AAAAAAAAAAAAAAAAAA

Challenges in Scaling MPI to Exascale

Rajeev Thakur, Pavan Balaji, Darius Buntinas, Jim Dinan,
Dave Goodell, Bill Gropp,* Rusty Lusk, Rob Ross, Marc Snir

Argonne National Laboratory
*University of lllinois

Outline

= Role of MPI and MPICH for Exascale

= Recent Research Areas
— Scalability for very large-scale systems

— Managing and dealing with complex hardware (processors, networks)
— Multi-model programming

= Ongoing New Research Directions
— MPI-3
— Extensions to MPI

e Active messages, dynamic tasks, compiler support for MPI
e Composable programming models
e Integrating MPIl and Accelerators

MPI on the Largest Machines Today

= Systems with the largest core counts in November 2011 Top500 list
(excluding GPU cores)

RIKEN K computer 705,024 cores

Julich BG/P 294,912 cores
Oak Ridge Cray XT5 224,162 cores
LLNL BG/L 212,992 cores
Argonne BG/P 163,840 cores
NERSC Cray XE6 153,408 cores

= Within the next few months, we will have systems with more than a
million cores

= For example, the Sequoia machine at Livermore will be an IBM BG/Q with
1,572,864 cores (~1.6 million cores)

\ |
Potential System Architecture Targets

Node performance 125 GF 0.5TF 7TF 1TF 10 TF
Node memory BW 25 GB/s 0.1TB/sec 1 TB/sec 0.4TB/sec 4 TB/sec
Node concurrency 12 0O(100) 0O(1,000) O(1,000) 0(10,000)
System size (nodes) 18,700 50,000 5,000 1,000,000 100,000
Total Node 1.5 GB/s 20 GB/sec 200GB/sec
Interconnect BW

Source: Andy White and Rick Stevens talk on “A decadal DOE plan for providing exascale
applications and technologies for DOE mission needs,” DOE ASCAC meeting, March 2010

IF

Role of MPlI and MPICH for Exascale

MPICH: A High Performance Implementation of MPI

= MPICH is our research vehicle for doing research in MPI as well as other
runtime capabilities that we expect to see in large-scale systems

= Project Goals:

— Be the MPI implementation of choice for the highest-end parallel machines
— Many of the largest machines in the Top500 list use MPICH2-based
implementations
— Carry out the research and development needed to scale MPI to exascale
e Optimizations to reduce memory consumption
e Fault tolerance
e Efficient multithreaded support for hybrid programming
e Performance scalability
e Extensions to MPI

— Work with the MPI Forum on standardization and early prototyping of new
features

MPICH Project History

= Conceived in November 1992 (SC meeting when MPI-1 work began)
— Actual coding started in March 1993
= When MPI-2 was being formulated, we rewrote MPICH to start a second
version of the code base called “MPICH2”

— Current research effort

— We use “MPICH” and “MPICH2” interchangeably; typically “MPICH” refers to
the overall project and “MPICH2” refers to the code base

= MPICH has prototyped various proposals in MPI as they were being
proposed

= Has been the first implementation of every released MPI standard
- MPI-1.0,1.1,1.2,1.3,2.0, 2.1, 2.2
— Working on being the first implementation to support MPI-3

MPICH collaboration with vendors

= Enable vendors to provide high-performance MPI implementations on the
leading machines of the future

= Collaboration with IBM on MPI for the Blue Gene/Q

— Multithreaded optimizations for high concurrent message rates (recent
publications in Cluster 2010 and EuroMPI 2010)

— Memory optimizations
= Collaboration with Cray for MPI on their new interconnect (Gemini)

= Continued collaboration with Intel, Microsoft, Myricom, and Ohio State
(MVAPICH)

Essential Factors for Scaling MPI to Exascale

"MPI on Millions of Cores”

— Balaji, Buntinas, Goodell, Gropp, Hoefler, Kumar, Lusk, Thakur, Traff, Parallel
Processing Letters, 21(1):45--60, March 2011

= Performance scalability

— Of all functions, not just the commonly optimized ones
= Memory consumption scalability

— Should not grow linearly or worse with the number of processes
= Fault tolerance/resilience

= Efficient support for hybrid programming and composability with other
programming models

= Above features need to be supported both in the MPI specification and in
MPI implementations
— Being addressed in the MPI-3 standard
— Being addressed by MPIl implementations (e.g., MPICH)

Example: Communicator Memory Consumption Fixed

Maximum Number of Communicators
2 9000
%SOOO_Jllllllllillllll_
[O)
‘e 7000
£ 6000 \\
£ 5000 —e— Default N
O 4000
o —— Buffer Pool \
. 3000 \
3 2000
£ 1000 e
= Ty
0 [[[[[[[[[[[[[[[
" @ O A (N> D0 A
MR I R RN S a2
Number of Processes

= NEK5000 code failed on BG/P at large scale because MPI ran out of
communicator memory. We fixed the problem by using a fixed buffer pool
within MPI and provided a patch to IBM.

