip filling those indices.

5845:    Level: intermediate

5847:    Concepts: matrices^zeroing rows

5849: .seealso: MatZeroRows(), MatZeroRowsIS(), MatZeroEntries(), MatZeroRowsLocal(), MatSetOption()
5850: @*/
5851: PetscErrorCode  MatZeroRowsColumnsStencil(Mat mat,PetscInt numRows,const MatStencil rows[],PetscScalar diag,Vec x,Vec b)
5852: {
5853:   PetscInt       dim     = mat->stencil.dim;
5854:   PetscInt       sdim    = dim - (1 - (PetscInt) mat->stencil.noc);
5855:   PetscInt       *dims   = mat->stencil.dims+1;
5856:   PetscInt       *starts = mat->stencil.starts;
5857:   PetscInt       *dxm    = (PetscInt*) rows;
5858:   PetscInt       *jdxm, i, j, tmp, numNewRows = 0;


5866:   PetscMalloc1(numRows, &jdxm);
5867:   for (i = 0; i < numRows; ++i) {
5868:     /* Skip unused dimensions (they are ordered k, j, i, c) */
5869:     for (j = 0; j < 3-sdim; ++j) dxm++;
5870:     /* Local index in X dir */
5871:     tmp = *dxm++ - starts[0];
5872:     /* Loop over remaining dimensions */
5873:     for (j = 0; j < dim-1; ++j) {
5874:       /* If nonlocal, set index to be negative */
5875:       if ((*dxm++ - starts[j+1]) < 0 || tmp < 0) tmp = PETSC_MIN_INT;
5876:       /* Update local index */
5877:       else tmp = tmp*dims[j] + *(dxm-1) - starts[j+1];
5878:     }
5879:     /* Skip component slot if necessary */
5880:     if (mat->stencil.noc) dxm++;
5881:     /* Local row number */
5882:     if (tmp >= 0) {
5883:       jdxm[numNewRows++] = tmp;
5884:     }
5885:   }
5886:   MatZeroRowsColumnsLocal(mat,numNewRows,jdxm,diag,x,b);
5887:   PetscFree(jdxm);
5888:   return(0);
5889: }

5893: /*@C
5894:    MatZeroRowsLocal - Zeros all entries (except possibly the main diagonal)
5895:    of a set of rows of a matrix; using local numbering of rows.

5897:    Collective on Mat

5899:    Input Parameters:
5900: +  mat - the matrix
5901: .  numRows - the number of rows to remove
5902: .  rows - the global row indices
5903: .  diag - value put in all diagonals of eliminated rows
5904: .  x - optional vector of solutions for zeroed rows (other entries in vector are not used)
5905: -  b - optional vector of right hand side, that will be adjusted by provided solution

5907:    Notes:
5908:    Before calling MatZeroRowsLocal(), the user must first set the
5909:    local-to-global mapping by calling MatSetLocalToGlobalMapping().

5911:    For the AIJ matrix formats this removes the old nonzero structure,
5912:    but does not release memory.  For the dense and block diagonal
5913:    formats this does not alter the nonzero structure.

5915:    If the option MatSetOption(mat,MAT_KEEP_NONZERO_PATTERN,PETSC_TRUE) the nonzero structure
5916:    of the matrix is not changed (even for AIJ and BAIJ matrices) the values are
5917:    merely zeroed.

5919:    The user can set a value in the diagonal entry (or for the AIJ and
5920:    row formats can optionally remove the main diagonal entry from the
5921:    nonzero structure as well, by passing 0.0 as the final argument).

5923:    You can call MatSetOption(mat,MAT_NO_OFF_PROC_ZERO_ROWS,PETSC_TRUE) if each process indicates only rows it
5924:    owns that are to be zeroed. This saves a global synchronization in the implementation.

5926:    Level: intermediate

5928:    Concepts: matrices^zeroing

5930: .seealso: MatZeroRows(), MatZeroRowsLocalIS(), MatZeroEntries(), MatZeroRows(), MatSetLocalToGlobalMapping
5931: @*/
5932: PetscErrorCode  MatZeroRowsLocal(Mat mat,PetscInt numRows,const PetscInt rows[],PetscScalar diag,Vec x,Vec b)
5933: {

5940:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
5941:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
5942:   MatCheckPreallocated(mat,1);

5944:   if (mat->ops->zerorowslocal) {
5945:     (*mat->ops->zerorowslocal)(mat,numRows,rows,diag,x,b);
5946:   } else {
5947:     IS             is, newis;
5948:     const PetscInt *newRows;

5950:     if (!mat->rmap->mapping) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Need to provide local to global mapping to matrix first");
5951:     ISCreateGeneral(PETSC_COMM_SELF,numRows,rows,PETSC_COPY_VALUES,&is);
5952:     ISLocalToGlobalMappingApplyIS(mat->rmap->mapping,is,&newis);
5953:     ISGetIndices(newis,&newRows);
5954:     (*mat->ops->zerorows)(mat,numRows,newRows,diag,x,b);
5955:     ISRestoreIndices(newis,&newRows);
5956:     ISDestroy(&newis);
5957:     ISDestroy(&is);
5958:   }
5959:   PetscObjectStateIncrease((PetscObject)mat);
5960: #if defined(PETSC_HAVE_CUSP)
5961:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
5962:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
5963:   }
5964: #endif
5965: #if defined(PETSC_HAVE_VIENNACL)
5966:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
5967:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
5968:   }
5969: #endif
5970:   return(0);
5971: }

5975: /*@C
5976:    MatZeroRowsLocalIS - Zeros all entries (except possibly the main diagonal)
5977:    of a set of rows of a matrix; using local numbering of rows.

5979:    Collective on Mat

5981:    Input Parameters:
5982: +  mat - the matrix
5983: .  is - index set of rows to remove
5984: .  diag - value put in all diagonals of eliminated rows
5985: .  x - optional vector of solutions for zeroed rows (other entries in vector are not used)
5986: -  b - optional vector of right hand side, that will be adjusted by provided solution

5988:    Notes:
5989:    Before calling MatZeroRowsLocalIS(), the user must first set the
5990:    local-to-global mapping by calling MatSetLocalToGlobalMapping().

5992:    For the AIJ matrix formats this removes the old nonzero structure,
5993:    but does not release memory.  For the dense and block diagonal
5994:    formats this does not alter the nonzero structure.

5996:    If the option MatSetOption(mat,MAT_KEEP_NONZERO_PATTERN,PETSC_TRUE) the nonzero structure
5997:    of the matrix is not changed (even for AIJ and BAIJ matrices) the values are
5998:    merely zeroed.

6000:    The user can set a value in the diagonal entry (or for the AIJ and
6001:    row formats can optionally remove the main diagonal entry from the
6002:    nonzero structure as well, by passing 0.0 as the final argument).

6004:    You can call MatSetOption(mat,MAT_NO_OFF_PROC_ZERO_ROWS,PETSC_TRUE) if each process indicates only rows it
6005:    owns that are to be zeroed. This saves a global synchronization in the implementation.

6007:    Level: intermediate

6009:    Concepts: matrices^zeroing

6011: .seealso: MatZeroRows(), MatZeroRowsLocal(), MatZeroEntries(), MatZeroRows(), MatSetLocalToGlobalMapping
6012: @*/
6013: PetscErrorCode  MatZeroRowsLocalIS(Mat mat,IS is,PetscScalar diag,Vec x,Vec b)
6014: {
6016:   PetscInt       numRows;
6017:   const PetscInt *rows;

6023:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
6024:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
6025:   MatCheckPreallocated(mat,1);

6027:   ISGetLocalSize(is,&numRows);
6028:   ISGetIndices(is,&rows);
6029:   MatZeroRowsLocal(mat,numRows,rows,diag,x,b);
6030:   ISRestoreIndices(is,&rows);
6031:   return(0);
6032: }

6036: /*@C
6037:    MatZeroRowsColumnsLocal - Zeros all entries (except possibly the main diagonal)
6038:    of a set of rows and columns of a matrix; using local numbering of rows.

6040:    Collective on Mat

6042:    Input Parameters:
6043: +  mat - the matrix
6044: .  numRows - the number of rows to remove
6045: .  rows - the global row indices
6046: .  diag - value put in all diagonals of eliminated rows
6047: .  x - optional vector of solutions for zeroed rows (other entries in vector are not used)
6048: -  b - optional vector of right hand side, that will be adjusted by provided solution

6050:    Notes:
6051:    Before calling MatZeroRowsColumnsLocal(), the user must first set the
6052:    local-to-global mapping by calling MatSetLocalToGlobalMapping().

6054:    The user can set a value in the diagonal entry (or for the AIJ and
6055:    row formats can optionally remove the main diagonal entry from the
6056:    nonzero structure as well, by passing 0.0 as the final argument).

6058:    Level: intermediate

6060:    Concepts: matrices^zeroing

6062: .seealso: MatZeroRows(), MatZeroRowsLocalIS(), MatZeroEntries(), MatZeroRows(), MatSetLocalToGlobalMapping
6063: @*/
6064: PetscErrorCode  MatZeroRowsColumnsLocal(Mat mat,PetscInt numRows,const PetscInt rows[],PetscScalar diag,Vec x,Vec b)
6065: {
6067:   IS             is, newis;
6068:   const PetscInt *newRows;

6074:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
6075:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
6076:   MatCheckPreallocated(mat,1);

6078:   if (!mat->cmap->mapping) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Need to provide local to global mapping to matrix first");
6079:   ISCreateGeneral(PETSC_COMM_SELF,numRows,rows,PETSC_COPY_VALUES,&is);
6080:   ISLocalToGlobalMappingApplyIS(mat->cmap->mapping,is,&newis);
6081:   ISGetIndices(newis,&newRows);
6082:   (*mat->ops->zerorowscolumns)(mat,numRows,newRows,diag,x,b);
6083:   ISRestoreIndices(newis,&newRows);
6084:   ISDestroy(&newis);
6085:   ISDestroy(&is);
6086:   PetscObjectStateIncrease((PetscObject)mat);
6087: #if defined(PETSC_HAVE_CUSP)
6088:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
6089:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
6090:   }
6091: #endif
6092: #if defined(PETSC_HAVE_VIENNACL)
6093:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
6094:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
6095:   }
6096: #endif
6097:   return(0);
6098: }

6102: /*@C
6103:    MatZeroRowsColumnsLocalIS - Zeros all entries (except possibly the main diagonal)
6104:    of a set of rows and columns of a matrix; using local numbering of rows.

6106:    Collective on Mat

6108:    Input Parameters:
6109: +  mat - the matrix
6110: .  is - index set of rows to remove
6111: .  diag - value put in all diagonals of eliminated rows
6112: .  x - optional vector of solutions for zeroed rows (other entries in vector are not used)
6113: -  b - optional vector of right hand side, that will be adjusted by provided solution

6115:    Notes:
6116:    Before calling MatZeroRowsColumnsLocalIS(), the user must first set the
6117:    local-to-global mapping by calling MatSetLocalToGlobalMapping().

6119:    The user can set a value in the diagonal entry (or for the AIJ and
6120:    row formats can optionally remove the main diagonal entry from the
6121:    nonzero structure as well, by passing 0.0 as the final argument).

6123:    Level: intermediate

6125:    Concepts: matrices^zeroing

6127: .seealso: MatZeroRows(), MatZeroRowsLocal(), MatZeroEntries(), MatZeroRows(), MatSetLocalToGlobalMapping
6128: @*/
6129: PetscErrorCode  MatZeroRowsColumnsLocalIS(Mat mat,IS is,PetscScalar diag,Vec x,Vec b)
6130: {
6132:   PetscInt       numRows;
6133:   const PetscInt *rows;

6139:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
6140:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
6141:   MatCheckPreallocated(mat,1);

6143:   ISGetLocalSize(is,&numRows);
6144:   ISGetIndices(is,&rows);
6145:   MatZeroRowsColumnsLocal(mat,numRows,rows,diag,x,b);
6146:   ISRestoreIndices(is,&rows);
6147:   return(0);
6148: }

6152: /*@
6153:    MatGetSize - Returns the numbers of rows and columns in a matrix.

6155:    Not Collective

6157:    Input Parameter:
6158: .  mat - the matrix

6160:    Output Parameters:
6161: +  m - the number of global rows
6162: -  n - the number of global columns

6164:    Note: both output parameters can be NULL on input.

6166:    Level: beginner

6168:    Concepts: matrices^size

6170: .seealso: MatGetLocalSize()
6171: @*/
6172: PetscErrorCode  MatGetSize(Mat mat,PetscInt *m,PetscInt *n)
6173: {
6176:   if (m) *m = mat->rmap->N;
6177:   if (n) *n = mat->cmap->N;
6178:   return(0);
6179: }

6183: /*@
6184:    MatGetLocalSize - Returns the number of rows and columns in a matrix
6185:    stored locally.  This information may be implementation dependent, so
6186:    use with care.

6188:    Not Collective

6190:    Input Parameters:
6191: .  mat - the matrix

6193:    Output Parameters:
6194: +  m - the number of local rows
6195: -  n - the number of local columns

6197:    Note: both output parameters can be NULL on input.

6199:    Level: beginner

6201:    Concepts: matrices^local size

6203: .seealso: MatGetSize()
6204: @*/
6205: PetscErrorCode  MatGetLocalSize(Mat mat,PetscInt *m,PetscInt *n)
6206: {
6211:   if (m) *m = mat->rmap->n;
6212:   if (n) *n = mat->cmap->n;
6213:   return(0);
6214: }

6218: /*@
6219:    MatGetOwnershipRangeColumn - Returns the range of matrix columns associated with rows of a vector one multiplies by that owned by
6220:    this processor. (The columns of the "diagonal block")

6222:    Not Collective, unless matrix has not been allocated, then collective on Mat

6224:    Input Parameters:
6225: .  mat - the matrix

6227:    Output Parameters:
6228: +  m - the global index of the first local column
6229: -  n - one more than the global index of the last local column

6231:    Notes: both output parameters can be NULL on input.

6233:    Level: developer

6235:    Concepts: matrices^column ownership

6237: .seealso:  MatGetOwnershipRange(), MatGetOwnershipRanges(), MatGetOwnershipRangesColumn()

6239: @*/
6240: PetscErrorCode  MatGetOwnershipRangeColumn(Mat mat,PetscInt *m,PetscInt *n)
6241: {
6247:   MatCheckPreallocated(mat,1);
6248:   if (m) *m = mat->cmap->rstart;
6249:   if (n) *n = mat->cmap->rend;
6250:   return(0);
6251: }

6255: /*@
6256:    MatGetOwnershipRange - Returns the range of matrix rows owned by
6257:    this processor, assuming that the matrix is laid out with the first
6258:    n1 rows on the first processor, the next n2 rows on the second, etc.
6259:    For certain parallel layouts this range may not be well defined.

6261:    Not Collective

6263:    Input Parameters:
6264: .  mat - the matrix

6266:    Output Parameters:
6267: +  m - the global index of the first local row
6268: -  n - one more than the global index of the last local row

6270:    Note: Both output parameters can be NULL on input.
6271: $  This function requires that the matrix be preallocated. If you have not preallocated, consider using
6272: $    PetscSplitOwnership(MPI_Comm comm, PetscInt *n, PetscInt *N)
6273: $  and then MPI_Scan() to calculate prefix sums of the local sizes.

6275:    Level: beginner

6277:    Concepts: matrices^row ownership

6279: .seealso:   MatGetOwnershipRanges(), MatGetOwnershipRangeColumn(), MatGetOwnershipRangesColumn(), PetscSplitOwnership(), PetscSplitOwnershipBlock()

6281: @*/
6282: PetscErrorCode  MatGetOwnershipRange(Mat mat,PetscInt *m,PetscInt *n)
6283: {
6289:   MatCheckPreallocated(mat,1);
6290:   if (m) *m = mat->rmap->rstart;
6291:   if (n) *n = mat->rmap->rend;
6292:   return(0);
6293: }

6297: /*@C
6298:    MatGetOwnershipRanges - Returns the range of matrix rows owned by
6299:    each process

6301:    Not Collective, unless matrix has not been allocated, then collective on Mat

6303:    Input Parameters:
6304: .  mat - the matrix

6306:    Output Parameters:
6307: .  ranges - start of each processors portion plus one more then the total length at the end

6309:    Level: beginner

6311:    Concepts: matrices^row ownership

6313: .seealso:   MatGetOwnershipRange(), MatGetOwnershipRangeColumn(), MatGetOwnershipRangesColumn()

6315: @*/
6316: PetscErrorCode  MatGetOwnershipRanges(Mat mat,const PetscInt **ranges)
6317: {

6323:   MatCheckPreallocated(mat,1);
6324:   PetscLayoutGetRanges(mat->rmap,ranges);
6325:   return(0);
6326: }

6330: /*@C
6331:    MatGetOwnershipRangesColumn - Returns the range of matrix columns associated with rows of a vector one multiplies by that owned by
6332:    this processor. (The columns of the "diagonal blocks" for each process)

6334:    Not Collective, unless matrix has not been allocated, then collective on Mat

6336:    Input Parameters:
6337: .  mat - the matrix

6339:    Output Parameters:
6340: .  ranges - start of each processors portion plus one more then the total length at the end

6342:    Level: beginner

6344:    Concepts: matrices^column ownership

6346: .seealso:   MatGetOwnershipRange(), MatGetOwnershipRangeColumn(), MatGetOwnershipRanges()

6348: @*/
6349: PetscErrorCode  MatGetOwnershipRangesColumn(Mat mat,const PetscInt **ranges)
6350: {

6356:   MatCheckPreallocated(mat,1);
6357:   PetscLayoutGetRanges(mat->cmap,ranges);
6358:   return(0);
6359: }

6363: /*@C
6364:    MatGetOwnershipIS - Get row and column ownership as index sets

6366:    Not Collective

6368:    Input Arguments:
6369: .  A - matrix of type Elemental

6371:    Output Arguments:
6372: +  rows - rows in which this process owns elements
6373: .  cols - columns in which this process owns elements

6375:    Level: intermediate

6377: .seealso: MatGetOwnershipRange(), MatGetOwnershipRangeColumn(), MatSetValues(), MATELEMENTAL, MatSetValues()
6378: @*/
6379: PetscErrorCode MatGetOwnershipIS(Mat A,IS *rows,IS *cols)
6380: {
6381:   PetscErrorCode ierr,(*f)(Mat,IS*,IS*);

6384:   MatCheckPreallocated(A,1);
6385:   PetscObjectQueryFunction((PetscObject)A,"MatGetOwnershipIS_C",&f);
6386:   if (f) {
6387:     (*f)(A,rows,cols);
6388:   } else {   /* Create a standard row-based partition, each process is responsible for ALL columns in their row block */
6389:     if (rows) {ISCreateStride(PETSC_COMM_SELF,A->rmap->n,A->rmap->rstart,1,rows);}
6390:     if (cols) {ISCreateStride(PETSC_COMM_SELF,A->cmap->N,0,1,cols);}
6391:   }
6392:   return(0);
6393: }

6397: /*@C
6398:    MatILUFactorSymbolic - Performs symbolic ILU factorization of a matrix.
6399:    Uses levels of fill only, not drop tolerance. Use MatLUFactorNumeric()
6400:    to complete the factorization.

