An Accelerator-Integrated HPC Stack:

Programmability and Performance

Jim Dinan

James Wallace Givens Postdoctoral Fellow
Radix Laboratory for Scalable System Software
Mathematics and Computer Science Division

Fields using GPU Accelerators at ANL

Computed Tomography Micro-tomography

Acknowledgement: Venkatram Vishwanath @ ANL

GPU-Based Supercomputers

SUPERCOMPUTER SITES

Rank Site Computer/Year Vendor Cores Rmax Rpeak Power
RIKEN Advanced Institute for K computer, SPARC64 VllIfx 2.0GHz,
1 Computational Science (AICS) Tofu interconnect / 2011 705024 10510.00 11280.38 126599
Japan Fujitsu
National Supercomputing Center in NUDT YH MPP, Xeon X5670 6C 2.93
2 Tianjin GHz, NVIDIA 2050 / 2010 186368 2566.00 4701.00 4040.0
China NUDT
DOE/SC/Oak Ridge National Cray XT5-HE Opteron 6-core 2.6 GHz /
3 Laboratory 2009 224162 1759.00 2331.00 6950.0
United States Cray Inc.
/ National Supercomputing Centre in Qg;?énggg %g%OHgleiggnSiggmmdégon \
4 Shenzhen (NSCS) NVIDIA 2050 / 2010‘ ’ 120640 1271.00 298430 25800
China .
Dawning
GSIC Center, Tokyo Institute of HP ProLiant SL390s G7 Xeon 6C X5670,
5 Technology Nvidia GPU, Linux/Windows / 2010 73278 1192.00 228763 13986
_ Japan NEC/HP

GPU-Accelerated High Performance Computing

= GPUs are general purpose, highly CPU 0 —
PCle

parallel processors - 0 . .
— High FLOPs/Watt and FLOPs/$; Z e (B 1|2

— Unit of execution Kernel -
— Separate memory subsystem CPU 1 . E (E,E : g
— Prog. Models: CUDA, OpenCL, ... < 2 — "
g 2 o EEEEE| 2
i _ 2 |pce |E] |2 =
= (Clusters with GPUs are becoming = >

common
— Multiple GPUs per node
— Nonuniform node architecture
— Node topology plays role in performance

= New programmability and performance
challenges for programming models and
runtime systems

Programmability and Performance

1. MPI-ACC (ANL, NCSU, VT)
— Message Passing Interface (MPI) is most popular parallel prog. model
— Integrate awareness of accelerator memory in MPICH2
— Productivity and performance benefits

2. Virtual OpenCL (ANL, VT, SIAT CAS)
— OpenCL implementation allows program to use remote accelerators
— One-to-many model, better resource usage, load balancing, FT, ...

3. Scioto-ACC (ANL, OSU, PNNL)

— Task parallel programming model, scalable runtime system
— Coscheduling CPU and GPU, automatic data movement

Current MPI+GPU Programming

double *dev_buf, xhost buf;
cudaMalloc (&dev_buf, size);
cudaMallocHost (&host_buf, size);

if (my_rank == sender) { /* sender */
comPutation_on_GPU(dev_buf);

cudaMemcpy (host_buf, dev_buf, size, ...);

MPI Send(host_buf, size, ...);
} else { /* receiver x/
MPI Recv (host_buf, size, ...);

cudaMemcpy (dev_buf, host_buf, size, ...);

computation_on_GPU (dev_buf);

= MPI operates on data in host memory only

= Manual copy between host and GPU memory serializes PCle, Interconnect
— Can do better than this, but will incur protocol overheads multiple times

= Productivity: Manual data movement
= Performance: Inefficient, unless large, non-portable investment in tuning

MPI-ACC Interface: Passing GPU Buffers to MPI

UVA Lookup Overhead (CPU-CPU)

14

= Basic MP| Attributes
12 B MPI + Explicit parameters check f)
m MPI + Datatype attribute check CL Context
10 - B MPI + Automatic detection ~ -
8 MPI CL_Mem
Datatype \ /

)]

Latency (ps)

CL_Device_ID

N

CL_Cmd_queue

0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Data Size (bytes)

= Unified Virtual Address (UVA) space

— Allow device pointer in MPI routines directly
— Currently supported only by CUDA and newer NVIDIA GPUs