10

Example: MPI_Comm_split Performance Scalability
Problem Fixed

= A user on our BG/P reported that as he doubled the number of processes,
the time taken by MPI_Comm_split quadrupled!

= Problem was narrowed down to the algorithm used to implement a stable
sort

= Switching to a better local stable sorting algorithm fixed the problem

OLD NEW
16,384 procs 1.5 sec 0.105 sec
32,768 procs 6.3 sec 0.126 sec
65,536 procs 25.3 sec 0.168 sec
131,072 procs 101.2 sec 0.255 sec

11

\ |
Scalable Memory Usage for Internal Data
Structures

“Scalable Memory Use in MPI: A Case Study with MPICH2”
— Dave Goodell, Bill Gropp, Xin Zhao, Rajeev Thakur, EuroMPI 2011

= Discussion of areas in MPI that appear to need O(p) memory on each
process and how it could be avoided

— Group representation

— Connections and message buffers

— RMA windows

— Nonscalable arguments to MPI functions

= Audit of memory usage in MPICH2

= Designed and implemented a fix for one area of nonscalable memory
usage — the virtual connection table

12

Scalable Memory Usage (contd.)

In an MPI implementation, each process must maintain at least some state
for each other process with which it communicates

In MPICH2, it is in the virtual connection (VC) object, and there is an O(p)
size VC table allocated in MPI_Init for easy access

Rearchitected a core piece of MPICH2 for cleaner abstraction and to
enable memory savings through compression and lazy allocation

In the new scheme, VCs are created lazily only as needed and stored in a
hash table

Result: Memory consumption scales well for common communication
patterns

Current implementation has some performance overhead that we are
tracking down

13

Dealing with Complex Hardware Topologies

= “Multi-core and Network Aware MPI Topology Functions”
— Mohammad Rashti, Jonathan Green, PavanBalaji, Ahmad Afsahi, Bill Gropp,
EuroMPI 2011
= Hardware topologies are becoming increasingly complex
— Hierarchy in processors (sockets, dies, cores, threads)
— Scalable networks (torus topologies, non-fully-connected networks)

— MPIl internally does some optimizations to maximize performance for various
architectures, but often times this is not enough — we need help from
applications to tell us how they are going to communicate

= Topology-aware mapping of MPI ranks to cores is critical for performance
at extreme scale

— MPI has virtual topology functions, but they are often unoptimized

— This work aims at optimizing the mapping of graph topologies to physical
processors, with the help of available tools

e HWLOC for extracting node architecture
e |B subnet manager (ibtracert) for extracting network distances
e Scotch library for graph mapping

14

Applications: Topology-aware Mapping
Improvement over Block Mapping (%)

Communication Time Improvement Run-time Improvement
non-weighted graph non-weighted graph
¥ weighted graph ¥ weighted graph
£l Weighted & network-aware graph Weighted & network-aware graph
1= ERe=iim o
[i><} | [:::
c 5 A
2 s -¢ ::?::
2 a8 $
LL & 1 — <:-: : -:}
A S o . " '_1
o T T | — T
S 2 2 c . P 0 %
= - < B o X — 2 2
< — -2 5] Q. 3 : :
= 2 s 8 o =
W o iy G) G)
4 = o © =
-4 S = =
< =
. . S -
Applications < <
-6 =~ Applications

On a 128-core cluster

Enabling MPI+X Hybrid Programming

MPI is good at moving data between address spaces

Within an address space, MPI can interoperate with other “shared
memory” programming models

Useful on future machines that will have limited memory per core
(MPI + X) Model: MPI across address spaces, X within an address space
Examples:

— MPI + OpenMP

— MPI + UPC/CAF (here UPC/CAF address space could span multiple nodes)