6402:    Collective on Mat

6404:    Input Parameters:
6405: +  mat - the matrix
6406: .  row - row permutation
6407: .  column - column permutation
6408: -  info - structure containing
6409: $      levels - number of levels of fill.
6410: $      expected fill - as ratio of original fill.
6411: $      1 or 0 - indicating force fill on diagonal (improves robustness for matrices
6412:                 missing diagonal entries)

6414:    Output Parameters:
6415: .  fact - new matrix that has been symbolically factored

6417:    Notes: See Users-Manual: ch_mat for additional information about choosing the fill factor for better efficiency.

6419:    Most users should employ the simplified KSP interface for linear solvers
6420:    instead of working directly with matrix algebra routines such as this.
6421:    See, e.g., KSPCreate().

6423:    Level: developer

6425:   Concepts: matrices^symbolic LU factorization
6426:   Concepts: matrices^factorization
6427:   Concepts: LU^symbolic factorization

6429: .seealso: MatLUFactorSymbolic(), MatLUFactorNumeric(), MatCholeskyFactor()
6430:           MatGetOrdering(), MatFactorInfo

6432:     Developer Note: fortran interface is not autogenerated as the f90
6433:     interface defintion cannot be generated correctly [due to MatFactorInfo]

6435: @*/
6436: PetscErrorCode  MatILUFactorSymbolic(Mat fact,Mat mat,IS row,IS col,const MatFactorInfo *info)
6437: {

6447:   if (info->levels < 0) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_OUTOFRANGE,"Levels of fill negative %D",(PetscInt)info->levels);
6448:   if (info->fill < 1.0) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_OUTOFRANGE,"Expected fill less than 1.0 %g",(double)info->fill);
6449:   if (!(fact)->ops->ilufactorsymbolic) {
6450:     const MatSolverPackage spackage;
6451:     MatFactorGetSolverPackage(fact,&spackage);
6452:     SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Matrix type %s symbolic ILU using solver package %s",((PetscObject)mat)->type_name,spackage);
6453:   }
6454:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
6455:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
6456:   MatCheckPreallocated(mat,2);

6458:   PetscLogEventBegin(MAT_ILUFactorSymbolic,mat,row,col,0);
6459:   (fact->ops->ilufactorsymbolic)(fact,mat,row,col,info);
6460:   PetscLogEventEnd(MAT_ILUFactorSymbolic,mat,row,col,0);
6461:   return(0);
6462: }

6466: /*@C
6467:    MatICCFactorSymbolic - Performs symbolic incomplete
6468:    Cholesky factorization for a symmetric matrix.  Use
6469:    MatCholeskyFactorNumeric() to complete the factorization.

6471:    Collective on Mat

6473:    Input Parameters:
6474: +  mat - the matrix
6475: .  perm - row and column permutation
6476: -  info - structure containing
6477: $      levels - number of levels of fill.
6478: $      expected fill - as ratio of original fill.

6480:    Output Parameter:
6481: .  fact - the factored matrix

6483:    Notes:
6484:    Most users should employ the KSP interface for linear solvers
6485:    instead of working directly with matrix algebra routines such as this.
6486:    See, e.g., KSPCreate().

6488:    Level: developer

6490:   Concepts: matrices^symbolic incomplete Cholesky factorization
6491:   Concepts: matrices^factorization
6492:   Concepts: Cholsky^symbolic factorization

6494: .seealso: MatCholeskyFactorNumeric(), MatCholeskyFactor(), MatFactorInfo

6496:     Developer Note: fortran interface is not autogenerated as the f90
6497:     interface defintion cannot be generated correctly [due to MatFactorInfo]

6499: @*/
6500: PetscErrorCode  MatICCFactorSymbolic(Mat fact,Mat mat,IS perm,const MatFactorInfo *info)
6501: {

6510:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
6511:   if (info->levels < 0) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_OUTOFRANGE,"Levels negative %D",(PetscInt) info->levels);
6512:   if (info->fill < 1.0) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_OUTOFRANGE,"Expected fill less than 1.0 %g",(double)info->fill);
6513:   if (!(fact)->ops->iccfactorsymbolic) {
6514:     const MatSolverPackage spackage;
6515:     MatFactorGetSolverPackage(fact,&spackage);
6516:     SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Matrix type %s symbolic ICC using solver package %s",((PetscObject)mat)->type_name,spackage);
6517:   }
6518:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
6519:   MatCheckPreallocated(mat,2);

6521:   PetscLogEventBegin(MAT_ICCFactorSymbolic,mat,perm,0,0);
6522:   (fact->ops->iccfactorsymbolic)(fact,mat,perm,info);
6523:   PetscLogEventEnd(MAT_ICCFactorSymbolic,mat,perm,0,0);
6524:   return(0);
6525: }

6529: /*@C
6530:    MatGetSubMatrices - Extracts several submatrices from a matrix. If submat
6531:    points to an array of valid matrices, they may be reused to store the new
6532:    submatrices.

6534:    Collective on Mat

6536:    Input Parameters:
6537: +  mat - the matrix
6538: .  n   - the number of submatrixes to be extracted (on this processor, may be zero)
6539: .  irow, icol - index sets of rows and columns to extract
6540: -  scall - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX

6542:    Output Parameter:
6543: .  submat - the array of submatrices

6545:    Notes:
6546:    MatGetSubMatrices() can extract ONLY sequential submatrices
6547:    (from both sequential and parallel matrices). Use MatGetSubMatrix()
6548:    to extract a parallel submatrix.

6550:    Some matrix types place restrictions on the row and column
6551:    indices, such as that they be sorted or that they be equal to each other.

6553:    The index sets may not have duplicate entries.

6555:    When extracting submatrices from a parallel matrix, each processor can
6556:    form a different submatrix by setting the rows and columns of its
6557:    individual index sets according to the local submatrix desired.

6559:    When finished using the submatrices, the user should destroy
6560:    them with MatDestroyMatrices().

6562:    MAT_REUSE_MATRIX can only be used when the nonzero structure of the
6563:    original matrix has not changed from that last call to MatGetSubMatrices().

6565:    This routine creates the matrices in submat; you should NOT create them before
6566:    calling it. It also allocates the array of matrix pointers submat.

6568:    For BAIJ matrices the index sets must respect the block structure, that is if they
6569:    request one row/column in a block, they must request all rows/columns that are in
6570:    that block. For example, if the block size is 2 you cannot request just row 0 and
6571:    column 0.

6573:    Fortran Note:
6574:    The Fortran interface is slightly different from that given below; it
6575:    requires one to pass in  as submat a Mat (integer) array of size at least m.

6577:    Level: advanced

6579:    Concepts: matrices^accessing submatrices
6580:    Concepts: submatrices

6582: .seealso: MatDestroyMatrices(), MatGetSubMatrix(), MatGetRow(), MatGetDiagonal(), MatReuse
6583: @*/
6584: PetscErrorCode  MatGetSubMatrices(Mat mat,PetscInt n,const IS irow[],const IS icol[],MatReuse scall,Mat *submat[])
6585: {
6587:   PetscInt       i;
6588:   PetscBool      eq;

6593:   if (n) {
6598:   }
6600:   if (n && scall == MAT_REUSE_MATRIX) {
6603:   }
6604:   if (!mat->ops->getsubmatrices) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
6605:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
6606:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
6607:   MatCheckPreallocated(mat,1);

6609:   PetscLogEventBegin(MAT_GetSubMatrices,mat,0,0,0);
6610:   (*mat->ops->getsubmatrices)(mat,n,irow,icol,scall,submat);
6611:   PetscLogEventEnd(MAT_GetSubMatrices,mat,0,0,0);
6612:   for (i=0; i<n; i++) {
6613:     (*submat)[i]->factortype = MAT_FACTOR_NONE;  /* in case in place factorization was previously done on submatrix */
6614:     if (mat->symmetric || mat->structurally_symmetric || mat->hermitian) {
6615:       ISEqual(irow[i],icol[i],&eq);
6616:       if (eq) {
6617:         if (mat->symmetric) {
6618:           MatSetOption((*submat)[i],MAT_SYMMETRIC,PETSC_TRUE);
6619:         } else if (mat->hermitian) {
6620:           MatSetOption((*submat)[i],MAT_HERMITIAN,PETSC_TRUE);
6621:         } else if (mat->structurally_symmetric) {
6622:           MatSetOption((*submat)[i],MAT_STRUCTURALLY_SYMMETRIC,PETSC_TRUE);
6623:         }
6624:       }
6625:     }
6626:   }
6627:   return(0);
6628: }

6632: PetscErrorCode  MatGetSubMatricesMPI(Mat mat,PetscInt n,const IS irow[],const IS icol[],MatReuse scall,Mat *submat[])
6633: {
6635:   PetscInt       i;
6636:   PetscBool      eq;

6641:   if (n) {
6646:   }
6648:   if (n && scall == MAT_REUSE_MATRIX) {
6651:   }
6652:   if (!mat->ops->getsubmatricesmpi) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
6653:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
6654:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
6655:   MatCheckPreallocated(mat,1);

6657:   PetscLogEventBegin(MAT_GetSubMatrices,mat,0,0,0);
6658:   (*mat->ops->getsubmatricesmpi)(mat,n,irow,icol,scall,submat);
6659:   PetscLogEventEnd(MAT_GetSubMatrices,mat,0,0,0);
6660:   for (i=0; i<n; i++) {
6661:     if (mat->symmetric || mat->structurally_symmetric || mat->hermitian) {
6662:       ISEqual(irow[i],icol[i],&eq);
6663:       if (eq) {
6664:         if (mat->symmetric) {
6665:           MatSetOption((*submat)[i],MAT_SYMMETRIC,PETSC_TRUE);
6666:         } else if (mat->hermitian) {
6667:           MatSetOption((*submat)[i],MAT_HERMITIAN,PETSC_TRUE);
6668:         } else if (mat->structurally_symmetric) {
6669:           MatSetOption((*submat)[i],MAT_STRUCTURALLY_SYMMETRIC,PETSC_TRUE);
6670:         }
6671:       }
6672:     }
6673:   }
6674:   return(0);
6675: }

6679: /*@C
6680:    MatDestroyMatrices - Destroys a set of matrices obtained with MatGetSubMatrices().

6682:    Collective on Mat

6684:    Input Parameters:
6685: +  n - the number of local matrices
6686: -  mat - the matrices (note that this is a pointer to the array of matrices, just to match the calling
6687:                        sequence of MatGetSubMatrices())

6689:    Level: advanced

6691:     Notes: Frees not only the matrices, but also the array that contains the matrices
6692:            In Fortran will not free the array.

6694: .seealso: MatGetSubMatrices()
6695: @*/
6696: PetscErrorCode  MatDestroyMatrices(PetscInt n,Mat *mat[])
6697: {
6699:   PetscInt       i;

6702:   if (!*mat) return(0);
6703:   if (n < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Trying to destroy negative number of matrices %D",n);
6705:   for (i=0; i<n; i++) {
6706:     MatDestroy(&(*mat)[i]);
6707:   }
6708:   /* memory is allocated even if n = 0 */
6709:   PetscFree(*mat);
6710:   *mat = NULL;
6711:   return(0);
6712: }

6716: /*@C
6717:    MatGetSeqNonzeroStructure - Extracts the sequential nonzero structure from a matrix.

6719:    Collective on Mat

6721:    Input Parameters:
6722: .  mat - the matrix

6724:    Output Parameter:
6725: .  matstruct - the sequential matrix with the nonzero structure of mat

6727:   Level: intermediate

6729: .seealso: MatDestroySeqNonzeroStructure(), MatGetSubMatrices(), MatDestroyMatrices()
6730: @*/
6731: PetscErrorCode  MatGetSeqNonzeroStructure(Mat mat,Mat *matstruct)
6732: {


6740:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
6741:   MatCheckPreallocated(mat,1);

6743:   if (!mat->ops->getseqnonzerostructure) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Not for matrix type %s\n",((PetscObject)mat)->type_name);
6744:   PetscLogEventBegin(MAT_GetSeqNonzeroStructure,mat,0,0,0);
6745:   (*mat->ops->getseqnonzerostructure)(mat,matstruct);
6746:   PetscLogEventEnd(MAT_GetSeqNonzeroStructure,mat,0,0,0);
6747:   return(0);
6748: }

6752: /*@C
6753:    MatDestroySeqNonzeroStructure - Destroys matrix obtained with MatGetSeqNonzeroStructure().

6755:    Collective on Mat

6757:    Input Parameters:
6758: .  mat - the matrix (note that this is a pointer to the array of matrices, just to match the calling
6759:                        sequence of MatGetSequentialNonzeroStructure())

6761:    Level: advanced

6763:     Notes: Frees not only the matrices, but also the array that contains the matrices

6765: .seealso: MatGetSeqNonzeroStructure()
6766: @*/
6767: PetscErrorCode  MatDestroySeqNonzeroStructure(Mat *mat)
6768: {

6773:   MatDestroy(mat);
6774:   return(0);
6775: }

6779: /*@
6780:    MatIncreaseOverlap - Given a set of submatrices indicated by index sets,
6781:    replaces the index sets by larger ones that represent submatrices with
6782:    additional overlap.

6784:    Collective on Mat

6786:    Input Parameters:
6787: +  mat - the matrix
6788: .  n   - the number of index sets
6789: .  is  - the array of index sets (these index sets will changed during the call)
6790: -  ov  - the additional overlap requested

6792:    Level: developer

6794:    Concepts: overlap
6795:    Concepts: ASM^computing overlap

6797: .seealso: MatGetSubMatrices()
6798: @*/
6799: PetscErrorCode  MatIncreaseOverlap(Mat mat,PetscInt n,IS is[],PetscInt ov)
6800: {

6806:   if (n < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Must have one or more domains, you have %D",n);
6807:   if (n) {
6810:   }
6811:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
6812:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
6813:   MatCheckPreallocated(mat,1);

6815:   if (!ov) return(0);
6816:   if (!mat->ops->increaseoverlap) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
6817:   PetscLogEventBegin(MAT_IncreaseOverlap,mat,0,0,0);
6818:   (*mat->ops->increaseoverlap)(mat,n,is,ov);
6819:   PetscLogEventEnd(MAT_IncreaseOverlap,mat,0,0,0);
6820:   return(0);
6821: }

6825: /*@
6826:    MatGetBlockSize - Returns the matrix block size.

6828:    Not Collective

6830:    Input Parameter:
6831: .  mat - the matrix

6833:    Output Parameter:
6834: .  bs - block size

6836:    Notes:
6837:     Block row formats are MATSEQBAIJ, MATMPIBAIJ, MATSEQSBAIJ, MATMPISBAIJ. These formats ALWAYS have square block storage in the matrix.

6839:    If the block size has not been set yet this routine returns 1.

6841:    Level: intermediate

6843:    Concepts: matrices^block size

6845: .seealso: MatCreateSeqBAIJ(), MatCreateBAIJ(), MatGetBlockSizes()
6846: @*/
6847: PetscErrorCode  MatGetBlockSize(Mat mat,PetscInt *bs)
6848: {
6852:   *bs = PetscAbs(mat->rmap->bs);
6853:   return(0);
6854: }

6858: /*@
6859:    MatGetBlockSizes - Returns the matrix block row and column sizes.

6861:    Not Collective

6863:    Input Parameter:
6864: .  mat - the matrix

6866:    Output Parameter:
6867: .  rbs - row block size
6868: .  cbs - coumn block size

6870:    Notes:
6871:     Block row formats are MATSEQBAIJ, MATMPIBAIJ, MATSEQSBAIJ, MATMPISBAIJ. These formats ALWAYS have square block storage in the matrix.
6872:     If you pass a different block size for the columns than the rows, the row block size determines the square block storage.

6874:    If a block size has not been set yet this routine returns 1.

6876:    Level: intermediate

6878:    Concepts: matrices^block size

6880: .seealso: MatCreateSeqBAIJ(), MatCreateBAIJ(), MatGetBlockSize(), MatSetBlockSize(), MatSetBlockSizes()
6881: @*/
6882: PetscErrorCode  MatGetBlockSizes(Mat mat,PetscInt *rbs, PetscInt *cbs)
6883: {
6888:   if (rbs) *rbs = PetscAbs(mat->rmap->bs);
6889:   if (cbs) *cbs = PetscAbs(mat->cmap->bs);
6890:   return(0);
6891: }

6895: /*@
6896:    MatSetBlockSize - Sets the matrix block size.