— Query cost is high and added to every operation (CPU-CPU)
= Explicit Interface —e.g. MPI_CUDA_Send(...)
= MPI Datatypes — Compatible with MPI and many accelerator models

MPI-ACC: Integrated, Optimized Data Movement

= Use MPI for all data movement
— Support multiple accelerators and prog. models (CUDA, OpenCL, ...)
— Allow application to portably leverage system-specific optimizations

" /nter-node data movement:
— Pipelining: Fully utilize PCle and network links
— GPU direct (CUDA): Multi-device pinning eliminates data copying
— Handle caching (OpenCL): Avoid expensive command queue creation

" /ntra-node data movement:
— Shared memory protocol
e Sender and receiver drive independent DMA transfers
— Direct DMA protocol
e GPU-GPU DMA transfer (CUDA IPC)

— Both protocols needed, PCle limitations serialize DMA across I/O hubs

9 10
14 | 15

Pack

PCle TranV

CPU i

MPI_Send(buffer, datatype, count, to, ..
MPI_Recv(buffer, datatype, count, from, ..

Network/
Disk

—_
o
o
o

Packing Time (Microseconds)
o

= What if the datatype is noncontiguous?

100 t

)

Integrated Support for User-Defined Datatypes

4D Subarray

Pack ---+---
Manual ----x----
*
CUDA - * e
= o
¥ B
o
T vt e FL SRV g

26 28 210 212 214 216 218 220 222

)

= CUDA doesn’t support arbitrary noncontiguous transfers

= Pack data on the GPU
— Flatten datatype tree representation

— Packing kernel that can saturate memory bus/banks

\
Inter-node GPU-GPU Latency

65536
37768 | & MPI-ACC |
16384 —-Manual Blocking | o
3197 —#—Manual Non blocking (Pipelined)
—<MPI Send/Receive (CPU-only; Lower Bound)
__ 4096
(%]
= 2048
>
o 1024
g 5 o
©
128+ —— == ’/
64 /
32 /(
16 T T T T T T T T : ‘ : :
R O I RN LG A P PGS
> AN I I I RN P

Data Size (bytes)

= Pipelining (PCle + IB) pays off for large messages — 2/3 latency

10

Bandwidth (GB/sec)

Intra-node GPU-GPU Bandwidth

60

50 |

40

30

20

= (left) Same I/O hub — DMA best
= (right) Different 1I/O hubs — shm best

Size (Bytes)

Bandwidth (GB/sec)

om--
N
i
P
.
|
.
.
.
;
A _o—o—o—6—%
.
:
/E/E'\E——-EI——EI—E]

32K 256K 2M 16M

Size (Bytes)

11

Epidemiology Application Study

= Study the spread of flu-like disease 6
— N-Body simulation 5 |
— Exchange of interactions (visits) 4 -
is key communication step 5
- 2
. []
= Basic: @
L 1 -
— GPU=Host Copy, pack on host, g
= 0 -
send from host MPI + CUDA | MPI + CUDA
. MPI-ACC
(Basic) (Advanced)
" Advanced: m D-D Copy (Packing) 0 0 0.003
— Pack on GPU’ GPU=>Host copy, B GPU Receive Buffer Init 0 0 0.024
send from host m H-D Copy 0.382 0.282 0
B H-H Copy (Packing) 2.570 0 0
= MPI-ACC: ® CPU Receive Buffer Init 2.627 2.537 0

— Pack and send from GPU
— Receive directly to GPU
— Pipelining hides copy cost

12

GPUs as a Service: Virtual OpenCL

= (Clusters, cloud systems, provide GPUs on subset of nodes

= OpenCL provides a powerful abstractions
— Kernels compiled on-the-fly —i.e. at the device
— Enable transparent virtualization, even across different devices

= Support GPUs as a service
— One-to-Many: One process can drive many GPUs
— Resource Utilization: Share GPU across applications, use hybrid nodes
— System Management, Fault Tolerance: Transparent migration

13

Virtual OpenCL (VOCL) Framework Components

Local node Remote node
Application <Proxy>
OpenCL|API N\Q\ \

: Native OpenCL
VOCL Lib
orary Library
. J J
__VGpu il GpPu | _ GPU |

= VOCL library (local) and proxy process (system service)
= APl and ABI compatible with OpenCL — transparent to app.