— MPI + CUDA/OpenCL on GPU-accelerated systems

Precise thread-safety semantics of MPI enable such hybrid models

We are exploring further enhancements to MPI to support efficient
hybrid programming

16

Efficient Multithreaded Communication for
Hybrid Programming

= “Minimizing MPI Resource Contention in Multithreaded Multicore
Environments,” Goodell, Balaji, Buntinas, Dozsa, Gropp, Kumar, de
Supinski, Thakur, Cluster 2010

— Reference counting of MPI objects in multithreaded environments requires
atomic updates, which are expensive under contention

— New algorithm proposed that uses a garbage collection method that avoids
the need for atomic reference counting

= “Enabling Concurrent Multithreaded MPI Communication on Multicore
Petascale Systems,” Dozsa, Kumar, Balaji, Buntinas, Goodell, Gropp,
Ratterman, Thakur, EuroMPI 2010
— Work with IBM on optimizing multithreaded communication

— Uses a combination of a multichannel-enabled network interface, fine-grained
locks, lock-free atomic operations, and message queues specifically designed
for concurrent multithreaded access

17

Message Rate Results on BG/P

Message Rate Benchmark

message-rate (MMPS)

L = B ST

O O O O O o o
. &

.
W e U0 O R FEF DN WS
1 I T T T T

_Optimiéed stack n /;
Default stack 4 - /
-
[
. |
A
0 1 2

threads

18

Multi-Model Programming (MPI+UPC)

= “Hybrid Parallel Programming with MPI and Unified Parallel C” James
Dinan, Pavan Balaji, Ewing Lusk, P. Sadayappan, Rajeev Thakur, ACM Conf.
on Computing Frontiers, May 2010
= Explores the use of a combination of UPC and MPI in programs
— UPC within an address space (potentially across multiple nodes)
— MPI across address spaces
= Multiple models proposed

Flat Nested-Funneled Nested-Multiple

.............

ooooo

--
........

., o
.....

@, Hybrid MPI1+UPC Process
. UPC Process

19

Speedup

Hybrid MPI+UPC Barnes-Hut Algorithm

300 — 100 p —
Hybrid-4 —— Hybrid-4 ——
250 | Hybrid-8 ==-s=- 1 o 90F Hybrid-8 ==-s==' 1
Hybrid-16 =--®--- Q 80 | Hybrid-16 «--e-: -
Baseline UPC @ o Baseline UPC
200 s 70}]
/ g 60}
150 ® 50
/ ~1 8 40f
------ -
o / e e 30
50 SR LTI — $ & 20p
| R L S
0 -, .) L . . . 0 B rrererss oo . ’ . _ 1
0 32 64 96 128 160 192 224 256 0 32 64 96 1'28 160 192 224 256

Number of Processors Number of Processors

‘O @0 @ " Nested-funneled model
o 00 O — Tree is replicated across UPC groups

g o

‘‘‘‘‘‘‘‘

© @0 ‘ = 51 new lines of code (2% increase)

9 @ . — Distribute work and collect results

20

Global Arrays on MPI

= GA Runtime: ARMCI
— PGAS runtime system
— Natively implemented

Native

NWChem

ARMCI-MPI

Global Arrays

NWChem

ARMCI

Global Arrays

— Requires tuning and maintenance MPI MPI
Native Native

= MPIis ubiquitous
— MPI has supported one-sided operations for 10 years
— MPI-RMA is complex, adoption has been slow

= Goal: Implement ARMCI on MPI-RMA
— Portability: GA problems on BG/P, Qlogic IB, IB Torus, new systems
— Performance: MPI RMA gives access to high performance RDMA

— Interoperability: More resources available to application
e Shared progress engine, buffer pinning, network and host resources

“Supporting the Global Arrays PGAS Model Using MPI One-Sided Communication,”
Dinan, Balaji, Hammond, Krishnamoorthy, Tipparaju, IPDPS 2012

21

NWChem Performance (XE6)

Cray XE6
18 . : : : 30
t ARMCI-MP| CCSD ==
ARMCI-Native CCSD ====-
15 Sy ARMCI-MPI (T) «=r#ees 25

ARMCI-Native (T)

CCSD Time (min)
(T) Time (min)

— . 0
744 1488 2232 2976 3720 4464 5208 5952

Number of Cores

22

New Research Directions

23

MPI-3 and its implementation

Several people in our group participate actively in the MPI Forum to
define MPI-3