6898:    Logically Collective on Mat

6900:    Input Parameters:
6901: +  mat - the matrix
6902: -  bs - block size

6904:    Notes:
6905:     Block row formats are MATSEQBAIJ, MATMPIBAIJ, MATSEQSBAIJ, MATMPISBAIJ. These formats ALWAYS have square block storage in the matrix.

6907:      This must be called before MatSetUp() or MatXXXSetPreallocation() (or will default to 1) and the block size cannot be changed later

6909:    Level: intermediate

6911:    Concepts: matrices^block size

6913: .seealso: MatCreateSeqBAIJ(), MatCreateBAIJ(), MatGetBlockSize(), MatSetBlockSizes(), MatGetBlockSizes()
6914: @*/
6915: PetscErrorCode  MatSetBlockSize(Mat mat,PetscInt bs)
6916: {

6922:   PetscLayoutSetBlockSize(mat->rmap,bs);
6923:   PetscLayoutSetBlockSize(mat->cmap,bs);
6924:   return(0);
6925: }

6929: /*@
6930:    MatSetBlockSizes - Sets the matrix block row and column sizes.

6932:    Logically Collective on Mat

6934:    Input Parameters:
6935: +  mat - the matrix
6936: -  rbs - row block size
6937: -  cbs - column block size

6939:    Notes:
6940:     Block row formats are MATSEQBAIJ, MATMPIBAIJ, MATSEQSBAIJ, MATMPISBAIJ. These formats ALWAYS have square block storage in the matrix.
6941:     If you pass a different block size for the columns than the rows, the row block size determines the square block storage.

6943:     This must be called before MatSetUp() or MatXXXSetPreallocation() (or will default to 1) and the block size cannot be changed later

6945:     The row and column block size determine the blocksize of the "row" and "column" vectors returned by MatCreateVecs().

6947:    Level: intermediate

6949:    Concepts: matrices^block size

6951: .seealso: MatCreateSeqBAIJ(), MatCreateBAIJ(), MatGetBlockSize(), MatSetBlockSize(), MatGetBlockSizes()
6952: @*/
6953: PetscErrorCode  MatSetBlockSizes(Mat mat,PetscInt rbs,PetscInt cbs)
6954: {

6961:   PetscLayoutSetBlockSize(mat->rmap,rbs);
6962:   PetscLayoutSetBlockSize(mat->cmap,cbs);
6963:   return(0);
6964: }

6968: /*@
6969:    MatSetBlockSizesFromMats - Sets the matrix block row and column sizes to match a pair of matrices

6971:    Logically Collective on Mat

6973:    Input Parameters:
6974: +  mat - the matrix
6975: .  fromRow - matrix from which to copy row block size
6976: -  fromCol - matrix from which to copy column block size (can be same as fromRow)

6978:    Level: developer

6980:    Concepts: matrices^block size

6982: .seealso: MatCreateSeqBAIJ(), MatCreateBAIJ(), MatGetBlockSize(), MatSetBlockSizes()
6983: @*/
6984: PetscErrorCode  MatSetBlockSizesFromMats(Mat mat,Mat fromRow,Mat fromCol)
6985: {

6992:   if (fromRow->rmap->bs > 0) {PetscLayoutSetBlockSize(mat->rmap,fromRow->rmap->bs);}
6993:   if (fromCol->cmap->bs > 0) {PetscLayoutSetBlockSize(mat->cmap,fromCol->cmap->bs);}
6994:   return(0);
6995: }

6999: /*@
7000:    MatResidual - Default routine to calculate the residual.

7002:    Collective on Mat and Vec

7004:    Input Parameters:
7005: +  mat - the matrix
7006: .  b   - the right-hand-side
7007: -  x   - the approximate solution

7009:    Output Parameter:
7010: .  r - location to store the residual

7012:    Level: developer

7014: .keywords: MG, default, multigrid, residual

7016: .seealso: PCMGSetResidual()
7017: @*/
7018: PetscErrorCode  MatResidual(Mat mat,Vec b,Vec x,Vec r)
7019: {

7028:   MatCheckPreallocated(mat,1);
7029:   PetscLogEventBegin(MAT_Residual,mat,0,0,0);
7030:   if (!mat->ops->residual) {
7031:     MatMult(mat,x,r);
7032:     VecAYPX(r,-1.0,b);
7033:   } else {
7034:     (*mat->ops->residual)(mat,b,x,r);
7035:   }
7036:   PetscLogEventEnd(MAT_Residual,mat,0,0,0);
7037:   return(0);
7038: }

7042: /*@C
7043:     MatGetRowIJ - Returns the compressed row storage i and j indices for sequential matrices.

7045:    Collective on Mat

7047:     Input Parameters:
7048: +   mat - the matrix
7049: .   shift -  0 or 1 indicating we want the indices starting at 0 or 1
7050: .   symmetric - PETSC_TRUE or PETSC_FALSE indicating the matrix data structure should be   symmetrized
7051: -   inodecompressed - PETSC_TRUE or PETSC_FALSE  indicating if the nonzero structure of the
7052:                  inodes or the nonzero elements is wanted. For BAIJ matrices the compressed version is
7053:                  always used.

7055:     Output Parameters:
7056: +   n - number of rows in the (possibly compressed) matrix
7057: .   ia - the row pointers [of length n+1]
7058: .   ja - the column indices
7059: -   done - indicates if the routine actually worked and returned appropriate ia[] and ja[] arrays; callers
7060:            are responsible for handling the case when done == PETSC_FALSE and ia and ja are not set

7062:     Level: developer

7064:     Notes: You CANNOT change any of the ia[] or ja[] values.

7066:            Use MatRestoreRowIJ() when you are finished accessing the ia[] and ja[] values

7068:     Fortran Node

7070:            In Fortran use
7071: $           PetscInt ia(1), ja(1)
7072: $           PetscOffset iia, jja
7073: $      call MatGetRowIJ(mat,shift,symmetric,inodecompressed,n,ia,iia,ja,jja,done,ierr)
7074: $
7075: $          or
7076: $
7077: $           PetscScalar, pointer :: xx_v(:)
7078: $    call  MatGetRowIJF90(mat,shift,symmetric,inodecompressed,n,ia,ja,done,ierr)


7081:        Acess the ith and jth entries via ia(iia + i) and ja(jja + j)

7083: .seealso: MatGetColumnIJ(), MatRestoreRowIJ(), MatSeqAIJGetArray()
7084: @*/
7085: PetscErrorCode MatGetRowIJ(Mat mat,PetscInt shift,PetscBool symmetric,PetscBool inodecompressed,PetscInt *n,const PetscInt *ia[],const PetscInt *ja[],PetscBool  *done)
7086: {

7096:   MatCheckPreallocated(mat,1);
7097:   if (!mat->ops->getrowij) *done = PETSC_FALSE;
7098:   else {
7099:     *done = PETSC_TRUE;
7100:     PetscLogEventBegin(MAT_GetRowIJ,mat,0,0,0);
7101:     (*mat->ops->getrowij)(mat,shift,symmetric,inodecompressed,n,ia,ja,done);
7102:     PetscLogEventEnd(MAT_GetRowIJ,mat,0,0,0);
7103:   }
7104:   return(0);
7105: }

7109: /*@C
7110:     MatGetColumnIJ - Returns the compressed column storage i and j indices for sequential matrices.

7112:     Collective on Mat

7114:     Input Parameters:
7115: +   mat - the matrix
7116: .   shift - 1 or zero indicating we want the indices starting at 0 or 1
7117: .   symmetric - PETSC_TRUE or PETSC_FALSE indicating the matrix data structure should be
7118:                 symmetrized
7119: .   inodecompressed - PETSC_TRUE or PETSC_FALSE indicating if the nonzero structure of the
7120:                  inodes or the nonzero elements is wanted. For BAIJ matrices the compressed version is
7121:                  always used.
7122: .   n - number of columns in the (possibly compressed) matrix
7123: .   ia - the column pointers
7124: -   ja - the row indices

7126:     Output Parameters:
7127: .   done - PETSC_TRUE or PETSC_FALSE, indicating whether the values have been returned

7129:     Note:
7130:     This routine zeros out n, ia, and ja. This is to prevent accidental
7131:     us of the array after it has been restored. If you pass NULL, it will
7132:     not zero the pointers.  Use of ia or ja after MatRestoreColumnIJ() is invalid.

7134:     Level: developer

7136: .seealso: MatGetRowIJ(), MatRestoreColumnIJ()
7137: @*/
7138: PetscErrorCode MatGetColumnIJ(Mat mat,PetscInt shift,PetscBool symmetric,PetscBool inodecompressed,PetscInt *n,const PetscInt *ia[],const PetscInt *ja[],PetscBool  *done)
7139: {

7149:   MatCheckPreallocated(mat,1);
7150:   if (!mat->ops->getcolumnij) *done = PETSC_FALSE;
7151:   else {
7152:     *done = PETSC_TRUE;
7153:     (*mat->ops->getcolumnij)(mat,shift,symmetric,inodecompressed,n,ia,ja,done);
7154:   }
7155:   return(0);
7156: }

7160: /*@C
7161:     MatRestoreRowIJ - Call after you are completed with the ia,ja indices obtained with
7162:     MatGetRowIJ().

7164:     Collective on Mat

7166:     Input Parameters:
7167: +   mat - the matrix
7168: .   shift - 1 or zero indicating we want the indices starting at 0 or 1
7169: .   symmetric - PETSC_TRUE or PETSC_FALSE indicating the matrix data structure should be
7170:                 symmetrized
7171: .   inodecompressed -  PETSC_TRUE or PETSC_FALSE indicating if the nonzero structure of the
7172:                  inodes or the nonzero elements is wanted. For BAIJ matrices the compressed version is
7173:                  always used.
7174: .   n - size of (possibly compressed) matrix
7175: .   ia - the row pointers
7176: -   ja - the column indices

7178:     Output Parameters:
7179: .   done - PETSC_TRUE or PETSC_FALSE indicated that the values have been returned

7181:     Note:
7182:     This routine zeros out n, ia, and ja. This is to prevent accidental
7183:     us of the array after it has been restored. If you pass NULL, it will
7184:     not zero the pointers.  Use of ia or ja after MatRestoreRowIJ() is invalid.

7186:     Level: developer

7188: .seealso: MatGetRowIJ(), MatRestoreColumnIJ()
7189: @*/
7190: PetscErrorCode MatRestoreRowIJ(Mat mat,PetscInt shift,PetscBool symmetric,PetscBool inodecompressed,PetscInt *n,const PetscInt *ia[],const PetscInt *ja[],PetscBool  *done)
7191: {

7200:   MatCheckPreallocated(mat,1);

7202:   if (!mat->ops->restorerowij) *done = PETSC_FALSE;
7203:   else {
7204:     *done = PETSC_TRUE;
7205:     (*mat->ops->restorerowij)(mat,shift,symmetric,inodecompressed,n,ia,ja,done);
7206:     if (n)  *n = 0;
7207:     if (ia) *ia = NULL;
7208:     if (ja) *ja = NULL;
7209:   }
7210:   return(0);
7211: }

7215: /*@C
7216:     MatRestoreColumnIJ - Call after you are completed with the ia,ja indices obtained with
7217:     MatGetColumnIJ().

7219:     Collective on Mat

7221:     Input Parameters:
7222: +   mat - the matrix
7223: .   shift - 1 or zero indicating we want the indices starting at 0 or 1
7224: -   symmetric - PETSC_TRUE or PETSC_FALSE indicating the matrix data structure should be
7225:                 symmetrized
7226: -   inodecompressed - PETSC_TRUE or PETSC_FALSE indicating if the nonzero structure of the
7227:                  inodes or the nonzero elements is wanted. For BAIJ matrices the compressed version is
7228:                  always used.

7230:     Output Parameters:
7231: +   n - size of (possibly compressed) matrix
7232: .   ia - the column pointers
7233: .   ja - the row indices
7234: -   done - PETSC_TRUE or PETSC_FALSE indicated that the values have been returned

7236:     Level: developer

7238: .seealso: MatGetColumnIJ(), MatRestoreRowIJ()
7239: @*/
7240: PetscErrorCode MatRestoreColumnIJ(Mat mat,PetscInt shift,PetscBool symmetric,PetscBool inodecompressed,PetscInt *n,const PetscInt *ia[],const PetscInt *ja[],PetscBool  *done)
7241: {

7250:   MatCheckPreallocated(mat,1);

7252:   if (!mat->ops->restorecolumnij) *done = PETSC_FALSE;
7253:   else {
7254:     *done = PETSC_TRUE;
7255:     (*mat->ops->restorecolumnij)(mat,shift,symmetric,inodecompressed,n,ia,ja,done);
7256:     if (n)  *n = 0;
7257:     if (ia) *ia = NULL;
7258:     if (ja) *ja = NULL;
7259:   }
7260:   return(0);
7261: }

7265: /*@C
7266:     MatColoringPatch -Used inside matrix coloring routines that
7267:     use MatGetRowIJ() and/or MatGetColumnIJ().

7269:     Collective on Mat

7271:     Input Parameters:
7272: +   mat - the matrix
7273: .   ncolors - max color value
7274: .   n   - number of entries in colorarray
7275: -   colorarray - array indicating color for each column

7277:     Output Parameters:
7278: .   iscoloring - coloring generated using colorarray information

7280:     Level: developer

7282: .seealso: MatGetRowIJ(), MatGetColumnIJ()

7284: @*/
7285: PetscErrorCode  MatColoringPatch(Mat mat,PetscInt ncolors,PetscInt n,ISColoringValue colorarray[],ISColoring *iscoloring)
7286: {

7294:   MatCheckPreallocated(mat,1);

7296:   if (!mat->ops->coloringpatch) {
7297:     ISColoringCreate(PetscObjectComm((PetscObject)mat),ncolors,n,colorarray,PETSC_OWN_POINTER,iscoloring);
7298:   } else {
7299:     (*mat->ops->coloringpatch)(mat,ncolors,n,colorarray,iscoloring);
7300:   }
7301:   return(0);
7302: }


7307: /*@
7308:    MatSetUnfactored - Resets a factored matrix to be treated as unfactored.

7310:    Logically Collective on Mat

7312:    Input Parameter:
7313: .  mat - the factored matrix to be reset

7315:    Notes:
7316:    This routine should be used only with factored matrices formed by in-place
7317:    factorization via ILU(0) (or by in-place LU factorization for the MATSEQDENSE
7318:    format).  This option can save memory, for example, when solving nonlinear
7319:    systems with a matrix-free Newton-Krylov method and a matrix-based, in-place
7320:    ILU(0) preconditioner.

7322:    Note that one can specify in-place ILU(0) factorization by calling
7323: .vb
7324:      PCType(pc,PCILU);
7325:      PCFactorSeUseInPlace(pc);
7326: .ve
7327:    or by using the options -pc_type ilu -pc_factor_in_place

7329:    In-place factorization ILU(0) can also be used as a local
7330:    solver for the blocks within the block Jacobi or additive Schwarz
7331:    methods (runtime option: -sub_pc_factor_in_place).  See Users-Manual: ch_pc
7332:    for details on setting local solver options.

7334:    Most users should employ the simplified KSP interface for linear solvers
7335:    instead of working directly with matrix algebra routines such as this.
7336:    See, e.g., KSPCreate().

7338:    Level: developer

7340: .seealso: PCFactorSetUseInPlace(), PCFactorGetUseInPlace()

7342:    Concepts: matrices^unfactored

7344: @*/
7345: PetscErrorCode  MatSetUnfactored(Mat mat)
7346: {

7352:   MatCheckPreallocated(mat,1);
7353:   mat->factortype = MAT_FACTOR_NONE;
7354:   if (!mat->ops->setunfactored) return(0);
7355:   (*mat->ops->setunfactored)(mat);
7356:   return(0);
7357: }

7359: /*MC
7360:     MatDenseGetArrayF90 - Accesses a matrix array from Fortran90.

7362:     Synopsis:
7363:     MatDenseGetArrayF90(Mat x,{Scalar, pointer :: xx_v(:,:)},integer ierr)

7365:     Not collective

7367:     Input Parameter:
7368: .   x - matrix

7370:     Output Parameters:
7371: +   xx_v - the Fortran90 pointer to the array
7372: -   ierr - error code

7374:     Example of Usage:
7375: .vb
7376:       PetscScalar, pointer xx_v(:,:)
7377:       ....
7378:       call MatDenseGetArrayF90(x,xx_v,ierr)
7379:       a = xx_v(3)
7380:       call MatDenseRestoreArrayF90(x,xx_v,ierr)
7381: .ve

7383:     Level: advanced

7385: .seealso:  MatDenseRestoreArrayF90(), MatDenseGetArray(), MatDenseRestoreArray(), MatSeqAIJGetArrayF90()

7387:     Concepts: matrices^accessing array

7389: M*/

7391: /*MC
7392:     MatDenseRestoreArrayF90 - Restores a matrix array that has been
7393:     accessed with MatDenseGetArrayF90().

7395:     Synopsis:
7396:     MatDenseRestoreArrayF90(Mat x,{Scalar, pointer :: xx_v(:)},integer ierr)

7398:     Not collective

7400:     Input Parameters:
7401: +   x - matrix
7402: -   xx_v - the Fortran90 pointer to the array

7404:     Output Parameter:
7405: .   ierr - error code

7407:     Example of Usage:
7408: .vb
7409:        PetscScalar, pointer xx_v(:)
7410:        ....
7411:        call MatDenseGetArrayF90(x,xx_v,ierr)
7412:        a = xx_v(3)
7413:        call MatDenseRestoreArrayF90(x,xx_v,ierr)
7414: .ve

7416:     Level: advanced

7418: .seealso:  MatDenseGetArrayF90(), MatDenseGetArray(), MatDenseRestoreArray(), MatSeqAIJRestoreArrayF90()

7420: M*/


7423: /*MC
7424:     MatSeqAIJGetArrayF90 - Accesses a matrix array from Fortran90.