= Utilize both local and remote GPUs

— Local GPUs: Call native OpenCL functions
— Remote GPUs: Runtime uses MPI to forward function calls to proxy

Migration of Virtual GPUs

local node

t vGPU1 |
[Gpu; ______________ H Gpuj
Remote node emote node 2

1. Proxy: Copy OpenCL VGPU from one physical GPU to another
— Drain command queue (tradeoff: overhead versus migration latency)
— Migrate OpenCL handles and inputs used to create them
— Create OpenCL handles on the destination GPU
— Send device memory contents

2. VOCL Library: Update virtual GPU mapping

— Replace the OpenCL handle and MPI communication information

15

Queuing OpenCL Function Calls to Enable Migration

= A queue is created on each proxy to hold OpenCL commands
— Restrict the number of kernels being executed on physical GPUs
— Improve the responsiveness of virtual GPU migration
— Can cause additional overhead, but can be controlled by queue depth

MPI process

_ Queue head
MPI receive of commands

Help thread

Queue tail

Native OpenCL library

o\—r\‘f .

Overhead Caused by Internal Queue in Proxy

——N-body “#-Smith-Waterman
—*+—Matrix transpose =>~Matrix multiplication
45
40 \\
¢ AN 4 & > > ¢ L

35
25

20 \\

Program execution time (second)

———
15 — —— |
10 T e———= % « % «
5
0 I I I I I I .
2 4 8 12 16 20 Infini
N Value

17

[

Wait for Completion Time

160
140
120
100
80
60
40
20

Wait for completion time (ms)

——Matrix multiplication —#N-body

—*—Matrix transpose

=->-=Smith-Waterman

b

iy

/.

A

A

va N N, N
7\
7N 7N ~ 7N
I I I I I

2

4

8 12 16 20
N Value

18

Program execution time (s)

Program execution time (s)

250

200

150

100

50

80
70
60
50
40
30
20

Performance Improvement Due to Migration

Matrix multiplication

{

i I \\ithout migration
0 With migration

_Llhlil , ,

IKX 1K 2KX2K 3KX3K 4KX4K 5KX5K 6K X 6K
Matrix size

Smith-Waterman

l_TE
1K 2K 3K 4K 5K 6K

Sequence size

R\ C—

2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

Speedup brought by migration

Speedup brought by migration

N-body

450 2.5
< 400
(]
£ 350 e - 20
_§ 300 - I
E 250 1.5
£ 200
g - 1.0
s 150
g 100 - 0.5
* 50 -

0 - - 0.0
15360 23040 30720 38400 46080 53760
Number of bodies

_ Matrix transpose
<400 2.0
E 350 i 1-?
c B .
-§3OO - 1.4
250 - 1.2
3200 1.0
£ 150 - 0.8
& - 0.6
o
£ 100 - 0.4

50 - 0.2

0 - - 0.0

1K X 1K 2K X 2K 3K X 3K 4K X 4K 5K X 5K 6K X 6K

Matrix size

Speedup brought by migration

Speedup brought by migration

19

Scioto-ACC: Accelerated, Scalable Collections of
Task Objects

Process O ... Processn
-
SPMD
3 (o)
a8 0o ®g ®O
g= © O. 0] Task
(o) o
°e o — as
A ~ ® Parallel
®@ O
© e °© ©° Termination
SPMD

= Express computation as collection of tasks
— Tasks operate on data in Global Address Space (GA, MPI-RMA, ...)
— Executed in collective task parallel phases

= Scioto runtime system manages task execution
— Load balancing, locality opt., fault resilience
— Mapping to Accelerator/CPU, data movement

20

Work Stealing Runtime System

A
A

A
A

= Task queue on each process
— Set up for efficient one-sided accessess: fixed size, circular queues
— Steals are truly one-sided, no cooperation needed
— Tasks sorted according to CPU/GPU affinity

= \When | run out of work
— Select a victim at random and steal work
— Reactive to load imbalance, fully distributed (scalable) algorithm

21

Block-Sparse Tensor Contraction Kernel (CCSD)

Number of tasks

Task Granularity Histogram TCE Execution Time
250 12 T
- 00 CPU s
-~ 1000 } GPU pomomn |
200 t 8 Hybrid s
@£ ILPScheduled
o 800 1
150 I=
= 600}
C
100 | S
3 400 t
50 | 2
L 200 t
0 0
Ratio of CPU / GPU Time (binned) 1 8