We plan to support MPI-3 in MPICH

New features expected in MPI-3 include
— Support for hybrid programming

— Improved RMA

— New nonblocking and sparse collectives
— Fault tolerance

— New tools interface

24

\ |
Investigating Extensions to MPI

= Active Messages
— User-defined callbacks that can be triggered remotely (different progress
semantics possible)

— Critical for high-level models such as Chapel and MADNESS runtime to
function correctly over MPI (MADNESS runtime currently wastes a core on

each NUMA domain to emulate active messages on its own)

= MPI processes as dynamic processes

— An MPI process does not need to be a static OS process

e Making MPI processes more dynamic (as user-level threads) that can switch easily
and migrate has several benefits (similar to the Charm++ model)

e Static MPI processes have their own benefits as well (topology and optimizations
are much cleaner and can be done at initialization time)

e A hybrid model where the user can force some processes to be static and some
dynamic might be a good middle ground (MPI-3 endpoints proposal is an example)

= Compiler support for MPI
— In collaboration with Prof. Qing Yi at UT San Antonio

25

Interoperability with more models than just
threads

= Unfortunately, using multiple programming models is not possible today

— Programming models are not interoperable today because their runtime
systems do not cooperate

— UPC and CAF use the GASNet runtime system; Global Arrays uses ARMCI; MPI
uses its own internal runtime system
— Impossible to inter-mix these different runtime systems without they knowing
of each other
e Resource conflicts
e Progress deadlocks
e Data corruption because of data access contention

26

\ |
Unistack: Proposed Common Runtime for Multiple

Programming Models Led by Pavan Balaji
Parallel Composability

frrm-s--——m r—————>
A

Scalable
Tools
Foy
New High-level Libraries 3
(e.g. dynamic task-parallel execution) g
| 8 B N & 5 5B &8 & &8 &8 &8 &8 &8 &8 B &8 &8 &8 & §B &8 &8 § §B &8 & §B § | 8-
o
Lo Hardware r
Plum . Abstraction Layer for -
levelThreading .
Software . managing memory,
untimes topology, power, etc
N BN D D DN DN DN DN DN DN DN DD DI DD DD DD D DD DN DD DD D D D B B B e .
Operating System
\ 4

Goal: composable and interoperable architecture with replaceable components

Result: New, disruptive programming models can be rapidly adopted
27

Interoperability with GPUs: Current Data Model

GPU

device
memory

GPU

device
memory

p4

CPU
main
memory

N, CPU etwo

main
memory

Rank=0 Rank=1
if(rank == 0) if(rank == 1)
{ {
cudaMemcpy (s_buf, s_dev_buf, D2H); MPI_Recv(r_buf,);
MPI_Send(s_buf,); cudamemcpy(r_dev_buf, r_buf, H2D);
} }

° 28

Project Goals

Productivity Goal (API)
— Implement the rich data transfer interface of MPI for CUDA, OpenCL, PGAS
models, etc
e Contiguous data, different data-types (noncontiguous), collectives, one-sided

communication

Performance Goal
— Pipeline the data movement between GPU memory, host memory and remote
node using architecture specific enhancements
e NVIDIA: GPU Direct

e Multi-stream copies between GPU and memory (multiple command queues can
benefit from parallelism in the DMA engine)

— Future architectures:
e Zero-copy data movement if accelerators have direct network access
e Eliminate “GPU-to-host” data transfers if the heterogeneous processors share
memory spaces
All of the above should happen automatically within the MPICH
implementation, i.e. applications should not redo their data movement for
each architecture

29

Interoperability with GPUs: New Data Model

aux
memoryl

aux
memory2

aux
memory3

if(rank
{

}

MPI_Send(s_aux_buf, ..

b

aux
memory4

CPU
main
memory

aux
memoryl

—= 0)

Rank=0

)

/ aux
// ﬂ memory?2
/
// e aux
otwo CPU /// memory3
> main ~
=~ aux
memory >
memory4
Rank =1
if(rank == 1)
{
MPI_Recv(r_aux_buf,);
3

30

\ |
Experimental Results (CUDA - RNDV mode)

10000
MPICH2-GPU
1000
=
c)
g 100 -
[}
5
10
1 T T T T T T T T 1
16384 32768 65536 131072 262144 524288 1048576 2097152 4194304

Data Size (bytes)

== MPI_Send (R3) =>&=CudaMemcpy_D2H + MPI_Send + CudaMemcpy_H2D == MPIX_Send (R3)

31

MPI + GPU Example - Stencil Computation
O))

non-contiguous!