7426:     Synopsis:
7427:     MatSeqAIJGetArrayF90(Mat x,{Scalar, pointer :: xx_v(:,:)},integer ierr)

7429:     Not collective

7431:     Input Parameter:
7432: .   x - matrix

7434:     Output Parameters:
7435: +   xx_v - the Fortran90 pointer to the array
7436: -   ierr - error code

7438:     Example of Usage:
7439: .vb
7440:       PetscScalar, pointer xx_v(:,:)
7441:       ....
7442:       call MatSeqAIJGetArrayF90(x,xx_v,ierr)
7443:       a = xx_v(3)
7444:       call MatSeqAIJRestoreArrayF90(x,xx_v,ierr)
7445: .ve

7447:     Level: advanced

7449: .seealso:  MatSeqAIJRestoreArrayF90(), MatSeqAIJGetArray(), MatSeqAIJRestoreArray(), MatDenseGetArrayF90()

7451:     Concepts: matrices^accessing array

7453: M*/

7455: /*MC
7456:     MatSeqAIJRestoreArrayF90 - Restores a matrix array that has been
7457:     accessed with MatSeqAIJGetArrayF90().

7459:     Synopsis:
7460:     MatSeqAIJRestoreArrayF90(Mat x,{Scalar, pointer :: xx_v(:)},integer ierr)

7462:     Not collective

7464:     Input Parameters:
7465: +   x - matrix
7466: -   xx_v - the Fortran90 pointer to the array

7468:     Output Parameter:
7469: .   ierr - error code

7471:     Example of Usage:
7472: .vb
7473:        PetscScalar, pointer xx_v(:)
7474:        ....
7475:        call MatSeqAIJGetArrayF90(x,xx_v,ierr)
7476:        a = xx_v(3)
7477:        call MatSeqAIJRestoreArrayF90(x,xx_v,ierr)
7478: .ve

7480:     Level: advanced

7482: .seealso:  MatSeqAIJGetArrayF90(), MatSeqAIJGetArray(), MatSeqAIJRestoreArray(), MatDenseRestoreArrayF90()

7484: M*/


7489: /*@
7490:     MatGetSubMatrix - Gets a single submatrix on the same number of processors
7491:                       as the original matrix.

7493:     Collective on Mat

7495:     Input Parameters:
7496: +   mat - the original matrix
7497: .   isrow - parallel IS containing the rows this processor should obtain
7498: .   iscol - parallel IS containing all columns you wish to keep. Each process should list the columns that will be in IT's "diagonal part" in the new matrix.
7499: -   cll - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX

7501:     Output Parameter:
7502: .   newmat - the new submatrix, of the same type as the old

7504:     Level: advanced

7506:     Notes:
7507:     The submatrix will be able to be multiplied with vectors using the same layout as iscol.

7509:     Some matrix types place restrictions on the row and column indices, such
7510:     as that they be sorted or that they be equal to each other.

7512:     The index sets may not have duplicate entries.

7514:       The first time this is called you should use a cll of MAT_INITIAL_MATRIX,
7515:    the MatGetSubMatrix() routine will create the newmat for you. Any additional calls
7516:    to this routine with a mat of the same nonzero structure and with a call of MAT_REUSE_MATRIX
7517:    will reuse the matrix generated the first time.  You should call MatDestroy() on newmat when
7518:    you are finished using it.

7520:     The communicator of the newly obtained matrix is ALWAYS the same as the communicator of
7521:     the input matrix.

7523:     If iscol is NULL then all columns are obtained (not supported in Fortran).

7525:    Example usage:
7526:    Consider the following 8x8 matrix with 34 non-zero values, that is
7527:    assembled across 3 processors. Let's assume that proc0 owns 3 rows,
7528:    proc1 owns 3 rows, proc2 owns 2 rows. This division can be shown
7529:    as follows:

7531: .vb
7532:             1  2  0  |  0  3  0  |  0  4
7533:     Proc0   0  5  6  |  7  0  0  |  8  0
7534:             9  0 10  | 11  0  0  | 12  0
7535:     -------------------------------------
7536:            13  0 14  | 15 16 17  |  0  0
7537:     Proc1   0 18  0  | 19 20 21  |  0  0
7538:             0  0  0  | 22 23  0  | 24  0
7539:     -------------------------------------
7540:     Proc2  25 26 27  |  0  0 28  | 29  0
7541:            30  0  0  | 31 32 33  |  0 34
7542: .ve

7544:     Suppose isrow = [0 1 | 4 | 6 7] and iscol = [1 2 | 3 4 5 | 6].  The resulting submatrix is

7546: .vb
7547:             2  0  |  0  3  0  |  0
7548:     Proc0   5  6  |  7  0  0  |  8
7549:     -------------------------------
7550:     Proc1  18  0  | 19 20 21  |  0
7551:     -------------------------------
7552:     Proc2  26 27  |  0  0 28  | 29
7553:             0  0  | 31 32 33  |  0
7554: .ve


7557:     Concepts: matrices^submatrices

7559: .seealso: MatGetSubMatrices()
7560: @*/
7561: PetscErrorCode  MatGetSubMatrix(Mat mat,IS isrow,IS iscol,MatReuse cll,Mat *newmat)
7562: {
7564:   PetscMPIInt    size;
7565:   Mat            *local;
7566:   IS             iscoltmp;

7575:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
7576:   if (cll == MAT_IGNORE_MATRIX) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Cannot use MAT_IGNORE_MATRIX");

7578:   MatCheckPreallocated(mat,1);
7579:   MPI_Comm_size(PetscObjectComm((PetscObject)mat),&size);

7581:   if (!iscol || isrow == iscol) {
7582:     PetscBool   stride;
7583:     PetscMPIInt grabentirematrix = 0,grab;
7584:     PetscObjectTypeCompare((PetscObject)isrow,ISSTRIDE,&stride);
7585:     if (stride) {
7586:       PetscInt first,step,n,rstart,rend;
7587:       ISStrideGetInfo(isrow,&first,&step);
7588:       if (step == 1) {
7589:         MatGetOwnershipRange(mat,&rstart,&rend);
7590:         if (rstart == first) {
7591:           ISGetLocalSize(isrow,&n);
7592:           if (n == rend-rstart) {
7593:             grabentirematrix = 1;
7594:           }
7595:         }
7596:       }
7597:     }
7598:     MPI_Allreduce(&grabentirematrix,&grab,1,MPI_INT,MPI_MIN,PetscObjectComm((PetscObject)mat));
7599:     if (grab) {
7600:       PetscInfo(mat,"Getting entire matrix as submatrix\n");
7601:       if (cll == MAT_INITIAL_MATRIX) {
7602:         *newmat = mat;
7603:         PetscObjectReference((PetscObject)mat);
7604:       }
7605:       return(0);
7606:     }
7607:   }

7609:   if (!iscol) {
7610:     ISCreateStride(PetscObjectComm((PetscObject)mat),mat->cmap->n,mat->cmap->rstart,1,&iscoltmp);
7611:   } else {
7612:     iscoltmp = iscol;
7613:   }

7615:   /* if original matrix is on just one processor then use submatrix generated */
7616:   if (mat->ops->getsubmatrices && !mat->ops->getsubmatrix && size == 1 && cll == MAT_REUSE_MATRIX) {
7617:     MatGetSubMatrices(mat,1,&isrow,&iscoltmp,MAT_REUSE_MATRIX,&newmat);
7618:     if (!iscol) {ISDestroy(&iscoltmp);}
7619:     return(0);
7620:   } else if (mat->ops->getsubmatrices && !mat->ops->getsubmatrix && size == 1) {
7621:     MatGetSubMatrices(mat,1,&isrow,&iscoltmp,MAT_INITIAL_MATRIX,&local);
7622:     *newmat = *local;
7623:     PetscFree(local);
7624:     if (!iscol) {ISDestroy(&iscoltmp);}
7625:     return(0);
7626:   } else if (!mat->ops->getsubmatrix) {
7627:     /* Create a new matrix type that implements the operation using the full matrix */
7628:     PetscLogEventBegin(MAT_GetSubMatrix,mat,0,0,0);
7629:     switch (cll) {
7630:     case MAT_INITIAL_MATRIX:
7631:       MatCreateSubMatrix(mat,isrow,iscoltmp,newmat);
7632:       break;
7633:     case MAT_REUSE_MATRIX:
7634:       MatSubMatrixUpdate(*newmat,mat,isrow,iscoltmp);
7635:       break;
7636:     default: SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_OUTOFRANGE,"Invalid MatReuse, must be either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX");
7637:     }
7638:     PetscLogEventEnd(MAT_GetSubMatrix,mat,0,0,0);
7639:     if (!iscol) {ISDestroy(&iscoltmp);}
7640:     return(0);
7641:   }

7643:   if (!mat->ops->getsubmatrix) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
7644:   PetscLogEventBegin(MAT_GetSubMatrix,mat,0,0,0);
7645:   (*mat->ops->getsubmatrix)(mat,isrow,iscoltmp,cll,newmat);
7646:   PetscLogEventEnd(MAT_GetSubMatrix,mat,0,0,0);
7647:   if (!iscol) {ISDestroy(&iscoltmp);}
7648:   if (*newmat && cll == MAT_INITIAL_MATRIX) {PetscObjectStateIncrease((PetscObject)*newmat);}
7649:   return(0);
7650: }

7654: /*@
7655:    MatStashSetInitialSize - sets the sizes of the matrix stash, that is
7656:    used during the assembly process to store values that belong to
7657:    other processors.

7659:    Not Collective

7661:    Input Parameters:
7662: +  mat   - the matrix
7663: .  size  - the initial size of the stash.
7664: -  bsize - the initial size of the block-stash(if used).

7666:    Options Database Keys:
7667: +   -matstash_initial_size <size> or <size0,size1,...sizep-1>
7668: -   -matstash_block_initial_size <bsize>  or <bsize0,bsize1,...bsizep-1>

7670:    Level: intermediate

7672:    Notes:
7673:      The block-stash is used for values set with MatSetValuesBlocked() while
7674:      the stash is used for values set with MatSetValues()

7676:      Run with the option -info and look for output of the form
7677:      MatAssemblyBegin_MPIXXX:Stash has MM entries, uses nn mallocs.
7678:      to determine the appropriate value, MM, to use for size and
7679:      MatAssemblyBegin_MPIXXX:Block-Stash has BMM entries, uses nn mallocs.
7680:      to determine the value, BMM to use for bsize

7682:    Concepts: stash^setting matrix size
7683:    Concepts: matrices^stash

7685: .seealso: MatAssemblyBegin(), MatAssemblyEnd(), Mat, MatStashGetInfo()

7687: @*/
7688: PetscErrorCode  MatStashSetInitialSize(Mat mat,PetscInt size, PetscInt bsize)
7689: {

7695:   MatStashSetInitialSize_Private(&mat->stash,size);
7696:   MatStashSetInitialSize_Private(&mat->bstash,bsize);
7697:   return(0);
7698: }

7702: /*@
7703:    MatInterpolateAdd - w = y + A*x or A'*x depending on the shape of
7704:      the matrix

7706:    Neighbor-wise Collective on Mat

7708:    Input Parameters:
7709: +  mat   - the matrix
7710: .  x,y - the vectors
7711: -  w - where the result is stored

7713:    Level: intermediate

7715:    Notes:
7716:     w may be the same vector as y.

7718:     This allows one to use either the restriction or interpolation (its transpose)
7719:     matrix to do the interpolation

7721:     Concepts: interpolation

7723: .seealso: MatMultAdd(), MatMultTransposeAdd(), MatRestrict()

7725: @*/
7726: PetscErrorCode  MatInterpolateAdd(Mat A,Vec x,Vec y,Vec w)
7727: {
7729:   PetscInt       M,N,Ny;

7737:   MatCheckPreallocated(A,1);
7738:   MatGetSize(A,&M,&N);
7739:   VecGetSize(y,&Ny);
7740:   if (M == Ny) {
7741:     MatMultAdd(A,x,y,w);
7742:   } else {
7743:     MatMultTransposeAdd(A,x,y,w);
7744:   }
7745:   return(0);
7746: }

7750: /*@
7751:    MatInterpolate - y = A*x or A'*x depending on the shape of
7752:      the matrix

7754:    Neighbor-wise Collective on Mat

7756:    Input Parameters:
7757: +  mat   - the matrix
7758: -  x,y - the vectors

7760:    Level: intermediate

7762:    Notes:
7763:     This allows one to use either the restriction or interpolation (its transpose)
7764:     matrix to do the interpolation

7766:    Concepts: matrices^interpolation

7768: .seealso: MatMultAdd(), MatMultTransposeAdd(), MatRestrict()

7770: @*/
7771: PetscErrorCode  MatInterpolate(Mat A,Vec x,Vec y)
7772: {
7774:   PetscInt       M,N,Ny;

7781:   MatCheckPreallocated(A,1);
7782:   MatGetSize(A,&M,&N);
7783:   VecGetSize(y,&Ny);
7784:   if (M == Ny) {
7785:     MatMult(A,x,y);
7786:   } else {
7787:     MatMultTranspose(A,x,y);
7788:   }
7789:   return(0);
7790: }

7794: /*@
7795:    MatRestrict - y = A*x or A'*x

7797:    Neighbor-wise Collective on Mat

7799:    Input Parameters:
7800: +  mat   - the matrix
7801: -  x,y - the vectors

7803:    Level: intermediate

7805:    Notes:
7806:     This allows one to use either the restriction or interpolation (its transpose)
7807:     matrix to do the restriction

7809:    Concepts: matrices^restriction

7811: .seealso: MatMultAdd(), MatMultTransposeAdd(), MatInterpolate()

7813: @*/
7814: PetscErrorCode  MatRestrict(Mat A,Vec x,Vec y)
7815: {
7817:   PetscInt       M,N,Ny;

7824:   MatCheckPreallocated(A,1);

7826:   MatGetSize(A,&M,&N);
7827:   VecGetSize(y,&Ny);
7828:   if (M == Ny) {
7829:     MatMult(A,x,y);
7830:   } else {
7831:     MatMultTranspose(A,x,y);
7832:   }
7833:   return(0);
7834: }

7838: /*@
7839:    MatGetNullSpace - retrieves the null space to a matrix.

7841:    Logically Collective on Mat and MatNullSpace

7843:    Input Parameters:
7844: +  mat - the matrix
7845: -  nullsp - the null space object

7847:    Level: developer

7849:    Concepts: null space^attaching to matrix

7851: .seealso: MatCreate(), MatNullSpaceCreate(), MatSetNearNullSpace(), MatSetNullSpace()
7852: @*/
7853: PetscErrorCode MatGetNullSpace(Mat mat, MatNullSpace *nullsp)
7854: {
7859:   *nullsp = mat->nullsp;
7860:   return(0);
7861: }

7865: /*@
7866:    MatSetNullSpace - attaches a null space to a matrix.

7868:    Logically Collective on Mat and MatNullSpace

7870:    Input Parameters:
7871: +  mat - the matrix
7872: -  nullsp - the null space object

7874:    Level: advanced

7876:    Notes:
7877:       This null space is used by the linear solvers. Overwrites any previous null space that may have been attached

7879:       For inconsistent singular systems (linear systems where the right hand side is not in the range of the operator) you also likely should
7880:       call MatSetTransposeNullSpace(). This allows the linear system to be solved in a least squares sense.

7882:       You can remove the null space by calling this routine with an nullsp of NULL


7885:       The fundamental theorem of linear algebra (Gilbert Strang, Introduction to Applied Mathematics, page 72) states that
7886:    the domain of a matrix A (from R^n to R^m (m rows, n columns) R^n = the direct sum of the null space of A, n(A), + the range of A^T, R(A^T).
7887:    Similarly R^m = direct sum n(A^T) + R(A).  Hence the linear system A x = b has a solution only if b in R(A) (or correspondingly b is orthogonal to
7888:    n(A^T)) and if x is a solution then x + alpha n(A) is a solution for any alpha. The minimum norm solution is orthogonal to n(A). For problems without a solution
7889:    the solution that minimizes the norm of the residual (the least squares solution) can be obtained by solving A x = \hat{b} where \hat{b} is b orthogonalized to the n(A^T).

7891:       Krylov solvers can produce the minimal norm solution to the least squares problem by utilizing MatNullSpaceRemove().

7893:    Concepts: null space^attaching to matrix

7895: .seealso: MatCreate(), MatNullSpaceCreate(), MatSetNearNullSpace(), MatGetNullSpace(), MatSetTransposeNullSpace(), MatGetTransposeNullSpace(), MatNullSpaceRemove()
7896: @*/
7897: PetscErrorCode  MatSetNullSpace(Mat mat,MatNullSpace nullsp)
7898: {

7905:   MatCheckPreallocated(mat,1);
7906:   if (nullsp) {PetscObjectReference((PetscObject)nullsp);}
7907:   MatNullSpaceDestroy(&mat->nullsp);
7908:   mat->nullsp = nullsp;
7909:   return(0);
7910: }

7914: /*@
7915:    MatGetTransposeNullSpace - retrieves the null space to a matrix.