Number of Nodes

= (/eft) Mix of CPU and GPU tasks
" (right) Performance with CPU, GPU, both, and optimal

= Hybrid gives best performance
= Performance with work stealing is close to ILP schedule

22

Conclusions

= Accelerators are becoming ubiquitous
— Exciting new opportunities for systems researchers

= Requires evolution of HPC software stack

= Goals are productivity, capability, and performance

1. MPI-ACC - Integrated and optimized MPI + Accelerators
2. VOCL — Virtual OpenCL

3. Scioto-ACC— CPU/GPU co-scheduled task parallelism

Contact: Jim Dinan <dinan@mcs.anl.gov>

23

a__r—}f;

Backup Slides

\ S—

MPI-ACC

GPU Direct

InfiniBand

InfiniBand

Source: www.mellanox.com/pdf/whitepapers/TB_GPU_Direct.pdf
° 26

A

VOCL

VOCL Proxy

= Daemon process: Initialized by the administrator
= Located on each remote node

— Receive data communication requests

— Receive input data from and send output data to the application
process

— Call native OpenCL functions for GPU computation
— Handle virtual GPU migration across different physical GPUs

Remote node 1 Local node Remote node 2
T MPI v MP/
\
Natlvg OpenCL A vocl Library L Natlvg OpenCL
Library Library
___________________ \
¢ ¢ ¢ ;

. GPU | GPU | | GPU | . GPU | s

28

Task Migration
local node
~— 1 ™
[G PU J < > [G PUJ
Network connection
Remote node 1 Remote node 2

= Move computational tasks from one GPU to another
— Load rebalancing

e There are more tasks on one GPU than on the other, migrate part of the
tasks to the idle GPU

— Quick system maintenance:

e Suppose a system administrator wants to take a machine down for
maintenance, he/she should be able to migrate all virtual GPUs on that
physical GPU to another physical GPU 29

29

Virtual GPU Abstraction

= Migration is based on the unit of virtual GPU (VGPU)

= Each application has a virtual GPU on each physical GPU
— An application has multiple VGPUs when using multiple physical GPUs
— A physical GPU has multiple VGPUs when used by multiple applications

= VGPU is in both the VOCL library and the proxy

— VOCL VGPU (library) Application Application
© VOCLobjects " N o
— OpenCL VGPU (proxy) |(i.vepuz | | vgpus | vepuz ! | vepus |
e OpenCL objects VGPUZ VGPUZI

Physical GPU Physical GPU Physical GPU

30

Virtual GPU Components

platform

N)

device

—

command
queue

<
N

context

VGPU

memory buffer

/

sampler

N

program

v

kernel

OpenCL virtual GPU

Store handle values of OpenCL objects

Store information used to create OpenCL objects

Record OpenCL object dependency

program = clCreateProgramWithSource (cl_context context,

VOCL virtual GPU
Store handle values of VOCL objects

cl uint

count,

const char **strings,
const size t *lengths

cl_int

*errcode_ret)

31

31

Migration Overhead Versus Problem Size

Matrix multiplication

=
N
o

N Without migration

n
;-A-Overhead caused by migration

=

o

o
]

00
o

60

40

20 -

Program execution time (s)

7%
- 6%
- 5%
- 4%
- 3%
- 2%
- 1%
- 0%

IKX 1K 2KX 2K 3KX3K 4KX4K 5KX5K 6KX6K

Matrix size

Smith-Waterman

Program execution time (s)

1K 2K 3K 4K 5K 6K
Sequence size

a\\=

60%
50%
40%
30%
20%
10%
0%

Overhead caused by migration

-10%

Overhead caused by migration

Program execution time (s)

Program execution time (s)

140
120
100
80
60
40
20

200
180
160
140
120
100
80
60
40
20
0

N-body

15360 23040 30720 38400 46080 53760
Number of bodies

Matrix transpose

2.0%
1.8%
1.6%
1.4%
1.2%
1.0%
0.8%
0.6%
0.4%
0.2%
0.0%

IKX 1K 2KX2K 3KX3K 4KX4K S5KX5K 6KX6K

Matrix size

Overhead caused by migration

6%

5%

4%

3%

2%

1%

0%

32

Overhead caused by migration