GPU

\ GPU

cudalMemcpy

high latency! 5 §
MPI_lIsend/Irecv

cudaMemcpy CPU CPU v\cudaMemcpy
- = C N

16 MPI transfers + 16 GPU-CPU xfers

\ GPU 2x number of transfers! N GPU |

John Jenkins, Accelerating Movement of Non-contiguous Data on Hybrid MPI+GPU Environments, Argonne National Laboratory, 8/15/11

A 32

GPU optimizations for Data Packing

= Element-wise traversal by different threads

= Embarrassingly parallel problem, except for structs, where element sizes
are not uniform

=

g,’ ‘a a

Pack

ANRR - —
Recorded by
elements +«—

Dataloop

traverse by element #, read/write using extent/size
33

Packing Throughput (Indexed)

Indexed Pack vs. Block cudaMemcpy: 8B Blocks Indexed Pack vs. Block cudaMemcpy: 128B Blocks
e 77— 16384 ——————F————————7————
4096 - . 4096
1024
L 1024
@ 256
s} s
=3 64 | 256
>
3 A
=) 16 |- 64
Q L
= 4|
s 16
1 -
025 Pack —+— | 4 Pack —+— -
= Block memcpy —><— L Block memcpy —><¢— |
2 [L 1 L L 1 L L 1 L 1 " 1 L .PCII_e Ma)E 1 L] 1 L L L " 1 n L L " 1 L L L L PCII-e .Nla).(" L
0.06 520 5 510 515 520 20 o5 510 515 520
Number of Blocks Number of Blocks
displacement 0 512 1024 1536 2048
blocklength
(bytes) gth |8 8 8 8 8
128 128 128 128 128

John Jenkins, Accelerating Movement of Non-contiguous Data on Hybrid MPI+GPU Environments, Argonne National Laboratory, 8/15/11

A ¥ 34

Packing Throughput (Column-Vector)

Vector Pack vs. cudaMemcpy2D: 8B Blocks (Column-Vector)
16384 l 1 ' Ll | T ! 1 1 | l 1 T T |

4096 I
1024

256 -

64 |-

16 |

Throughput (MB/s)

0.05 Xk Pack —+— _
' memcpy2D ——><— |

2 i N ! L ! | L N L L | N L ! .PCII-e Ma)f L L
0.06 520 05 510 515 520
Number of Blocks

John Jenkins, Accelerating Movement of Non-contiguous Data on Hybrid MPI+GPU Environments, Argonne National Laboratory, 8/15/11

35

VOCL Framework for Virtualizing GPUs

Compute Node
OpenCL API
Compute Node P
L Native OpenCL Library
Compute Node Application $
Application
OpenCL API Physical
OpenCL API VOCL Library GPU
Native OpenCL Library @ @
3 Virtual GPU i} Virtual GPU |
e L S Compute Node
GPU
. OpenCL API
Traditional Model
Native OpenCL Library

Physical
VOCL Model GPU

36

MPICH Collaborators/Partners

= Core MPICH developers
= |[BM
* INRIA ZJINR
= Microsoft
= |ntel
= University of lllinois
= University of British Columbia
= Derivative implementations

—_— Leap ahead

| Cray EPEPUTER COMPANY
= Myricom |y Myr’c—&"
= Ohio State University =— MVAPICH g
= QOther Collaborators - Xf/

= Absoft absat Pacific Northwest.
= Pacific Northwest National Laboratory g
= Qlogic xx OLOGIC

: : ueern’s
= Queen’s University, Canada Queerns
= Totalview Technologies r r r T E——

=_University of Utah TOTALVIEW U OF UTAH

nnnnnnnnnnnn 11/17/10

Summary

= MPI has succeeded because

— features are orthogonal (complexity is the product of the number of
features, not routines)

— complex programs are no harder than easy ones
— open process for defining MPI led to a solid design

— programmer can control memory motion and program for locality (critical
in high-performance computing)

— precise thread-safety specification has enabled hybrid programming

= MPIis ready for scaling to extreme scale systems with millions of cores

barring a few issues that can be (and are being) fixed by the MPI Forum
and by MPIl implementations

38