7917:    Logically Collective on Mat and MatNullSpace

7919:    Input Parameters:
7920: +  mat - the matrix
7921: -  nullsp - the null space object

7923:    Level: developer

7925:    Notes:
7926:       This null space is used by solvers. Overwrites any previous null space that may have been attached

7928:    Concepts: null space^attaching to matrix

7930: .seealso: MatCreate(), MatNullSpaceCreate(), MatSetNearNullSpace()
7931: @*/
7932: PetscErrorCode MatGetTransposeNullSpace(Mat mat, MatNullSpace *nullsp)
7933: {
7938:   *nullsp = mat->transnullsp;
7939:   return(0);
7940: }

7944: /*@
7945:    MatSetTransposeNullSpace - attaches a null space to a matrix.

7947:    Logically Collective on Mat and MatNullSpace

7949:    Input Parameters:
7950: +  mat - the matrix
7951: -  nullsp - the null space object

7953:    Level: advanced

7955:    Notes:
7956:       For inconsistent singular systems (linear systems where the right hand side is not in the range of the operator) this allows the linear system to be solved in a least squares sense.
7957:       You must also call MatSetNullSpace()


7960:       The fundamental theorem of linear algebra (Gilbert Strang, Introduction to Applied Mathematics, page 72) states that
7961:    the domain of a matrix A (from R^n to R^m (m rows, n columns) R^n = the direct sum of the null space of A, n(A), + the range of A^T, R(A^T).
7962:    Similarly R^m = direct sum n(A^T) + R(A).  Hence the linear system A x = b has a solution only if b in R(A) (or correspondingly b is orthogonal to
7963:    n(A^T)) and if x is a solution then x + alpha n(A) is a solution for any alpha. The minimum norm solution is orthogonal to n(A). For problems without a solution
7964:    the solution that minimizes the norm of the residual (the least squares solution) can be obtained by solving A x = \hat{b} where \hat{b} is b orthogonalized to the n(A^T).

7966:       Krylov solvers can produce the minimal norm solution to the least squares problem by utilizing MatNullSpaceRemove().

7968:    Concepts: null space^attaching to matrix

7970: .seealso: MatCreate(), MatNullSpaceCreate(), MatSetNearNullSpace(), MatGetNullSpace(), MatSetNullSpace(), MatGetNullSpace(), MatNullSpaceRemove()
7971: @*/
7972: PetscErrorCode  MatSetTransposeNullSpace(Mat mat,MatNullSpace nullsp)
7973: {

7980:   MatCheckPreallocated(mat,1);
7981:   PetscObjectReference((PetscObject)nullsp);
7982:   MatNullSpaceDestroy(&mat->transnullsp);
7983:   mat->transnullsp = nullsp;
7984:   return(0);
7985: }

7989: /*@
7990:    MatSetNearNullSpace - attaches a null space to a matrix.
7991:         This null space will be used to provide near null space vectors to a multigrid preconditioner built from this matrix.

7993:    Logically Collective on Mat and MatNullSpace

7995:    Input Parameters:
7996: +  mat - the matrix
7997: -  nullsp - the null space object

7999:    Level: advanced

8001:    Notes:
8002:       Overwrites any previous near null space that may have been attached

8004:       You can remove the null space by calling this routine with an nullsp of NULL

8006:    Concepts: null space^attaching to matrix

8008: .seealso: MatCreate(), MatNullSpaceCreate(), MatSetNullSpace()
8009: @*/
8010: PetscErrorCode MatSetNearNullSpace(Mat mat,MatNullSpace nullsp)
8011: {

8018:   MatCheckPreallocated(mat,1);
8019:   if (nullsp) {PetscObjectReference((PetscObject)nullsp);}
8020:   MatNullSpaceDestroy(&mat->nearnullsp);
8021:   mat->nearnullsp = nullsp;
8022:   return(0);
8023: }

8027: /*@
8028:    MatGetNearNullSpace -Get null space attached with MatSetNearNullSpace()

8030:    Not Collective

8032:    Input Parameters:
8033: .  mat - the matrix

8035:    Output Parameters:
8036: .  nullsp - the null space object, NULL if not set

8038:    Level: developer

8040:    Concepts: null space^attaching to matrix

8042: .seealso: MatSetNearNullSpace(), MatGetNullSpace()
8043: @*/
8044: PetscErrorCode MatGetNearNullSpace(Mat mat,MatNullSpace *nullsp)
8045: {
8050:   MatCheckPreallocated(mat,1);
8051:   *nullsp = mat->nearnullsp;
8052:   return(0);
8053: }

8057: /*@C
8058:    MatICCFactor - Performs in-place incomplete Cholesky factorization of matrix.

8060:    Collective on Mat

8062:    Input Parameters:
8063: +  mat - the matrix
8064: .  row - row/column permutation
8065: .  fill - expected fill factor >= 1.0
8066: -  level - level of fill, for ICC(k)

8068:    Notes:
8069:    Probably really in-place only when level of fill is zero, otherwise allocates
8070:    new space to store factored matrix and deletes previous memory.

8072:    Most users should employ the simplified KSP interface for linear solvers
8073:    instead of working directly with matrix algebra routines such as this.
8074:    See, e.g., KSPCreate().

8076:    Level: developer

8078:    Concepts: matrices^incomplete Cholesky factorization
8079:    Concepts: Cholesky factorization

8081: .seealso: MatICCFactorSymbolic(), MatLUFactorNumeric(), MatCholeskyFactor()

8083:     Developer Note: fortran interface is not autogenerated as the f90
8084:     interface defintion cannot be generated correctly [due to MatFactorInfo]

8086: @*/
8087: PetscErrorCode  MatICCFactor(Mat mat,IS row,const MatFactorInfo *info)
8088: {

8096:   if (mat->rmap->N != mat->cmap->N) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONG,"matrix must be square");
8097:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8098:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8099:   if (!mat->ops->iccfactor) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
8100:   MatCheckPreallocated(mat,1);
8101:   (*mat->ops->iccfactor)(mat,row,info);
8102:   PetscObjectStateIncrease((PetscObject)mat);
8103:   return(0);
8104: }

8108: /*@
8109:    MatSetValuesAdifor - Sets values computed with automatic differentiation into a matrix.

8111:    Not Collective

8113:    Input Parameters:
8114: +  mat - the matrix
8115: .  nl - leading dimension of v
8116: -  v - the values compute with ADIFOR

8118:    Level: developer

8120:    Notes:
8121:      Must call MatSetColoring() before using this routine. Also this matrix must already
8122:      have its nonzero pattern determined.

8124: .seealso: MatSetOption(), MatAssemblyBegin(), MatAssemblyEnd(), MatSetValuesBlocked(), MatSetValuesLocal(),
8125:           MatSetValues(), MatSetColoring()
8126: @*/
8127: PetscErrorCode  MatSetValuesAdifor(Mat mat,PetscInt nl,void *v)
8128: {


8136:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Matrix must be already assembled");
8137:   PetscLogEventBegin(MAT_SetValues,mat,0,0,0);
8138:   if (!mat->ops->setvaluesadifor) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
8139:   (*mat->ops->setvaluesadifor)(mat,nl,v);
8140:   PetscLogEventEnd(MAT_SetValues,mat,0,0,0);
8141:   PetscObjectStateIncrease((PetscObject)mat);
8142:   return(0);
8143: }

8147: /*@
8148:    MatDiagonalScaleLocal - Scales columns of a matrix given the scaling values including the
8149:          ghosted ones.

8151:    Not Collective

8153:    Input Parameters:
8154: +  mat - the matrix
8155: -  diag = the diagonal values, including ghost ones

8157:    Level: developer

8159:    Notes: Works only for MPIAIJ and MPIBAIJ matrices

8161: .seealso: MatDiagonalScale()
8162: @*/
8163: PetscErrorCode  MatDiagonalScaleLocal(Mat mat,Vec diag)
8164: {
8166:   PetscMPIInt    size;


8173:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Matrix must be already assembled");
8174:   PetscLogEventBegin(MAT_Scale,mat,0,0,0);
8175:   MPI_Comm_size(PetscObjectComm((PetscObject)mat),&size);
8176:   if (size == 1) {
8177:     PetscInt n,m;
8178:     VecGetSize(diag,&n);
8179:     MatGetSize(mat,0,&m);
8180:     if (m == n) {
8181:       MatDiagonalScale(mat,0,diag);
8182:     } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Only supported for sequential matrices when no ghost points/periodic conditions");
8183:   } else {
8184:     PetscUseMethod(mat,"MatDiagonalScaleLocal_C",(Mat,Vec),(mat,diag));
8185:   }
8186:   PetscLogEventEnd(MAT_Scale,mat,0,0,0);
8187:   PetscObjectStateIncrease((PetscObject)mat);
8188:   return(0);
8189: }

8193: /*@
8194:    MatGetInertia - Gets the inertia from a factored matrix

8196:    Collective on Mat

8198:    Input Parameter:
8199: .  mat - the matrix

8201:    Output Parameters:
8202: +   nneg - number of negative eigenvalues
8203: .   nzero - number of zero eigenvalues
8204: -   npos - number of positive eigenvalues

8206:    Level: advanced

8208:    Notes: Matrix must have been factored by MatCholeskyFactor()


8211: @*/
8212: PetscErrorCode  MatGetInertia(Mat mat,PetscInt *nneg,PetscInt *nzero,PetscInt *npos)
8213: {

8219:   if (!mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Unfactored matrix");
8220:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Numeric factor mat is not assembled");
8221:   if (!mat->ops->getinertia) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
8222:   (*mat->ops->getinertia)(mat,nneg,nzero,npos);
8223:   return(0);
8224: }

8226: /* ----------------------------------------------------------------*/
8229: /*@C
8230:    MatSolves - Solves A x = b, given a factored matrix, for a collection of vectors

8232:    Neighbor-wise Collective on Mat and Vecs

8234:    Input Parameters:
8235: +  mat - the factored matrix
8236: -  b - the right-hand-side vectors

8238:    Output Parameter:
8239: .  x - the result vectors

8241:    Notes:
8242:    The vectors b and x cannot be the same.  I.e., one cannot
8243:    call MatSolves(A,x,x).

8245:    Notes:
8246:    Most users should employ the simplified KSP interface for linear solvers
8247:    instead of working directly with matrix algebra routines such as this.
8248:    See, e.g., KSPCreate().

8250:    Level: developer

8252:    Concepts: matrices^triangular solves

8254: .seealso: MatSolveAdd(), MatSolveTranspose(), MatSolveTransposeAdd(), MatSolve()
8255: @*/
8256: PetscErrorCode  MatSolves(Mat mat,Vecs b,Vecs x)
8257: {

8263:   if (x == b) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_IDN,"x and b must be different vectors");
8264:   if (!mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Unfactored matrix");
8265:   if (!mat->rmap->N && !mat->cmap->N) return(0);

8267:   if (!mat->ops->solves) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
8268:   MatCheckPreallocated(mat,1);
8269:   PetscLogEventBegin(MAT_Solves,mat,0,0,0);
8270:   (*mat->ops->solves)(mat,b,x);
8271:   PetscLogEventEnd(MAT_Solves,mat,0,0,0);
8272:   return(0);
8273: }

8277: /*@
8278:    MatIsSymmetric - Test whether a matrix is symmetric

8280:    Collective on Mat

8282:    Input Parameter:
8283: +  A - the matrix to test
8284: -  tol - difference between value and its transpose less than this amount counts as equal (use 0.0 for exact transpose)

8286:    Output Parameters:
8287: .  flg - the result

8289:    Notes: For real numbers MatIsSymmetric() and MatIsHermitian() return identical results

8291:    Level: intermediate

8293:    Concepts: matrix^symmetry

8295: .seealso: MatTranspose(), MatIsTranspose(), MatIsHermitian(), MatIsStructurallySymmetric(), MatSetOption(), MatIsSymmetricKnown()
8296: @*/
8297: PetscErrorCode  MatIsSymmetric(Mat A,PetscReal tol,PetscBool  *flg)
8298: {


8305:   if (!A->symmetric_set) {
8306:     if (!A->ops->issymmetric) {
8307:       MatType mattype;
8308:       MatGetType(A,&mattype);
8309:       SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Matrix of type <%s> does not support checking for symmetric",mattype);
8310:     }
8311:     (*A->ops->issymmetric)(A,tol,flg);
8312:     if (!tol) {
8313:       A->symmetric_set = PETSC_TRUE;
8314:       A->symmetric     = *flg;
8315:       if (A->symmetric) {
8316:         A->structurally_symmetric_set = PETSC_TRUE;
8317:         A->structurally_symmetric     = PETSC_TRUE;
8318:       }
8319:     }
8320:   } else if (A->symmetric) {
8321:     *flg = PETSC_TRUE;
8322:   } else if (!tol) {
8323:     *flg = PETSC_FALSE;
8324:   } else {
8325:     if (!A->ops->issymmetric) {
8326:       MatType mattype;
8327:       MatGetType(A,&mattype);
8328:       SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Matrix of type <%s> does not support checking for symmetric",mattype);
8329:     }
8330:     (*A->ops->issymmetric)(A,tol,flg);
8331:   }
8332:   return(0);
8333: }

8337: /*@
8338:    MatIsHermitian - Test whether a matrix is Hermitian

8340:    Collective on Mat

8342:    Input Parameter:
8343: +  A - the matrix to test
8344: -  tol - difference between value and its transpose less than this amount counts as equal (use 0.0 for exact Hermitian)

8346:    Output Parameters:
8347: .  flg - the result

8349:    Level: intermediate

8351:    Concepts: matrix^symmetry

8353: .seealso: MatTranspose(), MatIsTranspose(), MatIsHermitian(), MatIsStructurallySymmetric(), MatSetOption(),
8354:           MatIsSymmetricKnown(), MatIsSymmetric()
8355: @*/
8356: PetscErrorCode  MatIsHermitian(Mat A,PetscReal tol,PetscBool  *flg)
8357: {


8364:   if (!A->hermitian_set) {
8365:     if (!A->ops->ishermitian) {
8366:       MatType mattype;
8367:       MatGetType(A,&mattype);
8368:       SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Matrix of type <%s> does not support checking for hermitian",mattype);
8369:     }
8370:     (*A->ops->ishermitian)(A,tol,flg);
8371:     if (!tol) {
8372:       A->hermitian_set = PETSC_TRUE;
8373:       A->hermitian     = *flg;
8374:       if (A->hermitian) {
8375:         A->structurally_symmetric_set = PETSC_TRUE;
8376:         A->structurally_symmetric     = PETSC_TRUE;
8377:       }
8378:     }
8379:   } else if (A->hermitian) {
8380:     *flg = PETSC_TRUE;
8381:   } else if (!tol) {
8382:     *flg = PETSC_FALSE;
8383:   } else {
8384:     if (!A->ops->ishermitian) {
8385:       MatType mattype;
8386:       MatGetType(A,&mattype);
8387:       SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Matrix of type <%s> does not support checking for hermitian",mattype);
8388:     }
8389:     (*A->ops->ishermitian)(A,tol,flg);
8390:   }
8391:   return(0);
8392: }

8396: /*@
8397:    MatIsSymmetricKnown - Checks the flag on the matrix to see if it is symmetric.

8399:    Not Collective

8401:    Input Parameter:
8402: .  A - the matrix to check

8404:    Output Parameters:
8405: +  set - if the symmetric flag is set (this tells you if the next flag is valid)
8406: -  flg - the result

8408:    Level: advanced

8410:    Concepts: matrix^symmetry

8412:    Note: Does not check the matrix values directly, so this may return unknown (set = PETSC_FALSE). Use MatIsSymmetric()
8413:          if you want it explicitly checked

8415: .seealso: MatTranspose(), MatIsTranspose(), MatIsHermitian(), MatIsStructurallySymmetric(), MatSetOption(), MatIsSymmetric()
8416: @*/
8417: PetscErrorCode  MatIsSymmetricKnown(Mat A,PetscBool  *set,PetscBool  *flg)
8418: {
8423:   if (A->symmetric_set) {
8424:     *set = PETSC_TRUE;
8425:     *flg = A->symmetric;
8426:   } else {
8427:     *set = PETSC_FALSE;
8428:   }
8429:   return(0);
8430: }

8434: /*@
8435:    MatIsHermitianKnown - Checks the flag on the matrix to see if it is hermitian.

