Fault Tolerance Techniques for High-End
Computing Systems

Darius Buntinas
Mathematics and Computer Science Division
Argonne National Laboratory

é,«,\ U.S. DEPARTMENT OF
.9/ ENERGY

Hardware Resilience

= Processor
— Add ECC to cache and registers
— Parity checks to ALUs
— Reissue instructions on error

— Redundant execution

= Memory
— Parity and ECC

= Network

— CRC
e End-to-end or per-hop
e Memory-to-memory

— Automatic Path Migration

= Storage
— RAID

Software Resilience

= System-level checkpointing
= Application-based fault-tolerance

= Fault-tolerance in MPI

System-Level Checkpointing

Transparent to application

Checkpointer takes snapshot of process state
— OS-based or user-level

Communication library must ensure global state is consistent
— Flush channels or log messages

For scalability we need to reduce size of rollback set

— Detect clustering in application communication
— Use coordinated checkpointing within cluster
— Message logging between clusters

Application-Based Fault-Tolerance

= Store and compute data redundantly

— D,;+D,+..+D_ = E (n processes have D,...D, + redundant process has E)
= |f process i fails, recompute lost data

— D,=E—(D;+..D, ;+D,,+..D,)

— But that requires stopping to collect all of the data
= What if we continued by substituting E for D,

— Compensated for after computation

Fault-Tolerance in MPI

= Consider only failed processes
— Not things like network partitioning

= [ssues to consider after a process fails
— Collectives
e Must not hang as a result of a failure
e How to perform a collective with failed processes
— Wildcard receives: MPI_ANY_SOURCE

e What if the failed process was the one from which you’re expecting the
message?

— RMA
e Ops need to be low latency
- 1/0
e What is the state of the file when a process dies?
— Libraries
e |s it safe to call into a library after a failure?
e |f some (live) process doesn’t or can’t call into library, you might deadlock
— Replacing a failed process

Collectives - Can’t hang after failure

= |mmediate neighbors of failed process can detect a
communication failure

— Other processes may detect that a proc has failed,
but may not know that the proc was part of the é

collective

= E.g., MPl Bcast

— If Process 2 fails, and 3 returns with an error
* Procs 4 and 5 will hang waiting for messages from 3

= A solution é
— Continue communication pattern, but indicate that
failure occurred upstream
e How to indicate a failure in a message?

Collectives - Repair after failure

= After a failure, communication pattern may need to be

changed =

= Needs to be done in a coordinated f‘\
manner
— What if Proc 1 changes pattern but not 3? M

= Use distributed agreement to make sure all
processes agree on the same set of live processes

Collectives in a Loop

for (...) {
| err = MPl_Bcast(...)
= Canresultinahang if (err) break;
— Not every process will detect
the failure }

= QOption 1: Keep going through the loop after an error
— Waste of cycles
— What data do you send?

= Option 2: Check whether everyone succeeded after every
bcast
— Use MPI_Comm_agreement()
— High overhead for FT agreement

— Check every X iterations? Still adds overhead in error-free case

Revoking a Communicator ¢, ()1
err = MPl_Bcast(...)
= QOption 3: “Kill” the com- if (err) { cal):
municator after detecting a MPI_Comm_revoke();
failure break;
— MPI_Comm_revoke() is not }
collective

— (Eventually) any operation by
any process on that comm results in an error

= Well, almost any operation

= MPI_Comm_shrink(oldcomm, newcomm)
— Creates a new communicator from the old one omitting failed procs

10

MPI_ANY_SOURCE Receives

= Example
— Multiple server processes and multiple client processes
— Servers do blocking ANY_SOURCE receives waiting for request from any client
— If every client fails, all servers could hang in blocking receive

= Possible solutions

— Cancel every ANY_SOURCE when a process fails
e Processes will need to repost receives

e May change order of posted ANY_SOURCE and “named” receives

— Cancel only blocking AS receives and return from MPI_Wait* calls but leave
nonblocking AS receives as “pending”

e User can cancel nonblocking AS receives if appropriate
e But now we treat blocking differently from nonblocking

= Race condition

— (1) Check that clients are alive; (2) client fails; (3) post ANY_SOURCE receive
— Need a mechanism to “acknowledge” failure

11

RMA

= RMA operations need to be low latency

= Failure detection/reporting should be handled at the end of
an epoch
— Not during puts, gets, etc.

= Locks may need to be restored after failure

= \What is the state of a window after a failure?

— Can we be sure that data not targeted by failed processes is
uncorrupted?

12

MPI-1/0

= Collective file operations
— Similar issues as collective communications
— How much of the operation completed before the failure?
e Operations are not atomic
= What can be known about the state of the file after a failure?
— Currently, after a failure, the state of the file pointer is undefined

13

Process Failures and Libraries

= |f a process detects a failure, is it safe to jump out of the
normal flow of execution?
— E.g., call MPI_Comm_revoke() and break the loop

= What if that loop calls other libraries?
— What if those libraries call collectives?

— Can’t revoke another library’s communicator

= Should we call MPI_Comm_agreement() before every library
call?

14

Respawn Failed Process

= E.g., process 3 fails; spawn a new process, and give it rank of 3
— Not restarting from a checkpoint
— New process starts by calling MPI_Init()

= This works great for MPI_COMM_WORLD

— But failed process was probably part of
other communicators

= How to tell the process it was part of other
communicators?

= How to distinguish one communicator from another?

— Communicators are initially distinguished by the order in which they
were created

— Libraries might have created their own communicators

15

Writing Fault Tolerant Applications

= How should people write FT applications?
— ABFT
— Master-worker
— Ad-hoc

= How can we compose FT libraries?
— BSP-style: Periodically sync and check for failures
e Requires synchronization
* Processes must continue to execute until sync point
— Is there a missing feature?
e No (very low) non-fault overhead
e Easy for app writers to understand and use

e Like C++ exceptions
— Don’t need to check for error return from every function

16

Questions

17

