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GPU-Based Supercomputers

SUPERCOMPUTER SITES

Rank Site Computer/Year Vendor Cores Rmax Rpeak Power
RIKEN Advanced Institute for K computer, SPARC64 VllIfx 2.0GHz,
1 Computational Science (AICS) Tofu interconnect / 2011 705024 10510.00 11280.38 126599
Japan Fujitsu
National Supercomputing Center in NUDT YH MPP, Xeon X5670 6C 2.93
2 Tianjin GHz, NVIDIA 2050 / 2010 186368 2566.00 4701.00 4040.0
China NUDT
DOE/SC/Oak Ridge National Cray XT5-HE Opteron 6-core 2.6 GHz /
3 Laboratory 2009 224162 1759.00 2331.00 6950.0
United States Cray Inc.
/ National Supercomputing Centre in Qg;?énggg %g%OHgleiggnSiggmmdégon \
4 Shenzhen (NSCS) NVIDIA 2050 / 2010‘ ’ 120640 1271.00 298430 25800
China .
Dawning
GSIC Center, Tokyo Institute of HP ProLiant SL390s G7 Xeon 6C X5670,
5 Technology Nvidia GPU, Linux/Windows / 2010 73278 1192.00 228763 13986
\_ Japan NEC/HP




GPU-Accelerated High Performance Computing

= GPUs are general purpose, highly CPU 0 —
PCle

parallel processors - 0 . .
— High FLOPs/Watt and FLOPs/$ ; Z e (B 1|2

— Unit of execution Kernel -
— Separate memory subsystem CPU 1 . E (E,E : g
— Prog. Models: CUDA, OpenCL, ... < 2 — "
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= (Clusters with GPUs are becoming = >

common
— Multiple GPUs per node
— Nonuniform node architecture
— Node topology plays role in performance

= New programmability and performance
challenges for programming models and
runtime systems




Programmability and Performance

1. MPI-ACC (ANL, NCSU, VT)
— Message Passing Interface (MPI) is most popular parallel prog. model
— Integrate awareness of accelerator memory in MPICH2
— Productivity and performance benefits

2. Virtual OpenCL (ANL, VT, SIAT CAS)
— OpenCL implementation allows program to use remote accelerators
— One-to-many model, better resource usage, load balancing, FT, ...

3. Scioto-ACC (ANL, OSU, PNNL)

— Task parallel programming model, scalable runtime system
— Coscheduling CPU and GPU, automatic data movement



Current MPI+GPU Programming

double *dev_buf, xhost buf;
cudaMalloc (&dev_buf, size);
cudaMallocHost (&host_buf, size);

if (my_rank == sender) { /* sender */
comPutation_on_GPU(dev_buf);

cudaMemcpy (host_buf, dev_buf, size, ...);

MPI Send(host_buf, size, ...);
} else { /* receiver x/
MPI Recv (host_buf, size, ...);

cudaMemcpy (dev_buf, host_buf, size, ...);

computation_on_GPU (dev_buf);

= MPI operates on data in host memory only

=  Manual copy between host and GPU memory serializes PCle, Interconnect
— Can do better than this, but will incur protocol overheads multiple times

=  Productivity: Manual data movement
=  Performance: Inefficient, unless large, non-portable investment in tuning



MPI-ACC Interface: Passing GPU Buffers to MPI
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= Unified Virtual Address (UVA) space

— Allow device pointer in MPI routines directly
— Currently supported only by CUDA and newer NVIDIA GPUs

— Query cost is high and added to every operation (CPU-CPU)
= Explicit Interface —e.g. MPI_CUDA_Send(...)
=  MPI Datatypes — Compatible with MPI and many accelerator models



MPI-ACC: Integrated, Optimized Data Movement

= Use MPI for all data movement
— Support multiple accelerators and prog. models (CUDA, OpenCL, ...)
— Allow application to portably leverage system-specific optimizations

" /nter-node data movement:
— Pipelining: Fully utilize PCle and network links
— GPU direct (CUDA): Multi-device pinning eliminates data copying
— Handle caching (OpenCL): Avoid expensive command queue creation

" /ntra-node data movement:
— Shared memory protocol
e Sender and receiver drive independent DMA transfers
— Direct DMA protocol
e GPU-GPU DMA transfer (CUDA IPC)

— Both protocols needed, PCle limitations serialize DMA across I/O hubs
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= CUDA doesn’t support arbitrary noncontiguous transfers

= Pack data on the GPU
— Flatten datatype tree representation

— Packing kernel that can saturate memory bus/banks
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= Pipelining (PCle + IB) pays off for large messages — 2/3 latency
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Bandwidth (GB/sec)

Intra-node GPU-GPU Bandwidth
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Epidemiology Application Study

= Study the spread of flu-like disease 6
— N-Body simulation 5 |
— Exchange of interactions (visits) 4 -
is key communication step 5
- 2
. []
= Basic: @
L 1 -
— GPU=Host Copy, pack on host, g
= 0 -
send from host MPI + CUDA | MPI + CUDA
. MPI-ACC
(Basic) (Advanced)
" Advanced: m D-D Copy (Packing) 0 0 0.003
— Pack on GPU’ GPU=>Host copy, B GPU Receive Buffer Init 0 0 0.024
send from host m H-D Copy 0.382 0.282 0
B H-H Copy (Packing) 2.570 0 0
= MPI-ACC: ® CPU Receive Buffer Init 2.627 2.537 0

— Pack and send from GPU
— Receive directly to GPU
— Pipelining hides copy cost
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GPUs as a Service: Virtual OpenCL

= (Clusters, cloud systems, provide GPUs on subset of nodes

= OpenCL provides a powerful abstractions
— Kernels compiled on-the-fly —i.e. at the device
— Enable transparent virtualization, even across different devices

= Support GPUs as a service
— One-to-Many: One process can drive many GPUs
— Resource Utilization: Share GPU across applications, use hybrid nodes
— System Management, Fault Tolerance: Transparent migration
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Virtual OpenCL (VOCL) Framework Components

Local node Remote node
Application <Proxy>
OpenCL|API N\Q\ \

: Native OpenCL
VOCL Lib
orary Library
. J J
__VGpu il GpPu | _ GPU |

= VOCL library (local) and proxy process (system service)
= APl and ABI compatible with OpenCL — transparent to app.