8437:    Not Collective

8439:    Input Parameter:
8440: .  A - the matrix to check

8442:    Output Parameters:
8443: +  set - if the hermitian flag is set (this tells you if the next flag is valid)
8444: -  flg - the result

8446:    Level: advanced

8448:    Concepts: matrix^symmetry

8450:    Note: Does not check the matrix values directly, so this may return unknown (set = PETSC_FALSE). Use MatIsHermitian()
8451:          if you want it explicitly checked

8453: .seealso: MatTranspose(), MatIsTranspose(), MatIsHermitian(), MatIsStructurallySymmetric(), MatSetOption(), MatIsSymmetric()
8454: @*/
8455: PetscErrorCode  MatIsHermitianKnown(Mat A,PetscBool  *set,PetscBool  *flg)
8456: {
8461:   if (A->hermitian_set) {
8462:     *set = PETSC_TRUE;
8463:     *flg = A->hermitian;
8464:   } else {
8465:     *set = PETSC_FALSE;
8466:   }
8467:   return(0);
8468: }

8472: /*@
8473:    MatIsStructurallySymmetric - Test whether a matrix is structurally symmetric

8475:    Collective on Mat

8477:    Input Parameter:
8478: .  A - the matrix to test

8480:    Output Parameters:
8481: .  flg - the result

8483:    Level: intermediate

8485:    Concepts: matrix^symmetry

8487: .seealso: MatTranspose(), MatIsTranspose(), MatIsHermitian(), MatIsSymmetric(), MatSetOption()
8488: @*/
8489: PetscErrorCode  MatIsStructurallySymmetric(Mat A,PetscBool  *flg)
8490: {

8496:   if (!A->structurally_symmetric_set) {
8497:     if (!A->ops->isstructurallysymmetric) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"Matrix does not support checking for structural symmetric");
8498:     (*A->ops->isstructurallysymmetric)(A,&A->structurally_symmetric);

8500:     A->structurally_symmetric_set = PETSC_TRUE;
8501:   }
8502:   *flg = A->structurally_symmetric;
8503:   return(0);
8504: }

8508: extern PetscErrorCode MatStashGetInfo_Private(MatStash*,PetscInt*,PetscInt*);
8509: /*@
8510:    MatStashGetInfo - Gets how many values are currently in the matrix stash, i.e. need
8511:        to be communicated to other processors during the MatAssemblyBegin/End() process

8513:     Not collective

8515:    Input Parameter:
8516: .   vec - the vector

8518:    Output Parameters:
8519: +   nstash   - the size of the stash
8520: .   reallocs - the number of additional mallocs incurred.
8521: .   bnstash   - the size of the block stash
8522: -   breallocs - the number of additional mallocs incurred.in the block stash

8524:    Level: advanced

8526: .seealso: MatAssemblyBegin(), MatAssemblyEnd(), Mat, MatStashSetInitialSize()

8528: @*/
8529: PetscErrorCode  MatStashGetInfo(Mat mat,PetscInt *nstash,PetscInt *reallocs,PetscInt *bnstash,PetscInt *breallocs)
8530: {

8534:   MatStashGetInfo_Private(&mat->stash,nstash,reallocs);
8535:   MatStashGetInfo_Private(&mat->bstash,bnstash,breallocs);
8536:   return(0);
8537: }

8541: /*@C
8542:    MatCreateVecs - Get vector(s) compatible with the matrix, i.e. with the same
8543:      parallel layout

8545:    Collective on Mat

8547:    Input Parameter:
8548: .  mat - the matrix

8550:    Output Parameter:
8551: +   right - (optional) vector that the matrix can be multiplied against
8552: -   left - (optional) vector that the matrix vector product can be stored in

8554:    Notes:
8555:     The blocksize of the returned vectors is determined by the row and column block sizes set with MatSetBlockSizes() or the single blocksize (same for both) set by MatSetBlockSize().

8557:   Notes: These are new vectors which are not owned by the Mat, they should be destroyed in VecDestroy() when no longer needed

8559:   Level: advanced

8561: .seealso: MatCreate(), VecDestroy()
8562: @*/
8563: PetscErrorCode  MatCreateVecs(Mat mat,Vec *right,Vec *left)
8564: {

8570:   if (mat->ops->getvecs) {
8571:     (*mat->ops->getvecs)(mat,right,left);
8572:   } else {
8573:     PetscInt rbs,cbs;
8574:     MatGetBlockSizes(mat,&rbs,&cbs);
8575:     if (right) {
8576:       if (mat->cmap->n < 0) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"PetscLayout for columns not yet setup");
8577:       VecCreate(PetscObjectComm((PetscObject)mat),right);
8578:       VecSetSizes(*right,mat->cmap->n,PETSC_DETERMINE);
8579:       VecSetBlockSize(*right,cbs);
8580:       VecSetType(*right,VECSTANDARD);
8581:       PetscLayoutReference(mat->cmap,&(*right)->map);
8582:     }
8583:     if (left) {
8584:       if (mat->rmap->n < 0) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"PetscLayout for rows not yet setup");
8585:       VecCreate(PetscObjectComm((PetscObject)mat),left);
8586:       VecSetSizes(*left,mat->rmap->n,PETSC_DETERMINE);
8587:       VecSetBlockSize(*left,rbs);
8588:       VecSetType(*left,VECSTANDARD);
8589:       PetscLayoutReference(mat->rmap,&(*left)->map);
8590:     }
8591:   }
8592:   return(0);
8593: }

8597: /*@C
8598:    MatFactorInfoInitialize - Initializes a MatFactorInfo data structure
8599:      with default values.

8601:    Not Collective

8603:    Input Parameters:
8604: .    info - the MatFactorInfo data structure


8607:    Notes: The solvers are generally used through the KSP and PC objects, for example
8608:           PCLU, PCILU, PCCHOLESKY, PCICC

8610:    Level: developer

8612: .seealso: MatFactorInfo

8614:     Developer Note: fortran interface is not autogenerated as the f90
8615:     interface defintion cannot be generated correctly [due to MatFactorInfo]

8617: @*/

8619: PetscErrorCode  MatFactorInfoInitialize(MatFactorInfo *info)
8620: {

8624:   PetscMemzero(info,sizeof(MatFactorInfo));
8625:   return(0);
8626: }

8630: /*@
8631:    MatPtAP - Creates the matrix product C = P^T * A * P

8633:    Neighbor-wise Collective on Mat

8635:    Input Parameters:
8636: +  A - the matrix
8637: .  P - the projection matrix
8638: .  scall - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX
8639: -  fill - expected fill as ratio of nnz(C)/(nnz(A) + nnz(P))

8641:    Output Parameters:
8642: .  C - the product matrix

8644:    Notes:
8645:    C will be created and must be destroyed by the user with MatDestroy().

8647:    This routine is currently only implemented for pairs of AIJ matrices and classes
8648:    which inherit from AIJ.

8650:    Level: intermediate

8652: .seealso: MatPtAPSymbolic(), MatPtAPNumeric(), MatMatMult(), MatRARt()
8653: @*/
8654: PetscErrorCode  MatPtAP(Mat A,Mat P,MatReuse scall,PetscReal fill,Mat *C)
8655: {
8657:   PetscErrorCode (*fA)(Mat,Mat,MatReuse,PetscReal,Mat*);
8658:   PetscErrorCode (*fP)(Mat,Mat,MatReuse,PetscReal,Mat*);
8659:   PetscErrorCode (*ptap)(Mat,Mat,MatReuse,PetscReal,Mat*)=NULL;
8660:   PetscBool      viatranspose=PETSC_FALSE,viamatmatmatmult=PETSC_FALSE;

8663:   PetscOptionsGetBool(((PetscObject)A)->prefix,"-matptap_viatranspose",&viatranspose,NULL);
8664:   PetscOptionsGetBool(((PetscObject)A)->prefix,"-matptap_viamatmatmatmult",&viamatmatmatmult,NULL);

8668:   MatCheckPreallocated(A,1);
8669:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8670:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8673:   MatCheckPreallocated(P,2);
8674:   if (!P->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8675:   if (P->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");

8677:   if (P->rmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",P->rmap->N,A->cmap->N);
8678:   if (fill < 1.0) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Expected fill=%g must be >= 1.0",(double)fill);

8680:   if (scall == MAT_REUSE_MATRIX) {
8683:     if (viatranspose || viamatmatmatmult) {
8684:       Mat Pt;
8685:       MatTranspose(P,MAT_INITIAL_MATRIX,&Pt);
8686:       if (viamatmatmatmult) {
8687:         MatMatMatMult(Pt,A,P,scall,fill,C);
8688:       } else {
8689:         Mat AP;
8690:         MatMatMult(A,P,MAT_INITIAL_MATRIX,fill,&AP);
8691:         MatMatMult(Pt,AP,scall,fill,C);
8692:         MatDestroy(&AP);
8693:       }
8694:       MatDestroy(&Pt);
8695:     } else {
8696:       PetscLogEventBegin(MAT_PtAP,A,P,0,0);
8697:       PetscLogEventBegin(MAT_PtAPNumeric,A,P,0,0);
8698:       (*(*C)->ops->ptapnumeric)(A,P,*C);
8699:       PetscLogEventEnd(MAT_PtAPNumeric,A,P,0,0);
8700:       PetscLogEventEnd(MAT_PtAP,A,P,0,0);
8701:     }
8702:     return(0);
8703:   }

8705:   if (fill == PETSC_DEFAULT || fill == PETSC_DECIDE) fill = 2.0;
8706:   if (fill < 1.0) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Expected fill=%g must be >= 1.0",(double)fill);

8708:   fA = A->ops->ptap;
8709:   fP = P->ops->ptap;
8710:   if (fP == fA) {
8711:     if (!fA) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"MatPtAP not supported for A of type %s",((PetscObject)A)->type_name);
8712:     ptap = fA;
8713:   } else {
8714:     /* dispatch based on the type of A and P from their PetscObject's PetscFunctionLists. */
8715:     char ptapname[256];
8716:     PetscStrcpy(ptapname,"MatPtAP_");
8717:     PetscStrcat(ptapname,((PetscObject)A)->type_name);
8718:     PetscStrcat(ptapname,"_");
8719:     PetscStrcat(ptapname,((PetscObject)P)->type_name);
8720:     PetscStrcat(ptapname,"_C"); /* e.g., ptapname = "MatPtAP_seqdense_seqaij_C" */
8721:     PetscObjectQueryFunction((PetscObject)P,ptapname,&ptap);
8722:     if (!ptap) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_INCOMP,"MatPtAP requires A, %s, to be compatible with P, %s",((PetscObject)A)->type_name,((PetscObject)P)->type_name);
8723:   }

8725:   if (viatranspose || viamatmatmatmult) {
8726:     Mat Pt;
8727:     MatTranspose(P,MAT_INITIAL_MATRIX,&Pt);
8728:     if (viamatmatmatmult) {
8729:       MatMatMatMult(Pt,A,P,scall,fill,C);
8730:       PetscInfo(*C,"MatPtAP via MatMatMatMult\n");
8731:     } else {
8732:       Mat AP;
8733:       MatMatMult(A,P,MAT_INITIAL_MATRIX,fill,&AP);
8734:       MatMatMult(Pt,AP,scall,fill,C);
8735:       MatDestroy(&AP);
8736:       PetscInfo(*C,"MatPtAP via MatTranspose and MatMatMult\n");
8737:     }
8738:     MatDestroy(&Pt);
8739:   } else {
8740:     PetscLogEventBegin(MAT_PtAP,A,P,0,0);
8741:     (*ptap)(A,P,scall,fill,C);
8742:     PetscLogEventEnd(MAT_PtAP,A,P,0,0);
8743:   }
8744:   return(0);
8745: }

8749: /*@
8750:    MatPtAPNumeric - Computes the matrix product C = P^T * A * P

8752:    Neighbor-wise Collective on Mat

8754:    Input Parameters:
8755: +  A - the matrix
8756: -  P - the projection matrix

8758:    Output Parameters:
8759: .  C - the product matrix

8761:    Notes:
8762:    C must have been created by calling MatPtAPSymbolic and must be destroyed by
8763:    the user using MatDeatroy().

8765:    This routine is currently only implemented for pairs of AIJ matrices and classes
8766:    which inherit from AIJ.  C will be of type MATAIJ.

8768:    Level: intermediate

8770: .seealso: MatPtAP(), MatPtAPSymbolic(), MatMatMultNumeric()
8771: @*/
8772: PetscErrorCode  MatPtAPNumeric(Mat A,Mat P,Mat C)
8773: {

8779:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8780:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8783:   MatCheckPreallocated(P,2);
8784:   if (!P->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8785:   if (P->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8788:   MatCheckPreallocated(C,3);
8789:   if (C->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8790:   if (P->cmap->N!=C->rmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",P->cmap->N,C->rmap->N);
8791:   if (P->rmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",P->rmap->N,A->cmap->N);
8792:   if (A->rmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix 'A' must be square, %D != %D",A->rmap->N,A->cmap->N);
8793:   if (P->cmap->N!=C->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",P->cmap->N,C->cmap->N);
8794:   MatCheckPreallocated(A,1);

8796:   PetscLogEventBegin(MAT_PtAPNumeric,A,P,0,0);
8797:   (*C->ops->ptapnumeric)(A,P,C);
8798:   PetscLogEventEnd(MAT_PtAPNumeric,A,P,0,0);
8799:   return(0);
8800: }

8804: /*@
8805:    MatPtAPSymbolic - Creates the (i,j) structure of the matrix product C = P^T * A * P

8807:    Neighbor-wise Collective on Mat

8809:    Input Parameters:
8810: +  A - the matrix
8811: -  P - the projection matrix

8813:    Output Parameters:
8814: .  C - the (i,j) structure of the product matrix

8816:    Notes:
8817:    C will be created and must be destroyed by the user with MatDestroy().

8819:    This routine is currently only implemented for pairs of SeqAIJ matrices and classes
8820:    which inherit from SeqAIJ.  C will be of type MATSEQAIJ.  The product is computed using
8821:    this (i,j) structure by calling MatPtAPNumeric().

8823:    Level: intermediate

8825: .seealso: MatPtAP(), MatPtAPNumeric(), MatMatMultSymbolic()
8826: @*/
8827: PetscErrorCode  MatPtAPSymbolic(Mat A,Mat P,PetscReal fill,Mat *C)
8828: {

8834:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8835:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8836:   if (fill <1.0) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Expected fill=%g must be >= 1.0",(double)fill);
8839:   MatCheckPreallocated(P,2);
8840:   if (!P->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8841:   if (P->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");

8844:   if (P->rmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",P->rmap->N,A->cmap->N);
8845:   if (A->rmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix 'A' must be square, %D != %D",A->rmap->N,A->cmap->N);
8846:   MatCheckPreallocated(A,1);
8847:   PetscLogEventBegin(MAT_PtAPSymbolic,A,P,0,0);
8848:   (*A->ops->ptapsymbolic)(A,P,fill,C);
8849:   PetscLogEventEnd(MAT_PtAPSymbolic,A,P,0,0);

8851:   /* MatSetBlockSize(*C,A->rmap->bs); NO! this is not always true -ma */
8852:   return(0);
8853: }

8857: /*@
8858:    MatRARt - Creates the matrix product C = R * A * R^T

8860:    Neighbor-wise Collective on Mat

8862:    Input Parameters:
8863: +  A - the matrix
8864: .  R - the projection matrix
8865: .  scall - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX
8866: -  fill - expected fill as ratio of nnz(C)/nnz(A)

8868:    Output Parameters:
8869: .  C - the product matrix

8871:    Notes:
8872:    C will be created and must be destroyed by the user with MatDestroy().

8874:    This routine is currently only implemented for pairs of AIJ matrices and classes
8875:    which inherit from AIJ.

8877:    Level: intermediate

8879: .seealso: MatRARtSymbolic(), MatRARtNumeric(), MatMatMult(), MatPtAP()
8880: @*/
8881: PetscErrorCode  MatRARt(Mat A,Mat R,MatReuse scall,PetscReal fill,Mat *C)
8882: {

8888:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8889:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8892:   MatCheckPreallocated(R,2);
8893:   if (!R->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8894:   if (R->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8896:   if (R->cmap->N!=A->rmap->N) SETERRQ2(PetscObjectComm((PetscObject)R),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",R->cmap->N,A->rmap->N);
8897:   if (fill < 1.0) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Expected fill=%g must be >= 1.0",(double)fill);
8898:   MatCheckPreallocated(A,1);

8900:   if (!A->ops->rart) {
8901:     MatType mattype;
8902:     MatGetType(A,&mattype);
8903:     SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"Matrix of type <%s> does not support RARt",mattype);
8904:   }
8905:   PetscLogEventBegin(MAT_RARt,A,R,0,0);
8906:   (*A->ops->rart)(A,R,scall,fill,C);
8907:   PetscLogEventEnd(MAT_RARt,A,R,0,0);
8908:   return(0);
8909: }

8913: /*@
8914:    MatRARtNumeric - Computes the matrix product C = R * A * R^T

8916:    Neighbor-wise Collective on Mat

8918:    Input Parameters:
8919: +  A - the matrix
8920: -  R - the projection matrix

8922:    Output Parameters:
8923: .  C - the product matrix

8925:    Notes:
8926:    C must have been created by calling MatRARtSymbolic and must be destroyed by
8927:    the user using MatDeatroy().

8929:    This routine is currently only implemented for pairs of AIJ matrices and classes
8930:    which inherit from AIJ.  C will be of type MATAIJ.

8932:    Level: intermediate

8934: .seealso: MatRARt(), MatRARtSymbolic(), MatMatMultNumeric()
8935: @*/
8936: PetscErrorCode  MatRARtNumeric(Mat A,Mat R,Mat C)
8937: {

8943:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8944:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8947:   MatCheckPreallocated(R,2);
8948:   if (!R->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8949:   if (R->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8952:   MatCheckPreallocated(C,3);
8953:   if (C->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8954:   if (R->rmap->N!=C->rmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",R->rmap->N,C->rmap->N);
8955:   if (R->cmap->N!=A->rmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",R->cmap->N,A->rmap->N);
8956:   if (A->rmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix 'A' must be square, %D != %D",A->rmap->N,A->cmap->N);
8957:   if (R->rmap->N!=C->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",R->rmap->N,C->cmap->N);
8958:   MatCheckPreallocated(A,1);

8960:   PetscLogEventBegin(MAT_RARtNumeric,A,R,0,0);
8961:   (*A->ops->rartnumeric)(A,R,C);
8962:   PetscLogEventEnd(MAT_RARtNumeric,A,R,0,0);
8963:   return(0);
8964: }

8968: /*@
8969:    MatRARtSymbolic - Creates the (i,j) structure of the matrix product C = R * A * R^T

8971:    Neighbor-wise Collective on Mat

8973:    Input Parameters:
8974: +  A - the matrix
8975: -  R - the projection matrix

8977:    Output Parameters:
8978: .  C - the (i,j) structure of the product matrix

8980:    Notes:
8981:    C will be created and must be destroyed by the user with MatDestroy().

8983:    This routine is currently only implemented for pairs of SeqAIJ matrices and classes
8984:    which inherit from SeqAIJ.  C will be of type MATSEQAIJ.  The product is computed using
8985:    this (i,j) structure by calling MatRARtNumeric().

8987:    Level: intermediate

8989: .seealso: MatRARt(), MatRARtNumeric(), MatMatMultSymbolic()
8990: @*/
8991: PetscErrorCode  MatRARtSymbolic(Mat A,Mat R,PetscReal fill,Mat *C)
8992: {

8998:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8999:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9000:   if (fill <1.0) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Expected fill=%g must be >= 1.0",(double)fill);
9003:   MatCheckPreallocated(R,2);
9004:   if (!R->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9005:   if (R->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");

9008:   if (R->cmap->N!=A->rmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",R->cmap->N,A->rmap->N);
9009:   if (A->rmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix 'A' must be square, %D != %D",A->rmap->N,A->cmap->N);
9010:   MatCheckPreallocated(A,1);
9011:   PetscLogEventBegin(MAT_RARtSymbolic,A,R,0,0);
9012:   (*A->ops->rartsymbolic)(A,R,fill,C);
9013:   PetscLogEventEnd(MAT_RARtSymbolic,A,R,0,0);

9015:   MatSetBlockSizes(*C,PetscAbs(R->rmap->bs),PetscAbs(R->rmap->bs));
9016:   return(0);
9017: }

9021: /*@
9022:    MatMatMult - Performs Matrix-Matrix Multiplication C=A*B.

9024:    Neighbor-wise Collective on Mat

9026:    Input Parameters:
9027: +  A - the left matrix
9028: .  B - the right matrix
9029: .  scall - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX
9030: -  fill - expected fill as ratio of nnz(C)/(nnz(A) + nnz(B)), use PETSC_DEFAULT if you do not have a good estimate
9031:           if the result is a dense matrix this is irrelevent

9033:    Output Parameters:
9034: .  C - the product matrix

9036:    Notes:
9037:    Unless scall is MAT_REUSE_MATRIX C will be created.

9039:    MAT_REUSE_MATRIX can only be used if the matrices A and B have the same nonzero pattern as in the previous call

9041:    To determine the correct fill value, run with -info and search for the string "Fill ratio" to see the value
9042:    actually needed.

9044:    If you have many matrices with the same non-zero structure to multiply, you
9045:    should either
9046: $   1) use MAT_REUSE_MATRIX in all calls but the first or
9047: $   2) call MatMatMultSymbolic() once and then MatMatMultNumeric() for each product needed
9048:    In the special case where matrix B (and hence C) are dense you can create the correctly sized matrix C yourself and then call this routine
9049:    with MAT_REUSE_MATRIX, rather than first having MatMatMult() create it for you. You can NEVER do this if the matrix C is sparse.

9051:    Level: intermediate

9053: .seealso: MatMatMultSymbolic(), MatMatMultNumeric(), MatTransposeMatMult(),  MatMatTransposeMult(), MatPtAP()
9054: @*/
9055: PetscErrorCode  MatMatMult(Mat A,Mat B,MatReuse scall,PetscReal fill,Mat *C)
9056: {
9058:   PetscErrorCode (*fA)(Mat,Mat,MatReuse,PetscReal,Mat*);
9059:   PetscErrorCode (*fB)(Mat,Mat,MatReuse,PetscReal,Mat*);
9060:   PetscErrorCode (*mult)(Mat,Mat,MatReuse,PetscReal,Mat*)=NULL;

9065:   MatCheckPreallocated(A,1);
9066:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9067:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9070:   MatCheckPreallocated(B,2);
9071:   if (!B->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9072:   if (B->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9074:   if (B->rmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",B->rmap->N,A->cmap->N);
9075:   if (scall == MAT_REUSE_MATRIX) {
9078:     PetscLogEventBegin(MAT_MatMult,A,B,0,0);
9079:     PetscLogEventBegin(MAT_MatMultNumeric,A,B,0,0);
9080:     (*(*C)->ops->matmultnumeric)(A,B,*C);
9081:     PetscLogEventEnd(MAT_MatMultNumeric,A,B,0,0);
9082:     PetscLogEventEnd(MAT_MatMult,A,B,0,0);
9083:     return(0);
9084:   }
9085:   if (fill == PETSC_DEFAULT || fill == PETSC_DECIDE) fill = 2.0;
9086:   if (fill < 1.0) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Expected fill=%g must be >= 1.0",(double)fill);

9088:   fA = A->ops->matmult;
9089:   fB = B->ops->matmult;
9090:   if (fB == fA) {
9091:     if (!fB) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"MatMatMult not supported for B of type %s",((PetscObject)B)->type_name);
9092:     mult = fB;
9093:   } else {
9094:     /* dispatch based on the type of A and B from their PetscObject's PetscFunctionLists. */
9095:     char multname[256];
9096:     PetscStrcpy(multname,"MatMatMult_");
9097:     PetscStrcat(multname,((PetscObject)A)->type_name);
9098:     PetscStrcat(multname,"_");
9099:     PetscStrcat(multname,((PetscObject)B)->type_name);
9100:     PetscStrcat(multname,"_C"); /* e.g., multname = "MatMatMult_seqdense_seqaij_C" */
9101:     PetscObjectQueryFunction((PetscObject)B,multname,&mult);
9102:     if (!mult) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_INCOMP,"MatMatMult requires A, %s, to be compatible with B, %s",((PetscObject)A)->type_name,((PetscObject)B)->type_name);
9103:   }
9104:   PetscLogEventBegin(MAT_MatMult,A,B,0,0);
9105:   (*mult)(A,B,scall,fill,C);
9106:   PetscLogEventEnd(MAT_MatMult,A,B,0,0);
9107:   return(0);
9108: }

9112: /*@
9113:    MatMatMultSymbolic - Performs construction, preallocation, and computes the ij structure
9114:    of the matrix-matrix product C=A*B.  Call this routine before calling MatMatMultNumeric().

9116:    Neighbor-wise Collective on Mat

9118:    Input Parameters:
9119: +  A - the left matrix
9120: .  B - the right matrix
9121: -  fill - expected fill as ratio of nnz(C)/(nnz(A) + nnz(B)), use PETSC_DEFAULT if you do not have a good estimate,
9122:       if C is a dense matrix this is irrelevent

9124:    Output Parameters:
9125: .  C - the product matrix

9127:    Notes:
9128:    Unless scall is MAT_REUSE_MATRIX C will be created.

9130:    To determine the correct fill value, run with -info and search for the string "Fill ratio" to see the value
9131:    actually needed.

9133:    This routine is currently implemented for
9134:     - pairs of AIJ matrices and classes which inherit from AIJ, C will be of type AIJ
9135:     - pairs of AIJ (A) and Dense (B) matrix, C will be of type Dense.
9136:     - pairs of Dense (A) and AIJ (B) matrix, C will be of type Dense.

9138:    Level: intermediate

9140:    Developers Note: There are ways to estimate the number of nonzeros in the resulting product, see for example, http://arxiv.org/abs/1006.4173
9141:      We should incorporate them into PETSc.

9143: .seealso: MatMatMult(), MatMatMultNumeric()
9144: @*/
9145: PetscErrorCode  MatMatMultSymbolic(Mat A,Mat B,PetscReal fill,Mat *C)
9146: {
9148:   PetscErrorCode (*Asymbolic)(Mat,Mat,PetscReal,Mat*);
9149:   PetscErrorCode (*Bsymbolic)(Mat,Mat,PetscReal,Mat*);
9150:   PetscErrorCode (*symbolic)(Mat,Mat,PetscReal,Mat*)=NULL;

9155:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9156:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");

9160:   MatCheckPreallocated(B,2);
9161:   if (!B->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9162:   if (B->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");

9165:   if (B->rmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",B->rmap->N,A->cmap->N);
9166:   if (fill == PETSC_DEFAULT) fill = 2.0;
9167:   if (fill < 1.0) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Expected fill=%g must be > 1.0",(double)fill);
9168:   MatCheckPreallocated(A,1);

9170:   Asymbolic = A->ops->matmultsymbolic;
9171:   Bsymbolic = B->ops->matmultsymbolic;
9172:   if (Asymbolic == Bsymbolic) {
9173:     if (!Bsymbolic) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"C=A*B not implemented for B of type %s",((PetscObject)B)->type_name);
9174:     symbolic = Bsymbolic;
9175:   } else { /* dispatch based on the type of A and B */
9176:     char symbolicname[256];
9177:     PetscStrcpy(symbolicname,"MatMatMultSymbolic_");
9178:     PetscStrcat(symbolicname,((PetscObject)A)->type_name);
9179:     PetscStrcat(symbolicname,"_");
9180:     PetscStrcat(symbolicname,((PetscObject)B)->type_name);
9181:     PetscStrcat(symbolicname,"_C");
9182:     PetscObjectQueryFunction((PetscObject)B,symbolicname,&symbolic);
9183:     if (!symbolic) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_INCOMP,"MatMatMultSymbolic requires A, %s, to be compatible with B, %s",((PetscObject)A)->type_name,((PetscObject)B)->type_name);
9184:   }
9185:   PetscLogEventBegin(MAT_MatMultSymbolic,A,B,0,0);
9186:   (*symbolic)(A,B,fill,C);
9187:   PetscLogEventEnd(MAT_MatMultSymbolic,A,B,0,0);
9188:   return(0);
9189: }

9193: /*@
9194:    MatMatMultNumeric - Performs the numeric matrix-matrix product.
9195:    Call this routine after first calling MatMatMultSymbolic().

9197:    Neighbor-wise Collective on Mat

9199:    Input Parameters:
9200: +  A - the left matrix
9201: -  B - the right matrix

9203:    Output Parameters:
9204: .  C - the product matrix, which was created by from MatMatMultSymbolic() or a call to MatMatMult().

9206:    Notes:
9207:    C must have been created with MatMatMultSymbolic().

9209:    This routine is currently implemented for
9210:     - pairs of AIJ matrices and classes which inherit from AIJ, C will be of type MATAIJ.
9211:     - pairs of AIJ (A) and Dense (B) matrix, C will be of type Dense.
9212:     - pairs of Dense (A) and AIJ (B) matrix, C will be of type Dense.

9214:    Level: intermediate

9216: .seealso: MatMatMult(), MatMatMultSymbolic()
9217: @*/
9218: PetscErrorCode  MatMatMultNumeric(Mat A,Mat B,Mat C)
9219: {

9223:   MatMatMult(A,B,MAT_REUSE_MATRIX,0.0,&C);
9224:   return(0);
9225: }

9229: /*@
9230:    MatMatTransposeMult - Performs Matrix-Matrix Multiplication C=A*B^T.

9232:    Neighbor-wise Collective on Mat

9234:    Input Parameters:
9235: +  A - the left matrix
9236: .  B - the right matrix
9237: .  scall - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX
9238: -  fill - expected fill as ratio of nnz(C)/(nnz(A) + nnz(B)), use PETSC_DEFAULT if not known

9240:    Output Parameters:
9241: .  C - the product matrix

9243:    Notes:
9244:    C will be created if MAT_INITIAL_MATRIX and must be destroyed by the user with MatDestroy().

9246:    MAT_REUSE_MATRIX can only be used if the matrices A and B have the same nonzero pattern as in the previous call

9248:   To determine the correct fill value, run with -info and search for the string "Fill ratio" to see the value
9249:    actually needed.

9251:    This routine is currently only implemented for pairs of SeqAIJ matrices.  C will be of type MATSEQAIJ.

9253:    Level: intermediate

9255: .seealso: MatMatTransposeMultSymbolic(), MatMatTransposeMultNumeric(), MatMatMult(), MatTransposeMatMult() MatPtAP()
9256: @*/
9257: PetscErrorCode  MatMatTransposeMult(Mat A,Mat B,MatReuse scall,PetscReal fill,Mat *C)
9258: {
9260:   PetscErrorCode (*fA)(Mat,Mat,MatReuse,PetscReal,Mat*);
9261:   PetscErrorCode (*fB)(Mat,Mat,MatReuse,PetscReal,Mat*);

9266:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9267:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9270:   MatCheckPreallocated(B,2);
9271:   if (!B->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9272:   if (B->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9274:   if (B->cmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, AN %D != BN %D",A->cmap->N,B->cmap->N);
9275:   if (fill == PETSC_DEFAULT || fill == PETSC_DECIDE) fill = 2.0;
9276:   if (fill < 1.0) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Expected fill=%g must be > 1.0",(double)fill);
9277:   MatCheckPreallocated(A,1);

9279:   fA = A->ops->mattransposemult;
9280:   if (!fA) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"MatMatTransposeMult not supported for A of type %s",((PetscObject)A)->type_name);
9281:   fB = B->ops->mattransposemult;
9282:   if (!fB) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"MatMatTransposeMult not supported for B of type %s",((PetscObject)B)->type_name);
9283:   if (fB!=fA) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_INCOMP,"MatMatTransposeMult requires A, %s, to be compatible with B, %s",((PetscObject)A)->type_name,((PetscObject)B)->type_name);

9285:   PetscLogEventBegin(MAT_MatTransposeMult,A,B,0,0);
9286:   if (scall == MAT_INITIAL_MATRIX) {
9287:     PetscLogEventBegin(MAT_MatTransposeMultSymbolic,A,B,0,0);
9288:     (*A->ops->mattransposemultsymbolic)(A,B,fill,C);
9289:     PetscLogEventEnd(MAT_MatTransposeMultSymbolic,A,B,0,0);
9290:   }
9291:   PetscLogEventBegin(MAT_MatTransposeMultNumeric,A,B,0,0);
9292:   (*A->ops->mattransposemultnumeric)(A,B,*C);
9293:   PetscLogEventEnd(MAT_MatTransposeMultNumeric,A,B,0,0);
9294:   PetscLogEventEnd(MAT_MatTransposeMult,A,B,0,0);
9295:   return(0);
9296: }

9300: /*@
9301:    MatTransposeMatMult - Performs Matrix-Matrix Multiplication C=A^T*B.

9303:    Neighbor-wise Collective on Mat

9305:    Input Parameters:
9306: +  A - the left matrix
9307: .  B - the right matrix
9308: .  scall - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX
9309: -  fill - expected fill as ratio of nnz(C)/(nnz(A) + nnz(B)), use PETSC_DEFAULT if not known

9311:    Output Parameters:
9312: .  C - the product matrix

9314:    Notes:
9315:    C will be created if MAT_INITIAL_MATRIX and must be destroyed by the user with MatDestroy().

9317:    MAT_REUSE_MATRIX can only be used if the matrices A and B have the same nonzero pattern as in the previous call

9319:   To determine the correct fill value, run with -info and search for the string "Fill ratio" to see the value
9320:    actually needed.

9322:    This routine is currently implemented for pairs of AIJ matrices and pairs of SeqDense matrices and classes
9323:    which inherit from SeqAIJ.  C will be of same type as the input matrices.

9325:    Level: intermediate

9327: .seealso: MatTransposeMatMultSymbolic(), MatTransposeMatMultNumeric(), MatMatMult(), MatMatTransposeMult(), MatPtAP()
9328: @*/
9329: PetscErrorCode  MatTransposeMatMult(Mat A,Mat B,MatReuse scall,PetscReal fill,Mat *C)
9330: {
9332:   PetscErrorCode (*fA)(Mat,Mat,MatReuse,PetscReal,Mat*);
9333:   PetscErrorCode (*fB)(Mat,Mat,MatReuse,PetscReal,Mat*);
9334:   PetscErrorCode (*transposematmult)(Mat,Mat,MatReuse,PetscReal,Mat*) = NULL;

9339:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9340:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9343:   MatCheckPreallocated(B,2);
9344:   if (!B->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9345:   if (B->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9347:   if (B->rmap->N!=A->rmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",B->rmap->N,A->rmap->N);
9348:   if (fill == PETSC_DEFAULT || fill == PETSC_DECIDE) fill = 2.0;
9349:   if (fill < 1.0) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Expected fill=%g must be > 1.0",(double)fill);
9350:   MatCheckPreallocated(A,1);

9352:   fA = A->ops->transposematmult;
9353:   fB = B->ops->transposematmult;
9354:   if (fB==fA) {
9355:     if (!fA) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"MatTransposeMatMult not supported for A of type %s",((PetscObject)A)->type_name);
9356:     transposematmult = fA;
9357:   } else {
9358:     /* dispatch based on the type of A and B from their PetscObject's PetscFunctionLists. */
9359:     char multname[256];
9360:     PetscStrcpy(multname,"MatTransposeMatMult_");
9361:     PetscStrcat(multname,((PetscObject)A)->type_name);
9362:     PetscStrcat(multname,"_");
9363:     PetscStrcat(multname,((PetscObject)B)->type_name);
9364:     PetscStrcat(multname,"_C"); /* e.g., multname = "MatMatMult_seqdense_seqaij_C" */
9365:     PetscObjectQueryFunction((PetscObject)B,multname,&transposematmult);
9366:     if (!transposematmult) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_INCOMP,"MatTransposeMatMult requires A, %s, to be compatible with B, %s",((PetscObject)A)->type_name,((PetscObject)B)->type_name);
9367:   }
9368:   PetscLogEventBegin(MAT_TransposeMatMult,A,B,0,0);
9369:   (*transposematmult)(A,B,scall,fill,C);
9370:   PetscLogEventEnd(MAT_TransposeMatMult,A,B,0,0);
9371:   return(0);
9372: }

9376: /*@
9377:    MatMatMatMult - Performs Matrix-Matrix-Matrix Multiplication D=A*B*C.

9379:    Neighbor-wise Collective on Mat

9381:    Input Parameters:
9382: +  A - the left matrix
9383: .  B - the middle matrix
9384: .  C - the right matrix
9385: .  scall - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX
9386: -  fill - expected fill as ratio of nnz(D)/(nnz(A) + nnz(B)+nnz(C)), use PETSC_DEFAULT if you do not have a good estimate
9387:           if the result is a dense matrix this is irrelevent

9389:    Output Parameters:
9390: .  D - the product matrix

9392:    Notes:
9393:    Unless scall is MAT_REUSE_MATRIX D will be created.