= Utilize both local and remote GPUs

— Local GPUs: Call native OpenCL functions
— Remote GPUs: Runtime uses MPI to forward function calls to proxy



Migration of Virtual GPUs

local node

t vGPU1 |
[Gpu; ______________ H Gpuj
Remote node emote node 2

1. Proxy: Copy OpenCL VGPU from one physical GPU to another
— Drain command queue (tradeoff: overhead versus migration latency)
— Migrate OpenCL handles and inputs used to create them
— Create OpenCL handles on the destination GPU
— Send device memory contents

2. VOCL Library: Update virtual GPU mapping

— Replace the OpenCL handle and MPI communication information
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Queuing OpenCL Function Calls to Enable Migration

= A queue is created on each proxy to hold OpenCL commands
— Restrict the number of kernels being executed on physical GPUs
— Improve the responsiveness of virtual GPU migration
— Can cause additional overhead, but can be controlled by queue depth

MPI process

_ Queue head
MPI receive of commands

Help thread

Queue tail

Native OpenCL library

o\—r\‘f .



Overhead Caused by Internal Queue in Proxy
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Wait for Completion Time
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Performance Improvement Due to Migration
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Scioto-ACC: Accelerated, Scalable Collections of
Task Objects

Process O ... Processn
-
SPMD
3 (o)
a8 0o ®g ®O
g= © O. 0] Task
(o) o
°e o — as
A ~ ® Parallel
®@ O
© e °© ©° Termination
SPMD

= Express computation as collection of tasks
— Tasks operate on data in Global Address Space (GA, MPI-RMA, ...)
— Executed in collective task parallel phases

= Scioto runtime system manages task execution
— Load balancing, locality opt., fault resilience
— Mapping to Accelerator/CPU, data movement
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Work Stealing Runtime System

A
A

A
A

= Task queue on each process
— Set up for efficient one-sided accessess: fixed size, circular queues
— Steals are truly one-sided, no cooperation needed
— Tasks sorted according to CPU/GPU affinity

= \When | run out of work
— Select a victim at random and steal work
— Reactive to load imbalance, fully distributed (scalable) algorithm
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Block-Sparse Tensor Contraction Kernel (CCSD)

Number of tasks
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= (/eft) Mix of CPU and GPU tasks
" (right) Performance with CPU, GPU, both, and optimal

= Hybrid gives best performance
= Performance with work stealing is close to ILP schedule
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Conclusions

= Accelerators are becoming ubiquitous
— Exciting new opportunities for systems researchers

= Requires evolution of HPC software stack

= Goals are productivity, capability, and performance

1. MPI-ACC - Integrated and optimized MPI + Accelerators
2. VOCL — Virtual OpenCL

3. Scioto-ACC— CPU/GPU co-scheduled task parallelism

Contact: Jim Dinan <dinan@mcs.anl.gov>
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GPU Direct

InfiniBand

InfiniBand

Source: www.mellanox.com/pdf/whitepapers/TB_GPU_Direct.pdf
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VOCL Proxy

= Daemon process: Initialized by the administrator
= Located on each remote node

— Receive data communication requests

— Receive input data from and send output data to the application
process

— Call native OpenCL functions for GPU computation
— Handle virtual GPU migration across different physical GPUs

Remote node 1 Local node Remote node 2
T MPI v MP/
\
Natlvg OpenCL A vocl Library L Natlvg OpenCL
Library Library
___________________ \
¢ ¢ ¢ ;

. GPU |  GPU | | GPU | . GPU | s

__________________________
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Task Migration
local node
~— 1 ™
[G PU J < > [ G PUJ
Network connection
Remote node 1 Remote node 2

= Move computational tasks from one GPU to another
— Load rebalancing

e There are more tasks on one GPU than on the other, migrate part of the
tasks to the idle GPU

— Quick system maintenance:

e Suppose a system administrator wants to take a machine down for
maintenance, he/she should be able to migrate all virtual GPUs on that
physical GPU to another physical GPU 29
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Virtual GPU Abstraction

= Migration is based on the unit of virtual GPU (VGPU)

= Each application has a virtual GPU on each physical GPU
— An application has multiple VGPUs when using multiple physical GPUs
— A physical GPU has multiple VGPUs when used by multiple applications

= VGPU is in both the VOCL library and the proxy

— VOCL VGPU (library) Application Application
© VOCLobjects " N o
— OpenCL VGPU (proxy) |( i.vepuz | | vgpus |  vepuz ! | vepus |
e OpenCL objects VGPUZ VGPUZI

Physical GPU Physical GPU Physical GPU
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Virtual GPU Components

platform

N )

device

—

command
queue

<
N

context

VGPU

memory buffer

/

sampler

N

program

v

kernel

OpenCL virtual GPU

Store handle values of OpenCL objects

Store information used to create OpenCL objects

Record OpenCL object dependency

program = clCreateProgramWithSource (cl_context context,

VOCL virtual GPU
Store handle values of VOCL objects

cl uint

count,

const char **strings,
const size t *lengths

cl_int

*errcode_ret)
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Migration Overhead Versus Problem Size
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