9395:    MAT_REUSE_MATRIX can only be used if the matrices A, B and C have the same nonzero pattern as in the previous call

9397:    To determine the correct fill value, run with -info and search for the string "Fill ratio" to see the value
9398:    actually needed.

9400:    If you have many matrices with the same non-zero structure to multiply, you
9401:    should either
9402: $   1) use MAT_REUSE_MATRIX in all calls but the first or
9403: $   2) call MatMatMatMultSymbolic() once and then MatMatMatMultNumeric() for each product needed

9405:    Level: intermediate

9407: .seealso: MatMatMult, MatPtAP()
9408: @*/
9409: PetscErrorCode  MatMatMatMult(Mat A,Mat B,Mat C,MatReuse scall,PetscReal fill,Mat *D)
9410: {
9412:   PetscErrorCode (*fA)(Mat,Mat,Mat,MatReuse,PetscReal,Mat*);
9413:   PetscErrorCode (*fB)(Mat,Mat,Mat,MatReuse,PetscReal,Mat*);
9414:   PetscErrorCode (*fC)(Mat,Mat,Mat,MatReuse,PetscReal,Mat*);
9415:   PetscErrorCode (*mult)(Mat,Mat,Mat,MatReuse,PetscReal,Mat*)=NULL;

9420:   MatCheckPreallocated(A,1);
9421:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9422:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9425:   MatCheckPreallocated(B,2);
9426:   if (!B->assembled) SETERRQ(PetscObjectComm((PetscObject)B),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9427:   if (B->factortype) SETERRQ(PetscObjectComm((PetscObject)B),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9430:   MatCheckPreallocated(C,3);
9431:   if (!C->assembled) SETERRQ(PetscObjectComm((PetscObject)C),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9432:   if (C->factortype) SETERRQ(PetscObjectComm((PetscObject)C),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9433:   if (B->rmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)B),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",B->rmap->N,A->cmap->N);
9434:   if (C->rmap->N!=B->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)C),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",C->rmap->N,B->cmap->N);
9435:   if (scall == MAT_REUSE_MATRIX) {
9438:     PetscLogEventBegin(MAT_MatMatMult,A,B,0,0);
9439:     (*(*D)->ops->matmatmult)(A,B,C,scall,fill,D);
9440:     PetscLogEventEnd(MAT_MatMatMult,A,B,0,0);
9441:     return(0);
9442:   }
9443:   if (fill == PETSC_DEFAULT || fill == PETSC_DECIDE) fill = 2.0;
9444:   if (fill < 1.0) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Expected fill=%g must be >= 1.0",(double)fill);

9446:   fA = A->ops->matmatmult;
9447:   fB = B->ops->matmatmult;
9448:   fC = C->ops->matmatmult;
9449:   if (fA == fB && fA == fC) {
9450:     if (!fA) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"MatMatMatMult not supported for A of type %s",((PetscObject)A)->type_name);
9451:     mult = fA;
9452:   } else {
9453:     /* dispatch based on the type of A, B and C from their PetscObject's PetscFunctionLists. */
9454:     char multname[256];
9455:     PetscStrcpy(multname,"MatMatMatMult_");
9456:     PetscStrcat(multname,((PetscObject)A)->type_name);
9457:     PetscStrcat(multname,"_");
9458:     PetscStrcat(multname,((PetscObject)B)->type_name);
9459:     PetscStrcat(multname,"_");
9460:     PetscStrcat(multname,((PetscObject)C)->type_name);
9461:     PetscStrcat(multname,"_C");
9462:     PetscObjectQueryFunction((PetscObject)B,multname,&mult);
9463:     if (!mult) SETERRQ3(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_INCOMP,"MatMatMatMult requires A, %s, to be compatible with B, %s, C, %s",((PetscObject)A)->type_name,((PetscObject)B)->type_name,((PetscObject)C)->type_name);
9464:   }
9465:   PetscLogEventBegin(MAT_MatMatMult,A,B,0,0);
9466:   (*mult)(A,B,C,scall,fill,D);
9467:   PetscLogEventEnd(MAT_MatMatMult,A,B,0,0);
9468:   return(0);
9469: }

9473: /*@C
9474:    MatCreateRedundantMatrix - Create redundant matrices and put them into processors of subcommunicators.

9476:    Collective on Mat

9478:    Input Parameters:
9479: +  mat - the matrix
9480: .  nsubcomm - the number of subcommunicators (= number of redundant parallel or sequential matrices)
9481: .  subcomm - MPI communicator split from the communicator where mat resides in (or MPI_COMM_NULL if nsubcomm is used)
9482: -  reuse - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX

9484:    Output Parameter:
9485: .  matredundant - redundant matrix

9487:    Notes:
9488:    MAT_REUSE_MATRIX can only be used when the nonzero structure of the
9489:    original matrix has not changed from that last call to MatCreateRedundantMatrix().

9491:    This routine creates the duplicated matrices in subcommunicators; you should NOT create them before
9492:    calling it.

9494:    Level: advanced

9496:    Concepts: subcommunicator
9497:    Concepts: duplicate matrix

9499: .seealso: MatDestroy()
9500: @*/
9501: PetscErrorCode MatCreateRedundantMatrix(Mat mat,PetscInt nsubcomm,MPI_Comm subcomm,MatReuse reuse,Mat *matredundant)
9502: {
9504:   MPI_Comm       comm;
9505:   PetscMPIInt    size;
9506:   PetscInt       mloc_sub,rstart,rend,M=mat->rmap->N,N=mat->cmap->N,bs=mat->rmap->bs;
9507:   Mat_Redundant  *redund=NULL;
9508:   PetscSubcomm   psubcomm=NULL;
9509:   MPI_Comm       subcomm_in=subcomm;
9510:   Mat            *matseq;
9511:   IS             isrow,iscol;
9512:   PetscBool      newsubcomm=PETSC_FALSE;

9515:   MPI_Comm_size(PetscObjectComm((PetscObject)mat),&size);
9516:   if (size == 1 || nsubcomm == 1) {
9517:     if (reuse == MAT_INITIAL_MATRIX) {
9518:       MatDuplicate(mat,MAT_COPY_VALUES,matredundant);
9519:     } else {
9520:       MatCopy(mat,*matredundant,SAME_NONZERO_PATTERN);
9521:     }
9522:     return(0);
9523:   }

9526:   if (nsubcomm && reuse == MAT_REUSE_MATRIX) {
9529:   }
9530:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9531:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9532:   MatCheckPreallocated(mat,1);

9534:   PetscLogEventBegin(MAT_RedundantMat,mat,0,0,0);
9535:   if (subcomm_in == MPI_COMM_NULL && reuse == MAT_INITIAL_MATRIX) { /* get subcomm if user does not provide subcomm */
9536:     /* create psubcomm, then get subcomm */
9537:     PetscObjectGetComm((PetscObject)mat,&comm);
9538:     MPI_Comm_size(comm,&size);
9539:     if (nsubcomm < 1 || nsubcomm > size) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"nsubcomm must between 1 and %D",size);

9541:     PetscSubcommCreate(comm,&psubcomm);
9542:     PetscSubcommSetNumber(psubcomm,nsubcomm);
9543:     PetscSubcommSetType(psubcomm,PETSC_SUBCOMM_CONTIGUOUS);
9544:     PetscSubcommSetFromOptions(psubcomm);
9545:     PetscCommDuplicate(PetscSubcommChild(psubcomm),&subcomm,NULL);
9546:     newsubcomm = PETSC_TRUE;
9547:     PetscSubcommDestroy(&psubcomm);
9548:   }

9550:   /* get isrow, iscol and a local sequential matrix matseq[0] */
9551:   if (reuse == MAT_INITIAL_MATRIX) {
9552:     mloc_sub = PETSC_DECIDE;
9553:     if (bs < 1) {
9554:       PetscSplitOwnership(subcomm,&mloc_sub,&M);
9555:     } else {
9556:       PetscSplitOwnershipBlock(subcomm,bs,&mloc_sub,&M);
9557:     }
9558:     MPI_Scan(&mloc_sub,&rend,1,MPIU_INT,MPI_SUM,subcomm);
9559:     rstart = rend - mloc_sub;
9560:     ISCreateStride(PETSC_COMM_SELF,mloc_sub,rstart,1,&isrow);
9561:     ISCreateStride(PETSC_COMM_SELF,N,0,1,&iscol);
9562:   } else { /* reuse == MAT_REUSE_MATRIX */
9563:     /* retrieve subcomm */
9564:     PetscObjectGetComm((PetscObject)(*matredundant),&subcomm);
9565:     redund = (*matredundant)->redundant;
9566:     isrow  = redund->isrow;
9567:     iscol  = redund->iscol;
9568:     matseq = redund->matseq;
9569:   }
9570:   MatGetSubMatrices(mat,1,&isrow,&iscol,reuse,&matseq);

9572:   /* get matredundant over subcomm */
9573:   if (reuse == MAT_INITIAL_MATRIX) {
9574:     MatCreateMPIMatConcatenateSeqMat(subcomm,matseq[0],mloc_sub,reuse,matredundant);

9576:     /* create a supporting struct and attach it to C for reuse */
9577:     PetscNewLog(*matredundant,&redund);
9578:     (*matredundant)->redundant = redund;
9579:     redund->isrow              = isrow;
9580:     redund->iscol              = iscol;
9581:     redund->matseq             = matseq;
9582:     if (newsubcomm) {
9583:       redund->subcomm          = subcomm;
9584:     } else {
9585:       redund->subcomm          = MPI_COMM_NULL;
9586:     }
9587:   } else {
9588:     MatCreateMPIMatConcatenateSeqMat(subcomm,matseq[0],PETSC_DECIDE,reuse,matredundant);
9589:   }
9590:   PetscLogEventEnd(MAT_RedundantMat,mat,0,0,0);
9591:   return(0);
9592: }

9596: /*@C
9597:    MatGetMultiProcBlock - Create multiple [bjacobi] 'parallel submatrices' from
9598:    a given 'mat' object. Each submatrix can span multiple procs.

9600:    Collective on Mat

9602:    Input Parameters:
9603: +  mat - the matrix
9604: .  subcomm - the subcommunicator obtained by com_split(comm)
9605: -  scall - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX

9607:    Output Parameter:
9608: .  subMat - 'parallel submatrices each spans a given subcomm

9610:   Notes:
9611:   The submatrix partition across processors is dictated by 'subComm' a
9612:   communicator obtained by com_split(comm). The comm_split
9613:   is not restriced to be grouped with consecutive original ranks.

9615:   Due the comm_split() usage, the parallel layout of the submatrices
9616:   map directly to the layout of the original matrix [wrt the local
9617:   row,col partitioning]. So the original 'DiagonalMat' naturally maps
9618:   into the 'DiagonalMat' of the subMat, hence it is used directly from
9619:   the subMat. However the offDiagMat looses some columns - and this is
9620:   reconstructed with MatSetValues()

9622:   Level: advanced

9624:   Concepts: subcommunicator
9625:   Concepts: submatrices

9627: .seealso: MatGetSubMatrices()
9628: @*/
9629: PetscErrorCode   MatGetMultiProcBlock(Mat mat, MPI_Comm subComm, MatReuse scall,Mat *subMat)
9630: {
9632:   PetscMPIInt    commsize,subCommSize;

9635:   MPI_Comm_size(PetscObjectComm((PetscObject)mat),&commsize);
9636:   MPI_Comm_size(subComm,&subCommSize);
9637:   if (subCommSize > commsize) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_OUTOFRANGE,"CommSize %D < SubCommZize %D",commsize,subCommSize);

9639:   PetscLogEventBegin(MAT_GetMultiProcBlock,mat,0,0,0);
9640:   (*mat->ops->getmultiprocblock)(mat,subComm,scall,subMat);
9641:   PetscLogEventEnd(MAT_GetMultiProcBlock,mat,0,0,0);
9642:   return(0);
9643: }

9647: /*@
9648:    MatGetLocalSubMatrix - Gets a reference to a submatrix specified in local numbering

9650:    Not Collective

9652:    Input Arguments:
9653:    mat - matrix to extract local submatrix from
9654:    isrow - local row indices for submatrix
9655:    iscol - local column indices for submatrix

9657:    Output Arguments:
9658:    submat - the submatrix

9660:    Level: intermediate

9662:    Notes:
9663:    The submat should be returned with MatRestoreLocalSubMatrix().

9665:    Depending on the format of mat, the returned submat may not implement MatMult().  Its communicator may be
9666:    the same as mat, it may be PETSC_COMM_SELF, or some other subcomm of mat's.

9668:    The submat always implements MatSetValuesLocal().  If isrow and iscol have the same block size, then
9669:    MatSetValuesBlockedLocal() will also be implemented.

9671: .seealso: MatRestoreLocalSubMatrix(), MatCreateLocalRef()
9672: @*/
9673: PetscErrorCode  MatGetLocalSubMatrix(Mat mat,IS isrow,IS iscol,Mat *submat)
9674: {


9684:   if (mat->ops->getlocalsubmatrix) {
9685:     (*mat->ops->getlocalsubmatrix)(mat,isrow,iscol,submat);
9686:   } else {
9687:     MatCreateLocalRef(mat,isrow,iscol,submat);
9688:   }
9689:   return(0);
9690: }

9694: /*@
9695:    MatRestoreLocalSubMatrix - Restores a reference to a submatrix specified in local numbering

9697:    Not Collective

9699:    Input Arguments:
9700:    mat - matrix to extract local submatrix from
9701:    isrow - local row indices for submatrix
9702:    iscol - local column indices for submatrix
9703:    submat - the submatrix

9705:    Level: intermediate

9707: .seealso: MatGetLocalSubMatrix()
9708: @*/
9709: PetscErrorCode  MatRestoreLocalSubMatrix(Mat mat,IS isrow,IS iscol,Mat *submat)
9710: {

9719:   if (*submat) {
9721:   }

9723:   if (mat->ops->restorelocalsubmatrix) {
9724:     (*mat->ops->restorelocalsubmatrix)(mat,isrow,iscol,submat);
9725:   } else {
9726:     MatDestroy(submat);
9727:   }
9728:   *submat = NULL;
9729:   return(0);
9730: }

9732: /* --------------------------------------------------------*/
9735: /*@
9736:    MatFindZeroDiagonals - Finds all the rows of a matrix that have zero or no entry in the matrix

9738:    Collective on Mat

9740:    Input Parameter:
9741: .  mat - the matrix

9743:    Output Parameter:
9744: .  is - if any rows have zero diagonals this contains the list of them

9746:    Level: developer

9748:    Concepts: matrix-vector product

9750: .seealso: MatMultTranspose(), MatMultAdd(), MatMultTransposeAdd()
9751: @*/
9752: PetscErrorCode  MatFindZeroDiagonals(Mat mat,IS *is)
9753: {

9759:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9760:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");

9762:   if (!mat->ops->findzerodiagonals) {
9763:     Vec                diag;
9764:     const PetscScalar *a;
9765:     PetscInt          *rows;
9766:     PetscInt           rStart, rEnd, r, nrow = 0;

9768:     MatCreateVecs(mat, &diag, NULL);
9769:     MatGetDiagonal(mat, diag);
9770:     MatGetOwnershipRange(mat, &rStart, &rEnd);
9771:     VecGetArrayRead(diag, &a);
9772:     for (r = 0; r < rEnd-rStart; ++r) if (a[r] == 0.0) ++nrow;
9773:     PetscMalloc1(nrow, &rows);
9774:     nrow = 0;
9775:     for (r = 0; r < rEnd-rStart; ++r) if (a[r] == 0.0) rows[nrow++] = r+rStart;
9776:     VecRestoreArrayRead(diag, &a);
9777:     VecDestroy(&diag);
9778:     ISCreateGeneral(PetscObjectComm((PetscObject) mat), nrow, rows, PETSC_OWN_POINTER, is);
9779:   } else {
9780:     (*mat->ops->findzerodiagonals)(mat, is);
9781:   }
9782:   return(0);
9783: }

9787: /*@
9788:    MatFindOffBlockDiagonalEntries - Finds all the rows of a matrix that have entries outside of the main diagonal block (defined by the matrix block size)

9790:    Collective on Mat

9792:    Input Parameter:
9793: .  mat - the matrix

9795:    Output Parameter:
9796: .  is - contains the list of rows with off block diagonal entries

9798:    Level: developer

9800:    Concepts: matrix-vector product

9802: .seealso: MatMultTranspose(), MatMultAdd(), MatMultTransposeAdd()
9803: @*/
9804: PetscErrorCode  MatFindOffBlockDiagonalEntries(Mat mat,IS *is)
9805: {

9811:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9812:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");

9814:   if (!mat->ops->findoffblockdiagonalentries) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"This matrix type does not have a find off block diagonal entries defined");
9815:   (*mat->ops->findoffblockdiagonalentries)(mat,is);
9816:   return(0);
9817: }

9821: /*@C
9822:   MatInvertBlockDiagonal - Inverts the block diagonal entries.

9824:   Collective on Mat

9826:   Input Parameters:
9827: . mat - the matrix

9829:   Output Parameters:
9830: . values - the block inverses in column major order (FORTRAN-like)

9832:    Note:
9833:    This routine is not available from Fortran.

9835:   Level: advanced
9836: @*/
9837: PetscErrorCode MatInvertBlockDiagonal(Mat mat,const PetscScalar **values)
9838: {

9843:   if (!mat->assembled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9844:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9845:   if (!mat->ops->invertblockdiagonal) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Not supported");
9846:   (*mat->ops->invertblockdiagonal)(mat,values);
9847:   return(0);
9848: }

9852: